自控原理练习题讲解
- 格式:doc
- 大小:696.00 KB
- 文档页数:17
⾃动控制原理习题与答案解析精⼼整理课程名称: ⾃动控制理论(A/B卷闭卷)⼀、填空题(每空 1 分,共15分)1、反馈控制⼜称偏差控制,其控制作⽤是通过给定值与反馈量的差值进⾏的。
2、复合控制有两种基本形式:即按输⼊的前馈复合控制和按扰动的前馈复合控制。
为8、PI控制器的输⼊-输出关系的时域表达式是,其相应的传递函数为,由于积分环节的引⼊,可以改善系统的性能。
⼆、选择题(每题 2 分,共20分)1、采⽤负反馈形式连接后,则 ( )A 、⼀定能使闭环系统稳定;B 、系统动态性能⼀定会提⾼;C 、⼀定能使⼲扰引起的误差逐渐减⼩,最后完全消除;D 、需要调整系统的结构参数,才能改善系统性能。
2、下列哪种措施对提⾼系统的稳定性没有效果 ( )。
A 、增加开环极点;B 、在积分环节外加单位负反馈;C 、增加开环零点;D 、引⼊串联超前校正装置。
3、系统特征⽅程为 0632)(23=+++=s s s s D ,则系统 ( ) A 、稳定; B 、单位阶跃响应曲线为单调指数上升; C 、临界稳定; D 、右半平⾯闭环极点数2=Z 。
4、系统在2)(t t r =作⽤下的稳态误差∞=ss e ,说明 ( ) A 、型别2C 、输⼊幅值过⼤;D 、闭环传递函数中有⼀个积分环节。
5、对于以下情况应绘制0°根轨迹的是( )A 、主反馈⼝符号为“-” ;B 、除r K 外的其他参数变化时;C 、⾮单位反馈系统;D 、根轨迹⽅程(标准形式)为1)()(+=s H s G 。
6、开环频域性能指标中的相⾓裕度γ对应时域性能指标( ) 。
A 、超调%σB 、稳态误差ss eC 、调整时间s tD 、峰值时间p t 7 系统①系统②系统③图2A 、系统①B 、系统②C 、系统③D 、都不稳定8、若某最⼩相位系统的相⾓裕度0γ>o,则下列说法正确的是 ( )。
A 、不稳定;B 、只有当幅值裕度1g k >时才稳定;C 、稳定;D 、不能判⽤相⾓裕度判断系统的稳定性。
⾃动控制理论_习题集[含答案解析]精品⽂档、单选题《⾃动控制理论》课程习题集1. 下列不属于⾃动控制基本⽅式的是(B )。
A.开环控制B.随动控制C.复合控制D.闭环控制2. ⾃动控制系统的( A )是系统⼯作的必要条件。
A.稳定性B.动态特性C.稳态特性D.瞬态特性3.在(D )的情况下应尽量采⽤开环控制系统。
A.系统的扰动量影响不⼤B.系统的扰动量⼤且⽆法预计C.闭环系统不稳定预计并能进⾏补偿4. 系统的其传递函数(B )。
A.与输⼊信号有关和元件的参数C.闭环系统不稳定预计并能进⾏补偿5. 建⽴在传递函数概念基础上的是(A.经典理论C.经典控制理论6. 构成振荡环节的必要条件是当(A. Z1D.系统的扰动量可以B.只取决于系统结构D.系统的扰动量可以C )。
B.控制理论D.现代控制理论C )时。
A. Z=1C. 0< Z18.于A.C.9.有A.C.B. Z=0D. 0< ZW1若⼆阶系统的阶跃响应曲线⽆超调达到稳态值,则两个极点位于位(D )°虚轴正半轴 B.实正半轴虚轴负半轴 D.实轴负半轴线性系统稳定的充分必要条件是闭环系统特征⽅程的所有根都具(B )° 实部为正虚部为正10. 下列说法正确的是:系统的开环增益(A.越⼤系统的动态特性越好性越好C.越⼤系统的阻尼越⼩性越好11. 根轨迹是指开环系统某个参数由上移动的轨迹。
A.开环零点C.闭环零点12. 闭环极点若为实数,则位于[s]平⾯实轴; 所以根轨迹(AA.对称于实轴C.位于左半[s]平⾯B.D.BB.D.0变化到a.实部为负°越⼤系统的稳态特越⼩系统的稳态特(D )在s平⾯B.开环极点D.闭环极点若为复数,则共轭出现。
B.对称于虚轴D.位于右半[s]平⾯精品⽂档13.系统的开环传递函数G0(s) K (s 1)(s 3),则全根轨迹的分⽀s(s 2)(s 4)数是(C ) oA. 1C. 314. 已知控制系统的闭环传递函数是轨迹起始于(A )oA. G(s)H(s)的极点C. 1+ G(s)H(s)的极点15. 系统的闭环传递函数是G c(s)(B )oA. G(s)H(s)的极点C. 1+ G(s)H(s)的极点线16. 在设计系统时应使系统幅频特性(A )oA. -20dB/decC. -60dB/decD. -80dB/dec17. 当3从-ST + a 变化时惯性环节的极坐标图为⼀个 (B )A.位于第⼀象限的半圆B.位于第四象限的半圆C.整圆 D .不规则曲线18. 设系统的开环幅相频率特性下图所⽰( P为开环传递函数右半s 平⾯的极点数),其中闭环系统稳定的是( A )o19.已知开环系统传递函数为G(s) H (s)为(C )oA. 10° B .C. 45°D.20. 某最⼩相位系统的开环对数幅频特性曲线如下图所⽰。
一、简答题1. 被控对象、被控量、干扰各是什么?答:对象:需进行控制的设备或装置的工作进程。
被控量:被控对此昂输出需按控制要求变化的物理量。
干扰:对生产过程产生扰动,使被控量偏离给定值的变量。
2. 按给定信号分类,控制系统可分为哪些类型?答:恒值控制系统、随动控制系统、程序控制系统。
3. 什么是系统的静态?答:被控量不随时间改变的平衡状态。
4. 什么是系统的动态?答:被控量随时间变化的不平衡状态。
5. 什么是系统的静态特性?答:系统再平衡状态下输出信号与输入信号的关系。
6. 什么是系统的动态特性?答:以时间为自变量,动态系统中各变量变化的大小、趋势以及相互依赖的关系。
7. 控制系统分析中,常用的输入信号有哪些?答:阶跃、斜坡、抛物线、脉冲。
8. (3次)传递函数是如何定义的?答:线性定常系统在零初始条件下输出响应量的拉氏变换与输入激励量的拉氏变换之比。
9. 系统稳定的基本条件是什么?答:系统的所有特征根必须具有负的实部的实部小于零。
10. 以过渡过程形式表示的质量指标有哪些?答:峰值时间t p 、超调量δ%、衰减比n d 、调节时间t s 、稳态误差e ss 。
11. 简述典型输入信号的选用原因。
答:①易于产生;②方便利用线性叠加原理;③形式简单。
12. 什么是系统的数学模型?答:系统的输出参数对输入参数的响应的数学表达式。
13. 信号流图中,支路、闭通路各是什么?答:支路:连接两节点的定向线段,其中的箭头表示信号的传送方向。
闭通路:通路的终点就是通路的起点,且与其他节点相交不多于一次。
14. 误差性能指标有哪些?答:IAE ,ITAE ,ISE ,ITSE二、填空题1. 反馈系统又称偏差控制,起控制作用是通过给定值与反馈量的差值进行的。
2. 复合控制有两种基本形式,即按参考输入的前馈复合控制和按扰动输入的前馈复合控制。
3. 某系统的单位脉冲响应为g(t)=10e -0.2t +5e -0.5t ,则该系统的传递函数G(s)为ss s s 5.052.010+++。
自控原理课后习题精选2-5 试分别列写图2-3中各无源网络的微分方程(设电容C 上的电压为)(t u c ,电容1C 上的电压为)(1t u c ,以此类推)。
o(a)+-u c (t)(b)+-u c1(t)(c)+-u R1(t)图2-3 习题2-5 无源网络示意图解:(a )设电容C 上电压为)(t u c ,由基尔霍夫定律可写出回路方程为21)()()()()()(R t u R t u dt t du Ct u t u t u o c c o i c =+-=整理得输入输出关系的微分方程为121)()()()11()(R t u dt t du C t u R R dt t du Ci i o o +=++ (b )设电容1C 、2C 上电压为)(),(21t u t u c c ,由基尔霍夫定律可写出回路方程为dtt du RC t u t u dtt du C R t u t u R t u t u t u t u t u c c o c c o c i o i c )()()()()()()()()()()(11222221=-=-+--=整理得输入输出关系的微分方程为Rt u dt t du C dt t u d C RC R t u dt t du C C dt t u d C RC i i i o o o )()(2)()()()2()(12221212221++=+++ (c )设电阻2R 上电压为2()R u t ,两电容上电压为)(),(21t u t u c c ,由基尔霍夫定律可写出回路方程为)()()(21t u t u t u R i c -= (1) )()()(22t u t u t u R o c -= (2)2221)()()(R t u dt t du C dt t du CR c c =+ (3)dtt du C R t u t u c o i )()()(21=- (4)(2)代入(4)并整理得CR t u t u dt t du dt t du o i o R 12)()()()(--= (5) (1)、(2)代入(3)并整理得222)()(2)()(R t u dt t du C dt t du C dt t du CR R o i =-+ 两端取微分,并将(5)代入,整理得输入输出关系的微分方程为CR t u dt t du C R dt t u d C R C R t u dt t du C R dt t u d C R i i i o o o 1122211222)()(1)()()()11()(++=+++2-6 求图2-4中各无源网络的传递函数。
自控原理考研真题及答案自控原理是自动控制领域的基础课程,对于考研学生而言,掌握自控原理的知识非常重要。
为了帮助考生更好地备考自控原理,以下将介绍一道经典的自控原理考研真题,并给出详细的答案解析。
题目及答案如下:1.某控制系统的传递函数为G(s) = (s+2)/(s^2+6s+10),将其分解为部分分式后,若其阶数为n,则n等于多少?答案解析:根据题目给出的传递函数G(s),可以得到其分母的根为s^2+6s+10=0,通过求根公式可求得其根为s1=-3+j,s2=-3-j。
由于这两个根均为复根,所以传递函数为二阶系统。
因此,答案为n=2。
2.某开环系统的传递函数为G(s) = K/(s^3+4s^2+10s),若该系统为稳定系统,求参数K的范围。
答案解析:对于稳定系统来说,其特征多项式的所有根的实部都小于0。
根据题目给出的传递函数G(s),可以得到其特征多项式为s^3+4s^2+10s=0,通过求根公式可求得其根为s1=-1.33,s2=-0.67+j1.11,s3=-0.67-j1.11。
由于这三个根的实部均小于0,所以该系统为稳定系统。
由于K为传递函数的比例因子,不影响传递函数的特征根,所以参数K的范围可以取任意实数。
3.某系统的开环传递函数为G(s) = 10/(s+4),若该系统采用比例控制器,根据比例控制器的输出与输入的关系,求闭环传递函数。
答案解析:比例控制器的输出与输入的关系为C(s) = KpR(s),其中C(s)为比例控制器的输出,Kp为比例增益,R(s)为输入信号。
而闭环传递函数等于开环传递函数乘以比例控制器的传递函数,即T(s) = G(s)C(s)。
代入相应的数值,可得到T(s) = 10Kp/(s+4)。
4.某系统的开环传递函数为G(s) = 10/(s+5),若该系统采用积分控制器,根据积分控制器的输出与输入的关系,求闭环传递函数。
答案解析:积分控制器的输出与输入的关系为C(s) = KI/s,其中C(s)为积分控制器的输出,KI为积分增益,s为Laplace变换变量。
第一章 绪论1-1 试比较开环控制系统和闭环控制系统的优缺点.解答:1开环系统(1) 优点:结构简单,成本低,工作稳定。
用于系统输入信号及扰动作用能预先知道时,可得到满意的效果。
(2) 缺点:不能自动调节被控量的偏差。
因此系统元器件参数变化,外来未知扰动存在时,控制精度差。
2 闭环系统⑴优点:不管由于干扰或由于系统本身结构参数变化所引起的被控量偏离给定值,都会产生控制作用去清除此偏差,所以控制精度较高。
它是一种按偏差调节的控制系统。
在实际中应用广泛。
⑵缺点:主要缺点是被控量可能出现波动,严重时系统无法工作。
1-2 什么叫反馈?为什么闭环控制系统常采用负反馈?试举例说明之。
解答:将系统输出信号引回输入端并对系统产生控制作用的控制方式叫反馈。
闭环控制系统常采用负反馈。
由1-1中的描述的闭环系统的优点所证明。
例如,一个温度控制系统通过热电阻(或热电偶)检测出当前炉子的温度,再与温度值相比较,去控制加热系统,以达到设定值。
1-3 试判断下列微分方程所描述的系统属于何种类型(线性,非线性,定常,时变)?(1)22()()()234()56()d y t dy t du t y t u t dt dt dt ++=+(2)()2()y t u t =+(3)()()2()4()dy t du t ty t u t dt dt +=+ (4)()2()()sin dy t y t u t tdt ω+=(5)22()()()2()3()d y t dy t y t y t u t dt dt ++= (6)2()()2()dy t y t u t dt +=(7)()()2()35()du t y t u t u t dt dt =++⎰解答: (1)线性定常 (2)非线性定常 (3)线性时变 (4)线性时变 (5)非线性定常 (6)非线性定常 (7)线性定常1-4 如图1-4是水位自动控制系统的示意图,图中Q1,Q2分别为进水流量和出水流量。
自动控制原理习题及其解答第一章(略) 第二章例2-1 弹簧,阻尼器串并联系统如图2-1示,系统为无质量模型,试建立系统的运动方程。
解:(1) 设输入为y r ,输出为y 0。
弹簧与阻尼器并联平行移动。
(2) 列写原始方程式,由于无质量按受力平衡方程,各处任何时刻,均满足∑=0F ,则对于A 点有其中,F f 为阻尼摩擦力,F K 1,F K 2为弹性恢复力。
(3) 写中间变量关系式 (4) 消中间变量得 (5) 化标准形 其中:215K K T +=为时间常数,单位[秒]。
211K K K K +=为传递函数,无量纲。
例2-2 已知单摆系统的运动如图2-2示。
(1) 写出运动方程式 (2) 求取线性化方程解:(1)设输入外作用力为零,输出为摆角? ,摆球质量为m 。
(2)由牛顿定律写原始方程。
其中,l 为摆长,l ? 为运动弧长,h 为空气阻力。
(3)写中间变量关系式 式中,α为空气阻力系数dtd lθ为运动线速度。
(4)消中间变量得运动方程式0s i n 22=++θθθmg dt d al dtd ml (2-1) 此方程为二阶非线性齐次方程。
(5)线性化由前可知,在? =0的附近,非线性函数sin ? ≈? ,故代入式(2-1)可得线性化方程为例2-3 已知机械旋转系统如图2-3所示,试列出系统运动方程。
解:(1)设输入量作用力矩M f ,输出为旋转角速度? 。
(2)列写运动方程式 式中, f ?为阻尼力矩,其大小与转速成正比。
(3)整理成标准形为 此为一阶线性微分方程,若输出变量改为?,则由于代入方程得二阶线性微分方程式例2-4 设有一个倒立摆安装在马达传动车上。
如图2-4所示。
图2-2 单摆运动图2-3 机械旋转系统倒立摆是不稳定的,如果没有适当的控制力作用在它上面,它将随时可能向任何方向倾倒,这里只考虑二维问题,即认为倒立摆只在图2-65所示平面内运动。
控制力u 作用于小车上。
《自动控制原理》习题解答第一章习题及答案1—1 根据题1—1图所示的电动机速度控制系统工作原理图(1) 将a ,b 与c,d 用线连接成负反馈状态;(2) 画出系统方框图。
解 (1)负反馈连接方式为:d a ↔,c b ↔;(2)系统方框图如图解1—1 所示.1—2 题1-2图是仓库大门自动控制系统原理示意图。
试说明系统自动控制大门开闭的工作原理,并画出系统方框图。
题1-2图 仓库大门自动开闭控制系统解 当合上开门开关时,电桥会测量出开门位置与大门实际位置间对应的偏差电压,偏差电压经放大器放大后,驱动伺服电动机带动绞盘转动,将大门向上提起。
与此同时,和大门连在一起的电刷也向上移动,直到桥式测量电路达到平衡,电动机停止转动,大门达到开启位置。
反之,当合上关门开关时,电动机带动绞盘使大门关闭,从而可以实现大门远距离开闭自动控制。
系统方框图如图解1-2所示。
1—3 题1-3图为工业炉温自动控制系统的工作原理图。
分析系统的工作原理,指出被控对象、被控量和给定量,画出系统方框图.题1-3图 炉温自动控制系统原理图解 加热炉采用电加热方式运行,加热器所产生的热量与调压器电压c u 的平方成正比,c u 增高,炉温就上升,c u 的高低由调压器滑动触点的位置所控制,该触点由可逆转的直流电动机驱动。
炉子的实际温度用热电偶测量,输出电压f u 。
f u 作为系统的反馈电压与给定电压r u 进行比较,得出偏差电压e u ,经电压放大器、功率放大器放大成a u 后,作为控制电动机的电枢电压。
在正常情况下,炉温等于某个期望值T °C ,热电偶的输出电压f u 正好等于给定电压r u .此时,0=-=f r e u u u ,故01==a u u ,可逆电动机不转动,调压器的滑动触点停留在某个合适的位置上,使c u 保持一定的数值。
这时,炉子散失的热量正好等于从加热器吸取的热量,形成稳定的热平衡状态,温度保持恒定。
第三章例3-1 系统的结构图如图3-1所示。
已知传递函数 )12.0/(10)(+=s s G 。
今欲采用加负反馈的办法,将过渡过程时间t s减小为原来的0.1倍,并保证总放大系数不变。
试确定参数K h 和K 0的数值。
解 首先求出系统的传递函数φ(s ),并整理为标准式,然后与指标、参数的条件对照。
一阶系统的过渡过程时间t s 与其时间常数成正比。
根据要求,总传递函数应为)110/2.0(10)(+=s s φ即HH K s K s G K s G K s R s C 1012.010)(1)()()(00++=+= )()11012.0(101100s s K K K HHφ=+++=比较系数得⎪⎩⎪⎨⎧=+=+1010110101100H HK K K 解之得9.0=H K 、100=K解毕。
例3-10 某系统在输入信号r (t )=(1+t )1(t )作用下,测得输出响应为:t e t t c 109.0)9.0()(--+= (t ≥0)已知初始条件为零,试求系统的传递函数)(s φ。
解 因为22111)(ss s s s R +=+=)10()1(10109.09.01)]([)(22++=+-+==s s s s s s t c L s C 故系统传递函数为11.01)()()(+==s s R s C s φ 解毕。
例3-3 设控制系统如图3-2所示。
试分析参数b 的取值对系统阶跃响应动态性能的影响。
解 由图得闭环传递函数为1)()(++=s bK T Ks φ系统是一阶的。
动态性能指标为)(3)(2.2)(69.0bK T t bK T t bK T t s r d +=+=+= 因此,b 的取值大将会使阶跃响应的延迟时间、上升时间和调节时间都加长。
解毕。
例 3-12 设二阶控制系统的单位阶跃响应曲线如图3-34所示。
试确定系统的传递函数。
解 首先明显看出,在单位阶跃作用下响应的稳态值为3,故此系统的增益不是1,而是3。
自动控制原理试题及答案【简介】自动控制原理是电子信息工程专业中的一门基础课程,主要涉及控制系统的基本概念、数学模型、传递函数、稳定性分析、根轨迹、频率响应等内容。
本文针对自动控制原理的试题及答案进行了整理和解答,共计1500字。
【第一部分:选择题】1. 控制系统的基本组成部分是()。
A. 感受器B. 控制器C. 执行器D. 以上选项都正确答案:D2. 传递函数的定义是()。
A. Y(s)/X(s)B. X(s)/Y(s)C. X(t)/Y(t)D. Y(t)/X(t)答案:A3. 控制系统的稳定性分析常使用()方法。
A. 根轨迹B. 频率响应C. 传递函数D. 线性回归答案:A【第二部分:填空题】4. __________是控制系统的核心部分,是控制器。
答案:比例控制器、积分控制器、微分控制器或PID控制器5. 在频率域中,传递函数的模为__________,相位角为__________。
答案:增益,相位【第三部分:解答题】6. 简述控制系统的开环和闭环控制的原理及区别。
解答:开环控制是指控制器的输出信号不受反馈信号的影响,仅仅由输入信号决定,因此开环控制系统是非自动调节的。
闭环控制是指控制器的输出信号受到反馈信号的调节,通过与预期输出进行比较,使输出信号逐渐接近预期输出,即使系统发生干扰也能够进行修正。
开环控制适用于要求不高、易实现的系统,闭环控制则更适用于要求较高、对系统稳定性和精度要求较高的系统。
7. 根据控制系统的传递函数D(s)与输入信号X(s)之间的关系,推导出控制系统的输出信号Y(s)与输入信号X(s)之间的关系。
解答:根据传递函数的定义,传递函数D(s)表示系统输出信号与输入信号之间的关系,即D(s) = Y(s)/X(s)。
将Y(s)独立解出,则Y(s) =D(s) * X(s)。
因此,控制系统的输出信号Y(s)与输入信号X(s)的关系为Y(s) = D(s) * X(s)。
【第四部分:编程题】8. 使用MATLAB编程,求解以下控制系统的根轨迹,并分析系统的稳定性。
自动控制原理知识要点与习题解析P32 (自动控制原理p23)2-17 知控制系统的方框图如题2-17图所示,试用方框图简化方法求取系统的传递函数。
P33解: 方框图简化要点,将回路中的求和点等效移出回路,避免求和点与分支点交换位置。
(d)31313322113211)(H H G G H G H G H G G G G s ++++=Φ;P37 (p73)2-21 试绘制与题2-21图中系统方框图对应的信号流图,并用梅森增益公式求传递函数C (s )/R (s ) 和误差传递函数E (s )/R (s )注:P21(2) 依据系统方框图绘制信号流图首先确定信号流图中应画出的信号节点,再根据方框图表明的信号流向,用支路及响应的传输连接信号节点。
步骤如下,(a)系统的输入为源点,输出为阱点;(b)在方框图的主前向通路上选取信号节点,即相加点后的信号和有分支点的信号点后的信号,两信号是同一个信号时只作为一个节点;(c)其它通路上,仅反馈结构求和点后的信号选作节点; (d)最后,依据信号关系,用支路连接这些节点。
解:图(a)信号流图如题2-21解图(a)所示。
计算C (s )/R (s )和E (s )/R (s )过程中,关于回路和特征式的计算是完全相同,可统一计算。
回路111H G L -=,232H G L -=,213213H H G G G L -=;题2-1 7图 控制系统方框图题2-21图 系统方框图题2-21解图 系统信号流图特征式 21312132123111H H G G H H G G G H G H G ++++=∆。
计算C (s )/R (s ):前向通路 3211G G G P =,342G G P =; 特征子式11=∆,1121H G +=∆;2131223111134321)1(1)1()()(H H G G G H G H G H G G G G G G s R s C ++++++=; 计算E (s )/R (s ):前向通路 11=P ;21342H H G G P -=; 特征子式2311H G +=∆,12=∆;213122311213423)1(11)()(H H G G G H G H G H H G G H G s R s E ++++-+=;P62 (p136)3-16 知单位反馈系统的开环传递函数如下,试求静态位置误差系数p K ,静态速度误差系数v K ,静态加 速度误差系数a K(1) )12)(11.0(50)(++=s s s G ;{ )(lim 0s G K s p →= }(2) )2004()(2++=s s s Ks G ; { )(lim 0s G s K s v →= }(3) )102()14)(12(10)(22++++=s s s s s s G 。
2.1系统结构图如图1所示,试确定传递函数C(s)/R(s)。
G1(s)G2(s)H2(s)H1(s)R(s)C(s)__G3(s)图12132112()()()1()G G G C s R s G H G H +=++2.2系统结构图如图1所示,试确定传递函数C(s)/R(s)和C(s)/N(s)。
1212121()()1G G C s R s G G G G H =++23112()()1(1)G G C s N s G H G =++例3-10 某系统在输入信号r (t )=(1+t )1(t )作用下,测得输出响应为:t e t t c 109.0)9.0()(--+= (t ≥0)已知初始条件为零,试求系统的传递函数)(s φ。
解 因为22111)(ss s s s R +=+=)10()1(10109.09.01)]([)(22++=+-+==s s s s s s t c L s C 故系统传递函数为 11.01)()()(+==s s R s C s φ 例 3-12 设二阶控制系统的单位阶跃响应曲线如图3-34所示。
试确定系统的传递函数。
解 首先明显看出,在单位阶跃作用下响应的稳态值为3,故此系统的增益不是1,而是3。
系统模型为2223()2nn ns s s ωϕζωω=++ 然后由响应的%p M 、p t 及相应公式,即可换算出ζ、n ω。
%33334)()()(%=-=∞∞-=c c t c M p p 1.0=p t (s )由公式得 2/1%33%p M eπζζ--==20.11p n t ωζ==-4 30 0.1 t图3-34 二阶控制系统的单位阶跃响应h (t )换算求解得: 0.33ζ=、 2.33=n ω例3-18 已知系统特征方程为0161620128223456=++++++s s s s s s试求:(1)在s 右半平面的根的个数;(2)虚根。
解 如果劳斯行列表中某一行所有系数都等于零,则表明在根平面内存在对原点对称的实根,共轭虚根或(和)共轭复数根。
此时,可利用上一行的系数构成辅助多项式,并对辅助多项式求导,将导数的系数构成新行,以代替全部为零的一行,继续计算劳斯行列表。
对原点对称的根可由辅助方程(令辅助多项式等于零)求得。
劳斯行列表为6s 1 8 20 16 5s 2 12 16 4s 2 12 16 3s 0 0由于3s 行中各项系数全为零,于是可利用4s 行中的系数构成辅助多项式,即16122)(24++=s s s P求辅助多项式对s 的导数,得s s ss dP 248)(3+= 原劳斯行列表中s 3行各项,用上述方程式的系数,即8和24代替。
此时,劳斯行列表变为6s 1 8 20 5s 2 12 164s 2 12 16 3s 8 24 2s 6 16 1s 2.67 0s 16新劳斯行列表中第一列没有变号,所以没有根在右半平面。
对原点对称的根可解辅助方程求得。
令01612224=++s s得到 2j s ±=和2j s ±=例3-19 单位反馈控制系统的开环传递函数为)1)(1()(2+++=cs bs as s Ks G 试求: (1)位置误差系数,速度误差系数和加速度误差系数;(2)当参考输入为)(1t r ⨯,)(1t rt ⨯和)(12t rt ⨯时系统的稳态误差。
解 根据误差系数公式,有位置误差系数为 ∞=+++==→→)1)(1(lim)(lim 20cs bs as s Ks G K s s p速度误差系数为K cs bs as s Ks s sG K s s v =+++⋅==→→)1)(1(lim )(lim 2加速度误差系数为0)1)(1(lim )(lim 222=+++⋅==→→cs bs as s Ks s G s K s s a 对应于不同的参考输入信号,系统的稳态误差有所不同。
参考输入为)(1t r ⨯,即阶跃函数输入时系统的稳态误差为011=∞+=+=rK r e p ss参考输入为)(1t rt ⨯,即斜坡函数输入时系统的稳态误差为Kr K r e v ss ==参考输入为)(12t rt ⨯,即抛物线函数输入时系统的稳态误差为∞===22r K r e a ss 例3-20 单位反馈控制系统的开环传递函数为)1)(1(10)(21s T s T s s G ++=输入信号为r (t )=A+ωt ,A 为常量,ω=0.5弧度/秒。
试求系统的稳态误差。
解 实际系统的输入信号,往往是阶跃函数、斜坡函数和抛物线函数等典型信号的组合。
此时,输入信号的一般形式可表示为221021)(t r t r r t r ++=系统的稳态误差,可应用叠加原理求出,即系统的稳态误差是各部分输入所引起的误差的总和。
所以,系统的稳态误差可按下式计算:av p ss K rK r K r e 2101+++=对于本例,系统的稳态误差为vp ss K K A e ω++=1本题给定的开环传递函数中只含一个积分环节,即系统为1型系统,所以∞=p K10)1)(1(10lim )(lim 210=++⋅==→→s T s T s s s sG K s s v系统的稳态误差为05.0105.0101011===+∞+=++=ωωωA K K A e v p ss例3-23 设复合控制系统如图3-38所示。
其中1221==K K ,s T 25.02= ,132=K K试求 )(1)2/1()(2t t t t r ++=时,系统的稳态误差。
解 闭环传递函数)1(22+s T s KK 1R (s )图3-38 复合控制系统24)5.0(41)(221222113+++=++⎪⎪⎭⎫ ⎝⎛+=s s s K K s s T K K s K K s φ 等效单位反馈开环传递函数2)12(2)(1)()(s s s s s G +=-=φφ表明系统为II 型系统,且2==K K a当)(1)2/1()(2t t t t r ++=时,稳态误差为5.0/1==a ss K e例4-1 设系统的开环传递函数为)2)(1(2)()(++=s s s Ks H s G试绘制系统的根轨迹。
解 根据绘制根轨迹的法则,先确定根轨迹上的一些特殊点,然后绘制其根轨迹图。
(1)系统的开环极点为0,1-,2-是根轨迹各分支的起点。
由于系统没有有限开环零点,三条根轨迹分支均趋向于无穷远处。
(2)系统的根轨迹有3=-m n 条渐进线渐进线的倾斜角为3180)12()12(-︒⨯+=-+=K m n K a πϕ 取式中的K =0,1,2,得φa =π/3,π,5π/3。
渐进线与实轴的交点为13)210(111-=--=⎥⎦⎤⎢⎣⎡--=∑∑==m i i nj j a z p m n σ 三条渐近线如图4-13中的虚线所示。
(3)实轴上的根轨迹位于原点与-1点之间以及-2点的左边,如图4-13中的粗实线所示。
(4)确定分离点 系统的特征方程式为022323=+++K s s s即)23(2123s s s K ++-=利用0/=ds dK ,则有0)26(2123=++-=s s ds dK 解得423.01-=s 和 577.12-=s由于在-1到-2之间的实轴上没有根轨迹,故s 2=-1.577显然不是所要求的分离点。
因此,两个极点之间的分离点应为s 1=-0.423。
(5)确定根轨迹与虚轴的交点 方法一 利用劳斯判据确定劳斯行列表为 3s 1 2 2s32K 1s326K-s2K由劳斯判据,系统稳定时K 的极限值为3。
相应于K =3的频率可由辅助方程0632322=+=+s K s确定。
解之得根轨迹与虚轴的交点为2j s ±=。
根轨迹与虚轴交点处的频率为41.12±=±=ω方法二 令ωj s =代入特征方程式,可得02)(2)(3)(23=+++K j j j ωωω即0)2()32(22=-+-ωωωj K令上述方程中的实部和虚部分别等于零,即0322=-ωK ,022=-ωω所以2±=ω 3=K(6)确定根轨迹各分支上每一点的K 值 根据绘制根轨迹的基本法则,当从开环极点0与-1出发的两条根轨迹分支向右运动时,从另一极点-2出发的根轨迹分支一定向左移动。
当前两条根轨迹分支和虚轴在K =3处相交时,可按式3)41.10()41.10(-=-+++j j x σ求出后一条根轨迹分支上K =3的点为οx =-3。
由(4)知,前两条根轨迹分支离开实轴时的相应根值为-0.423±j 0。
因此,后一条根轨迹分支的相应点为3)423.0()423.0(-=-+-+x σ所以 ,οx =-2.154。
因本系统特征方程式的三个根之和为-2K ,利用这一关系,可确定根轨迹各分支上每一点的K 值。
现在已知根轨迹的分离点分别为-0.423±j 0和-2.154,该点的K 值为)154.2()423.0(22--=-K即,K =0.195。
系统的根轨迹如图4-1所示。
例4-6 已知控制系统如图4-18所示图4-1 例4-1系统的根轨迹S 平面σωj 图4-6R (s )C (s )4)15.0(+s K(1) 试根据系统的根轨迹分析系统的稳定性。
(2) 估算%3.16%=p M 时的K 值。
解 44)2()2(16)(+=+=s K s Ks G g (1)系统有四个开环重极点:p 1=p 2=p 3=p 4=0。
没有零点。
实轴上除-2一点外,没有根轨迹段。
根轨迹有四条渐进线,与实轴的交点及夹角分别为248-=-=a σ 44)12(ππϕ±=+=K a ,π43±下面证明根轨迹和渐近线是完全重合的。
将根轨迹上任一点s =s 1代入幅角方程,有π)12()2(41+=+∠K s即 π)12(41)2(1+=+∠K s 和渐近线方位角a ϕ的表达式比较,两者相等,于是有a s ϕ=+∠)2(1由于s 1的任意性,因此根轨迹和渐近线完全重合。
系统的根轨迹如图4-7所示。
图知,随着K g 的增加,有两条根轨迹将与虚轴分别交于j 2和-j 2处。
将s =j 2代入幅值方程有1|)2(|4=+s K g解得开环根增益:K gc =64,开环增益:K c =K g /16=4.即当K=4时,闭环系统有一对虚根±j 2,系统处于临界稳定的状态。
当K >4时,闭环系统将出现一对实部为正的复数根,系统不稳定。
所以,使系统稳定的开环增益范围为0<K <4。
(2)由超调量的计算公式及指标要求,有%3.16%21==--ξξπeM p解得,5.0=ξS 平面σ图4-7 例4-6系统的根轨迹j ω即,系统闭环极点的阻尼角为︒===--605.0cos cos 11ξβ。