德国法国日本高速铁路防灾安全监控系统简介
- 格式:docx
- 大小:58.97 KB
- 文档页数:24
国外安全综合监控系统
1.日本新干线高速铁路调度系统
日本新干线使用的C0MIRAC系统包括运行图生成与变更、车辆与乘务员运用、列车运行控制、列车运行监视、旅客信息等运营管理功能以及电力调度、车辆运用管理、接触网、线路状态检查、灾害监测(地震、风冰、雨、雪、滑坡)等安全功能,是一个功能较为完备的复杂系统。
COSMOS系统集行车控制、电力控制、车辆运用管理、运行图生成及变更、信息系统(灾害信息、旅客信息等)、维修作业管理、车站作业管理等功能于一体,将几乎所有与铁路运营有关的子系统都挂接在中央局域网(LAN)上,使开放运营的铁路系统在信息传输上形成相对的闭环系统,是现代控制技术与计算机技术、网络技术的有机结合。
2.法国TGV高速线综合调度系统
TGV高速线综合调度系统以调度集中为核心,依靠车一地之间可靠的通信将列车、沿线设备和控制中心联系起来。
车载设备包括TVM300或TVM430机车信号、故障监测和诊断装置、车载局域网等;沿线分布了接触网、热轴、风、雨、雪、桥隧落物等各种监测设备;控制中心主要包括行车调度、电力调度和中央维护监督三部分,通过网络传递信息。
3.德国ICE高速铁路综合调度系统
德国ICE高速列车通过LZB系统列车一地面问双向通信、险情报警信息系统(包括风、雪、塌方、热轴)、车载无线故障监视诊断系统与地面控制中心和维修中心构成集行车调度指挥、控制、故障监测、维护等功能于一体的系统。
此外,欧洲主要国家铁路都已承诺采用欧洲铁路运输管理系统(ERTMS),该系统本身就是综合调度自动化系统,其核心为欧洲列车控制系统(ETCS)。
铁路防灾安全监控系统结合各线地理气候特点,为防止或降低自然灾害、突发事件对铁路运输的影响,满足运营维护部门的使用需求,沿线设置防灾安全监控系统。
防灾安全监控系统由风监测子系统、雨量监测子系统及异物侵限监控子系统组成。
系统采用统一的处理平台,由风、雨及异物侵限等现场监测设备、现场监控单元、监控数据处理设备、调度所设备、工务/通信/调度台防灾终端设备及传输网络等组成。
1.现场监测设备(1)风监测子系统1)现场设备风监测子系统现场设备由风速风向计、现场控制箱、传输电缆等组成。
现场监测设备采集到的数据传送到现场监控单元,再通过传输网络上传至监控数据处理设备。
2)设置地点风速风向监测点主要布点原则如下:①设计速度250km∕h及以上铁路沿线近20年极大风速值超过20m∕s的区段应设置风速风向监测点。
②铁路沿线山区城口、峡谷、河谷、桥梁及高路堤等区段宜设置风速风向监测点。
③山区t亚口、峡谷、河谷等区段风速风向监测点设置间距宜为Ikm~5km 桥梁、高路堤等区段宜为5km-10km o其他地段按IOkm左右间距布设。
3)设备设置风速风向计按非机械式双套设置,并远离现场障碍物干扰。
风速风向计安装于接触网支柱上。
根据铁科技[2013]35号《铁道部关于印发(高速铁路自然灾害及异物侵限监测系统总体技术方案(暂行))的通知》,系统应据据报警级别、报警阈值、报警及解除时限、控制范围,对有效风速数据进行报警判定,生成大风监测报警及解除信息。
2、雨量监测子系统1)现场设备雨量监测子系统现场设备由雨量计、现场控制箱、传输电缆等组成。
2)设置地点雨量监测点主要布点原则如下:①雨量监测点应设置于路基地段及艰险山区铁路易发生滑坡、泥石流及危岩、落石或崩塌地段等处所。
②有昨轨道线路连续路基区段雨量监测点设置间距宜为15km~20km,无昨轨道线路连续路基区段雨量监测点设置间距宜为20km〜25km o3)设备设置雨量计采用非机械式,主要设置在大雨区间位于山坡山脚地带的填土路基以及可能发生滑坡、泥石流或路基下沉的路堑、路堤、隧道口等处,安装地点为无遮掩、宽敞的场所。
德国高速铁路防灾安全监控系统简介图德国新建高速铁路防灾报警系统配置图探测设备:HOA—热轴探测设备;WMA—风力测量报警设备;LSMA—气流报警设备;BMA—火灾报警设备;EMA—塌方报警设备;Whz—道岔加热设备.处理设备:ZSE—集中控制单元;MRE—报警显示和记录装置.BFA、BFB、BFC:车站A、B、C.法国高速铁路防灾安全监控系统简介法国高速铁路创造了当前世界上轮轨系交通的最高试验速度515.3 km /h,运营最高速度达到300~320 km/h.虽然发生过行车事故,但未造成旅客伤亡,这应归功于其无所不包的安全保障技术.法国高速铁路采用了以机车信号为主的列车自动控制系统.在型号为,TVM430的列车自动控制系统ATC中,除完成列车速度自动控制外,增加了设备状态和自然环境检测、报警子系统,进一步强化了列车安全运行的保障功能.包括列车自动检测轮轴不转或防滑系统双重故障,万向节的失衡和断裂,转向架的稳定性能检测、接触网电压检测、热轴检测、降雨监测、降雪监测、大风监测、立交桥下落物监测7个子系统装置.法国高速铁路沿线设有防护开关和应急电话,法铁还和国家地震局在地中海线设置了地震监测系统.图新干线安全设备控制关系示意图日本高速铁路防灾安全监控系统简介文章来源:车务在线更新时间:2007-2-14 11:17:12图1 日本地震信息系统示意图图2 甲、乙、丙、丁所代表的范围图3 日本地震发生时的处理过程框图2.风速监测和运行管制在易发生强风及突然大风的高架桥、河川等地安装风向风速仪,其信息在中央调度所的显示盘上或CRT上显示Cathod Ray Tube是调度员和信息处理系统的电脑互相交换情报的人.机装置.日本对列车运行进图4 强风对策研究项目关联框图图5 列车受力示意图日本东北新干线长553 k孟,设置了47段大风限速区间;上越新干线长334 km,设置了21段大风限速区间.在这些限制区内设置了风速计,根据风速等级逐级限制车速,警报标准如表4所示.近年来,由于增设挡风墙、不断改善车辆断面而逐渐降低了对列车限速的要求.表4 强风时列车运行管制规则东北、上越、长野新干线风速一般区间设置一定标准的挡风墙区间/m·s-120≤风速列车限速160 km/h以下不限速图6 雨量报警系统构成示意图表5 日本东海道新干线降雨警报标准及列车运行管制措施 mm运行管制连续雨量24 h累计时雨量连续雨量+时雨量雨量报告备注警戒第3种100—11025/每l h一次第2种120—13030110+20每 h一次每3—4 h巡检一次第1种14035120+25每2 h巡检一次限速运行170km/hB区域/40140+30或160+2每 h一次实时地面巡检,适当添乘巡检A区域/45150+30或180+270 B区/45150+32或。
高速铁路防灾安全监控系统高速铁路防灾安全监控系统文档1. 引言高速铁路是现代交通的重要组成部分,对于国家经济发展和人民生活起到了至关重要的作用。
然而,随着高速铁路的不断发展,其安全问题也越来越突出。
为了保障高速铁路的运行安全,我们需要建立一套高效可靠的监控系统,及时发现和处理各类安全隐患。
本文将详细介绍高速铁路防灾安全监控系统的设计原理和功能。
2. 设计原理高速铁路防灾安全监控系统的设计原理基于数据采集、数据传输与处理、数据分析与决策三个主要环节。
(1) 数据采集:系统依靠各类传感器、摄像头等设备,对高速铁路进行全方位、多角度的监测。
传感器可以监测温度、湿度、震动等物理参数,摄像头可以获取实时的图像信息。
通过这些设备,可以及时获得高速铁路的运行状态,并发现潜在的安全隐患。
(2) 数据传输与处理:采集到的数据需要通过传输设备及时传送到监控中心。
传输过程中需要保证数据的可靠性和实时性,以便在发生紧急情况时能够快速做出应对。
传输完成后,数据将被送至系统的后台,进行进一步的处理和分析。
(3) 数据分析与决策:通过对采集到的数据进行分析,确定当前高速铁路的运行状态,并通过算法进行预测,识别潜在的危险事故。
在分析的过程中,系统将会根据事先制定的安全标准,对数据进行评估和判定。
一旦系统检测到异常情况,将会立即向管理人员发出警报,并及时采取措施,确保人员和财产的安全。
3. 功能实现为了确保高速铁路防灾安全监控系统的效果和功能,我们提出以下几点实现建议:(1) 设备标准化:统一采用国际先进的设备标准,确保不同设备的兼容性和互操作性。
标准化设备的使用和维护更加简单方便,也便于后期的系统扩展。
(2) 网络建设:建立高速铁路专用的网络通信系统,确保数据传输的稳定和安全。
网络系统应包括主干网和支线网,覆盖整个高速铁路的范围。
此外,还应配置备用网络,以提供系统可靠性。
(3) 数据处理:建立高效的数据处理中心,配备强大的计算和存储设施。
防灾安全监测系统一、系统简介高铁防灾安全监测体系是实现对风速、降雨量、降雪量、地震、异物侵限等危及列车安全运行的自然灾害因素实时监测,对监测数据的分散式采集、综合分析,集中管理、及时掌握灾害发生动态,与调度指挥、牵引供电、列控系统、综合维修和应急救援等系统互相连通,构成对列车运输安全的保障体系。
高铁防灾安全监控报警系统主要由大风、雪深、降雨量、异物侵限、地震等监侧子系统构成。
系统主要由现场传感设备层、基站层、铁路局数据中心层设备和防灾终端层构成。
现场层为数据采集层,主要完成对风、雨、雪、异物侵限、地震信息数据的实时采集。
基站层为基站防灾监控单元,主要承担对采集、解析、处理、数据的汇集传输。
铁路局层接收传输数据,实现对数据的存储、处理、分析,将结果发送到调度中心防灾终端。
调度中心及其它业务防灾终端主要完成各监测信息的显示、报警以及行车建议的生成。
二、系统结构按照结构进行划分,高铁防灾安全监控系统主要由基站PLC监控单元层、现场传感器数据采集层、铁路局数据处理中心层和用户监控终端层四个层次部分构成,其结构图如图所示。
牵引供电系统牵引供电系统三、设计方案西宁到敦煌地理环境以黄土高原区和风沙干旱区为特色。
黄土高原灾害类型很多,如旱灾、水土流失、暴雨、滑坡、地裂缝及地震等等,但暴雨主要集中在东部,西部的降雨量很少,主要是风沙灾害与昼夜温差大。
因此,西宁到敦煌的防灾安全监控系统主要是针对大风天气、温度对轨道的影响、沙尘暴、地裂缝、落石、地面沉降以及水土冲击流失的监控。
管辖1.系统设计思路1)西宁到敦煌的行车路线主要经过武威、张掖、嘉峪关三座主要城市,同时距离兰州非常的近。
因此考虑在这六座城市设立防灾安全监控系统的调度所,放置防灾服务器和防灾终端。
2)在兰州设置总调度中心,负责统筹各站段的防灾安全监测数据,对全局内的列车进行总体调度,必要时可接管下属站段的调度权,保证行车安全。
3)铁路沿途设置监控单元,并针对各路段主要自然灾害的不同,监控单元的密度设置不同,以充分利用GSM-R的4MHz带宽。
德国高速铁路防灾安全监控系统简介
法国高速铁路防灾安全监控系统简介
日本高速铁路防灾安全监控系统简介
文章来源:车务在线更新时间:2007-2-14 11:17:12
间(实行地面巡检的除外)
120 Gal以
上
超过120
Gal时,
在感震器
动作点与
相邻感震
器间
超过120伽的感震器与相邻感震器
间,地面巡检完后70 km/h以下,
但下列情况30 km/h以下:有碴轨
道轨温55℃以上时发生地震
对停
车区间
进行徒
步巡检
对限速
区间进
行添乘
巡检
图4 关于强风对策研究项目关联框图图5 列车受力示意图
日本东北新干线长553 k孟,设置了47段大风限速区间;上越新干线长334 km,设置了21段大风限速区间。
在这些限制区内设置了风速计,根据风速等级逐级限制车速,警报标准如表4所示。
近年来,由于增设挡风墙、不断改善车辆断面而逐渐降低了对列车限速的要求。
表4 强风时列车运行管制规则(东北、上越、长野新干线)。