动态面板数据模型
- 格式:pdf
- 大小:337.19 KB
- 文档页数:10
动态面板空间计量模型
动态面板空间计量模型是一种常见的计量经济学方法,适用于分析空间数据的面板数据。
它综合了时间序列和横截面数据的特点,可以更准确地捕捉时间和空间的交互作用,是一种具有实际应用价值的方法。
该模型是在静态面板空间计量模型的基础上进行发展的,其最大的特点是将每个空间单位(区域)的时间序列数据与其邻近区域的数据进行融合,建立出相邻区域之间的关联性。
同时,该模型还考虑了时变的特点,即考虑空间单位之间的关联关系随时间的变化而变化。
具体而言,动态面板空间计量模型的核心是空间滞后项,即模型中每个变量对于相邻空间单位的值的影响,其可表示为:
Yit = αYit-1 + βWXit + γYst + εit
其中,Yit是该变量在i时期、t时间的取值;Yit-1表示该变量在上一期的取值;WXit是自变量;Yst指的是相邻区域的该变量取值的加权平均数;εit是误差项。
该模型还能够考虑其他因素对空间单位间关联关系的影响,比如时间趋势、控制变量等。
使用该模型可以估计出空间单位间关联关系的强度和方向,提供预测值以及对策略的评估等。
总之,动态面板空间计量模型是一种应用广泛的计量经济学方法,用于处理面板数据中的时间和空间交互作用,能对空间单位间的关联进行建模、预测和评估,以更好地理解经济现象。
动态面板(Dynamic Panel Data,简称DPD)是一种面板数据模型,它允许我们分析个体在多个时间点上的行为变化。
动态面板模型的主要优点是它可以捕捉到个体之间的异质性以及时变效应,从而提供更准确的估计结果。
动态面板模型的基本思想是将面板数据分解为两个部分:一部分是个体特定的效应,另一部分是时间不变的效应。
个体特定的效应可以通过固定效应或随机效应来捕捉,而时间不变的效应则可以通过引入滞后变量来表示。
通过这种方式,动态面板模型可以同时考虑到个体之间的异质性和时变效应,从而提供更准确的估计结果。
动态面板模型的一个关键假设是,个体之间的异质性和时变效应是相互独立的。
这意味着,个体之间的异质性不会影响他们在不同时间点上的效应,反之亦然。
然而,这个假设在实际应用中往往很难满足。
因此,许多研究者对动态面板模型进行了扩展,以考虑个体之间的异质性和时变效应之间的相关性。
动态面板模型的另一个重要应用是在政策评估和实验设计中。
通过比较处理组和对照组在不同时间点上的反应,我们可以评估政策的效果是否随着时间的推移而改变。
此外,我们还可以利用动态面板模型来设计实验,以确定哪些因素对政策效果的影响最大。
总的来说,动态面板模型是一种强大的工具,它可以帮助我们更好地理解和解释面板数据中的复杂模式。
然而,由于其假设的限制以及计算复杂性的增加,动态面板模型的应用仍然面临一些挑战。
尽管如此,随着计算技术的发展和统计方法的创新,我们有理由相信,动态面板模型将在未来的研究中发挥越来越重要的作用。
第七章面板数据模型的分析面板数据模型是一种广泛应用于计量经济学和实证研究领域的数据分析方法。
它的特点是利用了多个交叉时期和个体的数据来研究变量之间的关系,相比于截面数据模型和时间序列数据模型具有更为丰富的信息。
面板数据模型的分析可以从多个角度进行,以下是几种常见的分析方法:1.汇总统计分析:通过计算面板数据的平均值、标准差、最大值、最小值等统计量,可以对变量的总体特征进行汇总分析。
这种分析方法可以直观地了解变量的变化范围和分布情况。
2.横向分析:横向分析主要关注个体之间的差异,通过比较不同个体在同一时间点上的变量取值,可以研究个体特征、个体行为等方面的问题。
例如,可以比较不同公司在同一年份上的销售额,从而找出销售额较高或较低的公司有什么特点。
3.纵向分析:纵向分析主要关注个体随时间变化的特征,通过比较同一个体在不同时间点上的变量取值,可以研究个体的发展趋势、变化规律等方面的问题。
例如,可以比较同一家公司在不同年份上的销售额,分析销售额的增长趋势或变化原因。
4.固定效应模型:固定效应模型是面板数据模型中常用的一种建模方法。
它通过引入个体固定效应来控制个体特征对变量的影响,从而研究其他变量对个体的影响。
例如,可以研究公司规模对销售额的影响,控制掉公司固定效应后,观察销售额与公司规模的关系。
5.随机效应模型:随机效应模型是面板数据模型中另一种常用的建模方法。
它通过将个体固定效应视为随机变量,从而研究个体与时间的交互作用。
例如,可以研究公司规模对销售额的影响,同时考虑到不同公司的规模和销售额的随机波动。
6.固定效应与随机效应的比较:固定效应模型和随机效应模型分别考虑了个体固定效应和个体与时间的交互作用,它们各自有各自的优点和局限性。
通过比较两种模型的拟合优度、估计结果等指标,可以选择合适的模型来进行面板数据的分析。
7.动态面板数据模型:动态面板数据模型是对静态面板数据模型的扩展,它引入了变量的滞后项,来研究变量之间的动态关系。
Stata面板数据回归分析中的动态面板模型比较面板数据回归分析是经济学和社会科学研究中常用的一种统计分析方法,尤其在分析经济增长、贸易模式和社会发展等领域具有重要应用。
在面板数据回归分析中,动态面板模型是一种相对较新的方法,它与传统的静态面板模型相比具有一定的优势。
本文将对Stata软件中的动态面板模型进行比较分析。
一、动态面板模型简介动态面板模型是基于面板数据的经济学分析方法之一,特点是将时间维度引入模型中,考虑了变量的滞后效应。
动态面板模型的基本形式是:Y_it = α + ρY_i,t-1 + βX_it + ε_it其中,Y_it表示因变量,α是常数项,Y_i,t-1是因变量的滞后值,X_it表示解释变量,β是解释变量的系数,ε_it是误差项。
ρ参数则表示了时间维度的滞后效应。
二、动态面板模型与静态面板模型的比较动态面板模型与静态面板模型相比,主要有以下几点不同之处:1. 考虑了时间维度:动态面板模型引入了时间维度,可以捕捉变量随时间变化的趋势和动态调整过程。
2. 控制了滞后效应:采用动态面板模型可以控制变量的滞后效应,更准确地分析变量之间的关系。
3. 处理了内生性问题:动态面板模型可以解决静态面板模型中常常出现的内生性问题,提高了模型的估计效率。
三、动态面板模型的Stata实现Stata软件是众多研究者进行面板数据回归分析的常用工具之一。
在Stata中进行动态面板模型估计可以使用xtabond2命令,该命令可以同时进行一阶和二阶差分估计。
具体使用方法如下:. xtabond2 Y X1 X2 X3, gmm(L) iv(X4)其中,Y是因变量,X1、X2、X3是解释变量,gmm(L)表示进行一阶或二阶差分估计,iv(X4)表示使用变量X4作为工具变量进行估计。
四、动态面板模型实证研究为了比较动态面板模型和静态面板模型的效果,我们使用一个示例数据集进行实证研究。
数据集包含了多个国家的GDP和人口数据,我们以GDP作为因变量,人口数量和劳动力作为解释变量,并将时间维度纳入模型。
第17章 动态面板数据模型17.1 动态面板数据模型前一章讨论具有固定效应和随机效应的线性静态面板数据模型,但由于经济个体行为的连续性、惯性和偏好等影响,经济行为是一个动态变化过程,这时需要用动态模型来研究经济关系。
本章主要讨论动态面板数据模型的一般原理和估计方法,然后介绍了面板数据的单位根检验、协整分析和格朗杰因果检验的相关原理及操作。
动态面板模型原理考虑线性动态面板数据模型为'1pit j it j it i it j Y Y X ρβδε-==+++∑ 〔〕首先进展差分,消去个体效应得到方程为:'1pit j it j it it j Y Y X ρβε-=∆=∆+∆+∆∑〔〕可以用GMM 对该方程进展估计。
方程的有效的GMM 估计是为每个时期设定不同数目的工具,这些时期设定的工具相当于一个给定时期不同数目的滞后因变量和预先决定的变量。
这样,除了任何严格外生的变量,可以使用相当于滞后因变量和其他预先决定的变量作为时期设定的工具。
例如,方程〔〕中使用因变量的滞后值作为工具变量,假设在原方程中这个变化是独立同分布的,然后在t=3时,第一个时期观察值可作为该设定分析,很显然1i Y 是很有效的工具,因为它与2i Y ∆相关的,但与3i ε∆不相关。
类似地,在t=4时,2i Y 和1i Y 是潜在的工具变量。
以此类推,对所以个体i 用因变量的滞后变量,我们可以形成预先的工具变量:11212200000000i i i i i i i iT Y Y Y W Y Y Y -⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦〔〕 每一个预先决定的变量的相似的工具变量便可以形成了。
假设it ε不存在自回归,不同设定的最优的GMM 加权矩阵为:11'1M d i i i H M Z Z --=⎛⎫=Ξ ⎪⎝⎭∑ 〔〕其中Ξ是矩阵,22100012000120002100012σ-⎡⎤⎢⎥-⎢⎥⎢⎥Ξ=⎢⎥-⎢⎥⎢⎥-⎣⎦ i Z 包含严格外生变量和预先决定的变量的混合。
数量经济学中的动态面板数据模型分析在经济学的研究领域中,动态面板数据模型是一种十分重要的研究方法。
通过构建动态面板数据模型,可以分析经济系统中的各种变化和演化,研究经济发展的规律,以及预测未来的经济走势。
本文将详细介绍数量经济学中的动态面板数据模型,探讨其理论基础和应用实践。
第一章:动态面板数据模型的基本概念动态面板数据模型是时间序列分析方法中的一种。
其基本思想是通过将多个时间点的数据结合在一起,构建一个跨时间的面板数据,分析变量之间的动态关系。
其核心模型是动态面板回归模型,通过该模型可以对面板数据进行预测和估计。
1.1 动态面板数据模型的特点动态面板数据模型的特点主要有两个方面:(1)具有面板数据结构。
在动态面板数据模型中,同一样本被观察了多次,形成时间序列面板数据。
(2)具有动态时间结构。
在动态面板数据模型中,时间序列的横截面之间存在着动态关系,变量之间会随时间而变化。
1.2 动态面板数据模型的假设动态面板数据模型的主要假设包括以下几个方面:(1)序列相互独立同分布,即变量之间不受其它变量的影响,且各个时间点的样本具有相同的概率分布函数。
(2)存在时间不变的弱相关性,即在不同时间节点上,变量之间仍然存在弱相关性。
(3)存在序列相关问题,即多个样本之间存在序列相关性。
第二章:动态面板数据模型的理论基础动态面板数据模型有着较为完备的理论基础。
主要是基于动态优化理论和均衡增长理论两个方面。
2.1 动态优化理论动态优化理论是指在一定的约束条件下,利用动态方法进行经济问题求解的理论。
该理论假设个体在不同的时刻尝试不同的行动方案,以达成最终的最优效果。
在动态优化理论中,经济个体的决策主要受到以下两个方面的影响:(1)技术进步和经验积累。
经济发展与技术进步以及经验积累密不可分。
随着技术的不断进步,经济个体不断创新,从而提高生产力水平和效率。
(2)市场增长和市场规模。
市场的扩大和规模的增加对经济发展有着重要的推动作用。
面板数据模型引言概述:面板数据模型是一种经济学和统计学领域常用的数据分析方法,它能够有效地处理时间序列和横截面数据的结合。
本文将介绍面板数据模型的概念、应用领域以及其在实证研究中的优势。
一、概述面板数据模型1.1 面板数据模型的定义面板数据模型是一种将时间序列和横截面数据结合起来的统计模型。
它包含了多个个体(cross-section)在多个时间点(time period)上的观测数据。
面板数据模型可以分为固定效应模型和随机效应模型两种类型。
1.2 面板数据模型的应用领域面板数据模型广泛应用于经济学、金融学、社会科学等领域的实证研究中。
它可以用于分析个体间的差异、时间变化以及两者之间的相互作用。
面板数据模型可以帮助研究者更准确地捕捉数据的动态特征,从而提高研究的可信度和准确性。
1.3 面板数据模型的优势面板数据模型相比于传统的时间序列或横截面数据模型具有以下优势:(1)更多的信息:面板数据模型结合了时间序列和横截面数据,可以提供更多的信息,从而增加了研究的可靠性。
(2)更强的效率:面板数据模型可以利用个体间和时间间的差异,提高模型的效率和准确性。
(3)更广泛的应用:面板数据模型可以适用于各种数据类型,包括面板数据、平衡面板数据和非平衡面板数据等。
二、固定效应模型2.1 固定效应模型的基本原理固定效应模型假设个体间存在不可观测的个体固定效应,即个体特征对因变量的影响在模型中是固定的。
通过控制个体固定效应,固定效应模型可以更准确地估计其他变量对因变量的影响。
2.2 固定效应模型的估计方法固定效应模型的估计方法包括最小二乘法(OLS)和差分法(Difference-in-Differences)。
最小二乘法可以通过控制个体固定效应来估计其他变量的系数。
差分法则通过个体间的差异来估计因果效应。
2.3 固定效应模型的应用案例固定效应模型可以应用于许多实证研究中,例如研究个体间的收入差距、教育对收入的影响等。
动态面板数据模型在经济统计学中的异质性分析在经济统计学中,动态面板数据模型是一种重要的工具,用于分析经济变量之间的关系和异质性。
动态面板数据模型结合了横截面数据和时间序列数据,能够捕捉到个体之间的差异和随时间的变化,对于研究经济现象的复杂性和动态性具有重要意义。
首先,动态面板数据模型能够解决传统面板数据模型中的内生性问题。
在传统的面板数据模型中,个体之间的相关性可能由于内生性而导致估计结果的偏误。
而动态面板数据模型通过引入滞后变量,能够更好地控制内生性问题,提高估计结果的准确性。
例如,在研究企业投资决策时,动态面板数据模型可以考虑到过去的投资水平对当前投资的影响,从而更准确地估计企业的投资行为。
其次,动态面板数据模型能够捕捉到个体之间的异质性。
在经济统计学中,个体之间往往存在着差异,这些差异可能来自于个体的特征、环境的不同等因素。
动态面板数据模型通过引入个体固定效应和时间固定效应,能够控制个体之间的异质性,并对个体特征的影响进行分析。
例如,在研究劳动力市场时,动态面板数据模型可以考虑到个体的教育水平、工作经验等因素对就业率的影响,并进一步分析这些因素的异质性。
此外,动态面板数据模型还能够研究经济变量的动态调整过程。
在经济中,很多变量存在着长期均衡关系和短期调整关系。
传统的面板数据模型往往只能分析静态的关系,而无法捕捉到变量之间的动态调整。
而动态面板数据模型通过引入滞后变量和差分变量,能够研究变量之间的长期均衡关系和短期调整关系。
例如,在研究货币政策对经济增长的影响时,动态面板数据模型可以考虑到货币供应量对经济增长的长期影响和短期调整过程。
然而,动态面板数据模型也存在一些问题和挑战。
首先,动态面板数据模型对数据的要求较高。
在应用动态面板数据模型时,需要有较长的时间序列和足够的样本量,以确保模型的稳健性和准确性。
其次,动态面板数据模型对参数估计方法的选择较为敏感。
不同的参数估计方法可能导致不同的结果,需要在具体研究中选择合适的估计方法。
动态面板模型系统GMM 差分GMM Hansen过度识别检验AR检验SPSSAU动态面板模型分析如果在面板模型中,解释变量包括被解释变量的滞后值,此时则称之为“动态面板模型”,其目的是处理内生性问题。
动态面板模型发展分为3个阶段,第1阶段是由Arellano and Bond(1991)提出的差分GMM(difference GMM),第2阶段由Arellano and Bover(1995)提出水平GMM,第3阶段是Blundell and Bond(1998)将差分GMM和水平GMM结合一起进行GMM估计即系统GMM(System GMM)。
SPSSAU默认当前提供差分GMM和系统GMM两种类型,多数情况下使用系统GMM法。
需要注意的是,动态面板模型通常只针对‘大N小T’这样的面板数据,如果T 过大这会导致滞后项很多,待估计参数值可能过多无法拟合等。
动态面板模型时,通常会涉及到几种变量,分别说明如下:显著,就用到第几期。
例如,被解释变量的2期滞后项作为解释变量,1期和2期滞后项都显著,但加上3期滞后项后第2期不显著,第1期仍然显著,则一般只使用滞后的1和2期作为解释变量,不能用3期。
并且必须用1和2期,不能只用1期或2期。
因为结果表明1期和2期都显著,如果只用1期或2期,则会人为造成遗漏变量。
系统GMM在选择被解释变量和解释变量的几期滞后项作为IV时,有较大选择空间。
只要能满足系统GMM的两个检验就行。
系统GMM的两个检验是Hansen过度识别检验和扰动项无自相关AR检验,Hansen过度识别检验研究是否工具变量均为外生变量,如果其对应的p值大于0.05则意味着工具变量均外生,与此同时还需要通过AR检验,AR检验扰动项是否无自相关性,一般来说AR(2)对应的p值>0.05则接受原假设意味着模型通过自相关检验。
动态面板模型构建时,工具变量参数的设置尤其复杂,但无论如何均需要通过Hansen过度识别检验和AR检验,才意味着模型可用,因而建议实际研究中让SPSSAU自动进行参数配置,即设置参数时让系统自动识别寻找最佳模型,当SPSSAU无法自动找出最优模型时,此时结合自身数据及专业实际情况进行逐一参数设置和调整。
“动态面板数据模型”资料合集目录一、动态面板数据模型的GMM估计及其应用二、中国科技金融投入对科技创新的作用效果——基于静态和动态面板数据模型的实证研究三、收入、物价和利率对我国城镇居民消费水平影响研究基于静态与动态面板数据模型分析四、外商直接投资对中国贸易的效应与区域差异基于动态面板数据模型的分析五、对外直接投资对服务出口技术复杂度的影响基于跨国动态面板数据模型的实证研究六、动态面板数据模型估计及其内生结构突变检验理论与应用动态面板数据模型的GMM估计及其应用在经济学和计量经济学中,面板数据模型是一种常见且强大的工具,用于分析多种时间序列和横截面数据。
最近的研究开始动态面板数据模型,以更好地捕捉和建模数据的动态特性。
本文重点讨论了动态面板数据模型的广义矩估计(GMM)方法,并探讨了其实际应用。
动态面板数据模型扩展了传统的横截面或时间序列模型,允许在时间和个体特性的变化中捕捉数据的复杂模式。
这种模型考虑到前期结果对当前行为的影响,从而更准确地模拟数据的动态特性。
广义矩估计(GMM)是一种灵活且强大的方法,用于估计动态面板数据模型。
GMM是基于一组矩估计量,通过对矩估计量的最小二乘法进行迭代,逐步改进估计结果。
这种方法能够处理面板数据的复杂特性,如异方差性和相关性。
在应用GMM估计法之前,首先需要根据具体数据和问题选择合适的动态面板数据模型。
模型的设定需要考虑到数据的特性,如截面和时间相关性、个体效应等。
然后,利用GMM的矩估计量对模型进行识别和设定。
通过GMM估计法,可以获得模型的参数估计值。
利用这些估计结果,可以对模型进行统计推断,如检验预测的显著性、比较不同模型的优劣等。
GMM估计还能处理模型的异方差性和相关性问题,提高估计的准确性和稳定性。
本文对动态面板数据模型的GMM估计进行了详细的探讨。
通过了解动态面板数据模型的特性和GMM估计的原理,我们可以更好地理解和应用这种方法。
在实际应用中,我们需要根据具体的数据和问题选择合适的模型和方法,以获得更准确、可靠的估计结果。
计量经济学中的动态面板数据模型分析计量经济学是经济学中的一个重要分支,它通过运用数理统计方法对经济现象进行定量分析,从而揭示经济规律和解释经济现象。
动态面板数据模型是计量经济学中的一种重要分析工具,它能够更准确地捕捉经济变量之间的关系,并解决传统面板数据模型中存在的内生性问题。
动态面板数据模型分析的基础是动态面板数据模型,它是对面板数据模型的扩展和改进。
面板数据模型是一种同时包含横截面和时间序列信息的数据模型,它能够更全面地反映经济变量的变化。
然而,传统面板数据模型中存在着内生性问题,即经济变量之间的关系可能是双向的,导致估计结果产生偏误。
动态面板数据模型通过引入滞后变量和差分变量,能够更好地解决内生性问题,提高估计结果的准确性。
动态面板数据模型的核心是一阶差分法。
一阶差分法是一种常用的数据处理方法,它通过对变量进行差分,消除了变量中的个体效应和时间效应,从而减少了内生性问题的影响。
一阶差分法能够更准确地估计变量之间的关系,并提供更可靠的经济政策建议。
除了一阶差分法,动态面板数据模型还包括滞后变量的引入。
滞后变量是指将某一变量在时间上向前推移一期或多期,作为解释变量引入模型中。
滞后变量的引入能够更好地捕捉经济变量之间的动态关系,提高模型的解释力和预测能力。
同时,滞后变量还能够帮助解决内生性问题,提高估计结果的准确性。
动态面板数据模型分析的应用范围广泛。
它可以用于研究宏观经济变量之间的关系,如经济增长、通货膨胀和失业率等。
同时,它也可以用于研究微观经济变量之间的关系,如企业投资、劳动力市场和金融市场等。
动态面板数据模型的分析结果能够为经济政策的制定和实施提供重要参考,帮助决策者更好地了解经济变量之间的关系,制定科学合理的经济政策。
然而,动态面板数据模型分析也存在一些限制和挑战。
首先,动态面板数据模型的估计结果对模型的设定和假设非常敏感,需要进行严格的模型检验和假设验证。
其次,动态面板数据模型的分析需要大量的数据和计算资源,对数据的质量和数量有较高的要求。
动态面板的gmm估计原理动态面板数据模型被广泛应用于经济学和社会科学领域,其中GMM估计(Generalized Method of Moments estimation)是其中一种常用的估计方法。
GMM估计方法适用于含有内生性问题或测量误差的多期数据模型,它利用样本矩条件等式将矩条件矩阵与参数矩阵进行匹配,从而得到一致且有效的估计量。
在动态面板数据模型中,时间维度上的内生性、个体异质性以及序列相关性都需要被处理,GMM估计能够通过引入工具变量和控制变量来解决这些问题。
在介绍GMM估计原理之前,我们先定义动态面板数据模型。
动态面板数据模型可以表示为:Y_{it} = \alpha + \rho Y_{it-1} + X_{it}'\beta + \varepsilon_{it}其中,Y_{it}是因变量,X_{it}是自变量,\alpha是截距项,\rho是滞后项系数,\varepsilon_{it}是误差项。
在这个模型中,有自变量的当前值和滞后值作为解释变量,因此模型包含了一部分动态关系。
GMM估计的目标是寻找一组参数估计值\hat{\theta},使得模型的矩条件期望等式满足:E[\mathbf{g}(\mathbf{Y}, \mathbf{X}, \mathbf{Z}, \hat{\theta})] =\mathbf{0}其中,\mathbf{g}是一个满足一定条件的函数,\mathbf{Y}和\mathbf{X}是观测到的数据矩阵,\mathbf{Z}是工具变量矩阵。
通过构造一组条件矩阵,我们可以得到一组GMM估计方程:\frac{1}{n}\sum_{i=1}^{n}\mathbf{g}(\mathbf{Y}_i, \mathbf{X}_i,\mathbf{Z}_i, \hat{\theta}) = \mathbf{0}GMM估计的关键在于如何选择合适的工具变量和控制变量,并构造满足条件的矩阵。
⼀⽂读懂动态⾯板数据xtabond、xtdpdsys、xtdpd 来源:计量经济学转载已获授权动态⾯板数据模型对于⾯板数据⽽⾔,如果出现了被解释变量随时间⽽改变,则开启了动态⾯板对参数估计的可能性,动态⾯板设定额⼀个个体的被解释变量部分取决于前⼀期的值,因此需要谨慎对待,因为滞后被解释变量和序列相关的误差项会导致模型估参数的不⼀致。
当被解释变量的⼀期或者多期都包含在解释变量中,对这种数据进⾏估计。
如果估计固定效应,需要进⾏的是⼀阶差分⽽不是通过均值来消除个体效应,通过解释变量的滞后期作为⼯具变量对⼀阶差分模型中的参数进⾏IV估计,可以得到参数的⼀致估计量。
主要使⽤的命令有xtabond、xtdpdsys和xtdpd。
1、认识⾯板动态模型模型如下:与静态模型进⾏⽐较,⼀阶差分数据的OLS模型回归将不能够得到⼀致的参数估计,即使不存在序列相关问题,因为与存在相关性。
对于存在序列相关的,固定效应模型的误差项和是相关的,因为取决于。
但是对于k>=2时,和是不相关的,因此也就可以使⽤IV进⾏估计,即将作为内⽣解释变量,更多滞后期作为其⼯具变量,则开启了⼯具变量估计的可能性。
2.1、AR(2)的动态⾯板模型⾸先看⼀个lnwage的Ar(2)模型从上图可以看到,只包含⼯资滞后两期的模型中,样本量的损失为3*595(因为是差分),⼀共包含15个⼯具变量。
并且系数显著,可以说明,⼯资取决于过去的⼯资⽔平。
使⽤量解读那GMM(最优GMM)从以上的模型可以看到,系数并没有发⽣很⼤的变化,标准误也没有发⽣很⼤的变化,说明GMM估计并没有提⾼效率。
但是对于T较⼤的⾯板数据,使⽤上述的估计命令,会导致产⽣⼯具变量,会导致很差的渐进估计量,从⽽形成过度识别的问题,所以对⼯具变量加以限制,使⽤选项(maxldep)。
上⽂使⽤了maxldep选项,仅仅⽣成解释变量滞后⼀期作为⼯具变量,所以产⽣了5个⼯具变量。
估计参数的标准差变⼤,估计效率的损失也很⼤,可以尝试maxldep(2)的选项的结果,⼯具变量变为9个,结果变得更好。