微处理器-最大系统最小系统
- 格式:ppt
- 大小:440.82 KB
- 文档页数:3
微型计算机系统数字电子计算机经历了电子管、晶体管、集成电路为主要部件的时代。
随着大规模集成电路的应用,计算机的功能越来越强大、体积却越来越微小,微型计算机(简称为微型机或微机)应运而生,并获得广泛应用。
本章以Intel 80x86微处理器和微机为实例,介绍微处理器的发展和微型计算机的组成结构。
1.1 微处理器发展在巨型机、大型机、小型机和微机等各类计算机中,微机(Microc- omputer)是性能、价格、体积较小的一类,常应用在科学计算、信息管理、自动控制、人工智能等领域。
工作学习中使用的个人微机,生产生活中运用的各种智能化电子设备都是典型的微机系统。
微机的运算和控制核心,即所谓的中央处理单元(Central Processing Unit,CPU),被称为微处理器(Microprocessor)。
它是一块大规模集成电路芯片,代表着整个微机系统的性能。
所以,通常就将采用微处理器为核心构造的计算机称为微机。
1.1.1微处理器历史微处理器的性能经常用字长、时钟频率、集成度等基本的技术参数来反映。
字长(Word)表明微处理器每个时间单位可以处理的二进制数据位数,例如一次进行运算、传输的位数。
时钟频率表明微处理器的处理速度,反映了微处理器的基本时间单位。
集成度表明微处理器的生产工艺水平,通常用芯片上集成的晶体管数量来表达。
1.通用微处理器1971年,美国Intel(英特尔)公司为日本制造商设计了一个微处理器芯片。
该芯片成为世界上第一个微处理器4004。
它字长4位,集成了约2300个晶体管,时钟频率为108kHz(赫兹)。
以它为核心组成的MCS-4计算机也就是世界上第一台微型计算机。
4004随后被改进为4040。
1972年Intel公司研制出字长8位的微处理器芯片8008,其时钟频率为500kHz,集成度约3500个晶体管。
随后的几年当中,微处理器开始走向成熟,出现了以Motorola 公司M6800、Zilog公司Z80和Intel公司8080/8085为代表的中、高档8位微处理器。
什么是单片机最小系统_单片机的最小系统简述单片机简介单片机是一种集成电路芯片。
它采用超大规模技术将具有数据处理能力的微处理器(CPU)、存储器(含程序存储器ROM和数据存储器RAM)、输入、输出接口电路(I/O接口)集成在同一块芯片上,构成一个即小巧又很完善的计算机硬件系统,在单片机程序的控制下能准确、迅速、高效地完成程序设计者事先规定的任务。
所以说,一片单片机芯片就具有了组成计算机的全部功能。
由此来看,单片机有着一般微处理器(CPU)芯片所不具备的功能,它可单独地完成现代工业控制所要求的智能化控制功能,这是单片机最大的特征。
然而单片机又不同于单板机(一种将微处理器芯片、存储器芯片、输入输出接口芯片安装在同一块印制电路板上的微型计算机),单片机芯片在没有开发前,它只是具备功能极强的超大规模集成电路,如果对它进行应用开发,它便是一个小型的微型计算机控制系统,但它与单板机或个人电脑(PC机)有着本质的区别。
单片机的应用属于芯片级应用,需要用户(单片机学习者与使用者)了解单片机芯片的结构和指令系统以及其它集成电路应用技术和系统设计所需要的理论和技术,用这样特定的芯片设计应用程序,从而使该芯片具备特定的功能。
不同的单片机有着不同的硬件特征和软件特征,即它们的技术特征均不尽相同,硬件特征取决于单片机芯片的内部结构,用户要使用某种单片机,必须了解该型产品是否满足需要的功能和应用系统所要求的特性指标。
这里的技术特征包括功能特性、控制特性和电气特性等等,这些信息需要从生产厂商的技术手册中得到。
软件特征是指指令系统特性和开发支持环境,指令特性即我们熟悉的单片机的寻址方式,数据处理和逻辑处理方式,输入输出特性及对电源的要求等等。
开发支持的环境包括指令的兼容及可移植性,支持软件(包含可支持开发应用程序的软件资源)及硬件资源。
要利用某型号单片机开发自己的应用系统,掌握其结构特征和技术特征是必须的。
单片机控制系统能够取代以前利用复杂电子线路或数字电路构成的控制系统,可以以软件控制来实现,并能够实现智能化,现在单片机控制范畴无所不在,例如通信产品、家用电。
微型计算机基本硬件微型计算机是目前计算机中使用最广泛,市场占有率最高的一类计算机。
微型计算机硬件系统由主机和常用外部设备两大部分组成。
主机由中央处理器和内存储器组成,用来执行程序、处理数据,主机芯片都安装在一块电路板上,这块电路板称为主板(Motherboard)。
为了与外围设备连接,在主机板上还安装有若干个接口插糟,可以在这些槽上插入与不同外围设备连接的接口卡,用来连接不同的外部设备。
1.4.1 微处理器CPU是微机硬件系统的核心,一般由高速电子线路组成。
目前的CPU都集成在一块芯片上,称为微处理器MP(Micro processor)。
同CPU一样,MP由运算器、控制器组成,它在很大程度上决定了微型计算机的性能。
微处理器不等于微型计算机,它只是组成微机的一个核心器件。
由于CPU在微机中的关键作用,人们往往将CPU的型号作为衡量和购买机器的标准,如586、PII、PIII、P4等微处理器都成为机器的代名词。
世界上第一块微处理器于1971年Intel公司研制成功,称为Intel 4004,字长为4位;在以后短短的30年中,Intel公司又相继推出了字长为8位、16位、32位的微处理器8080(1973)、8086(1978)、80286(1982)、80386(1985)、80486(1989)、Pentium(奔腾,又称586)(1993)、Pentium Pro(与Pentium统称P5)(1995)、PentiumII(1997)、PentiumIII (1999)、以及现在的 Pentium 4(2000)。
一般认为微处理器芯片的位数越多,其处理能力会越强。
除Intel公司外,AMD 公司、Cyrix公司、Motorola公司也生产微型计算机的微处理器。
1.4.2微型机的存储器微机的存储器是由主存储器(内存)和辅助存储器(外存)组成。
在主机内部,直接与CPU交换信息的存储器称主存储器或内存储器。
第二章8086/8088微处理器及其系统结构内容提要:1.8086微处理器结构:CPU内部结构:总线接口部件BIU,执行部件EU;CPU寄存器结构:通用寄存器,段寄存器,标志寄存器,指令指针寄存器;CPU引脚及其功能:公用引脚,最小模式控制信号引脚,最大模式控制信号引脚。
2.8086微机系统存储器结构:存储器地址空间与数据存储格式;存储器组成;存储器分段。
3.8086微机系统I/O结构4.8086最小/最大模式系统总线的形成5.8086CPU时序6.最小模式系统中8086CPU的读/写总线周期7.微处理器的发展学习目标1.掌握CPU寄存器结构、作用、CPU引脚功能、存储器分段与物理地址形成、最小/最大模式的概念和系统组建、系统总线形成;2.理解存储器读/写时序;3.了解微处理器的发展。
难点:1.引脚功能,最小/最大模式系统形成;2.存储器读/写时序。
学时:8问题:为什么选择8088/8086?•简单、容易理解掌握•与目前流行的P3、P4向下兼容,形成x86体系•16位CPU目前仍在大量应用思考题1、比较8086CPU与8086CPU的异同之处。
2、8086CPU从功能上分为几部分?各部分由什么组成?各部分的功能是什么?3、CPU的运算功能是由ALU实现的,8086CPU中有几个ALU?是多少位的ALU?起什么作用?4、8086CPU有哪些寄存器?各有什么用途?标志寄存器的各标志位在什么情况下置位?5、8086CPU内哪些寄存器可以和I/O端口打交道,它们各有什么作用?6、8086系统中的物理地址是如何得到的?假如CS=2400H,IP=2l00H,其物理地址是多少?思考题1.从时序的观点分析8088完成一次存储器读操作的过程?2.什么是8088的最大、最小模式?3.在最小模式中,8088如何产生其三总线?4.在最大模式中,为什么要使用总线控制器?思考题1.试述最小模式下读/写总线周期的主要区别。
微处理器
微处理器是一种集成电路芯片,用于执行计算机程序中的指令和数据处理任务。
它是现代计算机系统中的核心组件之一。
微处理器通常由一个或多个中央处理单元(CPU)核心、内部高速缓存、控制单元和输入/输出接口等组成。
微处理器负责解码和执行计算机程序中的指令,这些指令包括算术、逻辑、数据移动和控制操作。
它通过与主存储器和其他外部设备进行交互,实现数据的读取、写入和传输。
微处理器还具有时钟系统,用于同步各个组件的操作,并确保指令按照正确的顺序执行。
微处理器的性能通常通过其时钟频率、指令集架构和核心数量等参数来衡量。
随着技术的不断进步,微处理器的速度和功能也得到了显著提升,使得计算机能够更快地执行复杂的任务,如图形渲染、视频编码和科学计算等。
微处理器广泛应用于各种计算设备,包括个人电脑、服务器、移动设备和嵌入式系统等。
它们在计算机领域扮演着至关重要的角色,推动了信息技术的发展和计算能力的提升。
1。
微型计算机和微处理器的发展本篇报告的目的讲述微型计算机和微处理器的发展史,以此来深化对计算机功能结构的认识,并进一步了解计算机工作的模式,在此基础上对未来的计算机发展做一个合理的推测和预期。
其实微型计算机的发展和微处理器的发展其实是紧密结合,密不可分的,微型计算机的发展主要表现在其核心部件——微处理器的发展上,每当一款新型的微处理器出现时,就会带动微机系统的其他部件的一并发展,比如在微机体系结构上,存储器存取容量、存取速度上,以及外围设备都在不断改进,在此基础上新设备也在不断出现并推动微型计算机的进一步发展。
第一篇微机的发展上根据微处理器的字长和功能,将微型计算机的发展简单划分为以下几个阶段。
第一阶段:概述:4位和8位低档微处理器(第1代)基本特点:采用PMOS工艺,集成度低(4000个晶体管/片),指令系统:系统结构和指令系统简单,主要采用机器语言或简单的汇编语言,指令数目少,基本指令周期为20~50μs,用于简单的控制场合。
举例:Intel4004和Intel8008微处理器和分别由它们组成的MCS-4和MCS-8微机第二阶段:概述:8位中高档微处理器(第二代)特点:采用NMOS工艺,集成度提高约4倍,运算速度提高约10~15倍指令系统:比较较完善,具有典型的计算机体系结构和中断、DMA等控制功能软件方面:除汇编语言外,还有BASIC、FORTRAN等高级语言和相应的解释程序和编译程序,在后期出现操作系统。
举例:Intel8080/8085、Motorola公司、Zilog公司的Z80第三阶段:概述:16位微处理器(第三代)特点:用HMOS工艺,集成度(20000~70000晶体管/片)和运算速度都比第2代提高了一个数量级指令系统:指令系统更加丰富、完善,采用多级中断、多种寻址方式、段式存储机构、硬件乘除部件,并配置了软件系统产品举例:Intel公司的8086/8088,Motorola公司的M68000,Zilog公司的Z8000 第四阶段:概述:32位微处理器(第四代)产品举例:Intel公司的80386/80486,Motorola公司的M69030/68040基本特点:采用HMOS或CMOS工艺,集成度高达100万个晶体管/片,具有32位地址线和32位数据总线评价:微型计算机的功能已经达到甚至超过超级小型计算机,完全可以胜任多任务、多用户的作业第五阶段:概述:奔腾系列微处理器(第5代)产品举例:Intel公司的奔腾系列芯片及与之兼容的AMD的K6系列微处理器芯片特点:AMD与Intel分别推出来时钟频率达1GHz的Athlon和PentiumⅢ。
单片机最小系统介绍什么是单片机最小系统单片机(Microcontroller Unit,简称MCU),是一种集成了微处理器核心、存储器、输入/输出接口和时钟等主要部件的微型计算机系统。
在单片机中,最小系统是指最基本的电路配置,能够使单片机正常工作所需的最简单电路。
单片机最小系统的组成单片机最小系统主要由以下几个部分组成:1. 单片机单片机是整个系统的核心,它负责接收输入信号、进行数据处理并控制输出。
2. 晶振与时钟电路晶振和时钟电路为单片机提供稳定的时钟信号,使得单片机能够按照一定的时间间隔执行指令。
3. 复位电路复位电路用于对单片机进行复位操作,使其恢复到初始状态。
复位电路通常由电容、电阻和复位按钮等元件组成。
4. 电源电路电源电路提供单片机所需的电源电压,保证其稳定工作。
一般情况下,单片机最小系统采用直流电源供电。
5. 外部扩展电路外部扩展电路包括与单片机相连的输入/输出接口以及其他外设。
这些外设可以是LED灯、继电器、传感器等,用于与外界进行交互。
单片机最小系统的工作原理单片机最小系统的工作原理如下:1.当系统上电或复位时,复位电路会将单片机复位到初始状态。
2.外部晶振和时钟电路提供稳定的时钟信号,单片机根据时钟信号执行指令。
3.单片机根据输入信号对数据进行处理,并控制输出信号。
4.单片机通过输出接口与外部扩展电路连接,完成与外界的交互。
单片机最小系统的应用单片机最小系统广泛应用于各个领域,包括家电、汽车、工业自动化等。
以下是一些常见的应用场景:•家电控制:单片机最小系统可以用于家电产品的控制,例如智能灯控系统、空调控制系统等。
•汽车电子:单片机最小系统在汽车电子领域应用广泛,例如车载娱乐系统、车载导航系统等。
•工业控制:单片机最小系统在工业自动化中起着重要作用,例如工厂控制系统、自动化生产线等。
•仪器仪表:单片机最小系统可以用于各种仪器仪表的控制与数据处理,例如温度计、压力计等。
总结单片机最小系统是单片机正常工作所需的最简单电路配置。