七章节应力集中概念
- 格式:ppt
- 大小:280.50 KB
- 文档页数:5
应力集中的概念及其避免措施现今社会,由于应力集中造成构件断裂,产生疲劳,对结构安全危害大。
了解应力集中,并找出其避免措施,对人们的生活具有重大的意义。
首先,先让我们了解一下应力与应力集中的概念,应力即受力物体截面上内力的集度,即单位面积上的内力。
公式记为σ=F/S(其中,σ表示应力;ΔFj表示在j 方向的施力;ΔAi表示在i 方向的受力面积)。
材料在交变应力作用下产生的破坏称为疲劳破坏。
通常材料承受的交变应力远小于其静载下的强度极限时,破坏可能发生。
另外材料会由于截面尺寸改变而引起应力的局部增大,这种现象称为应力集中。
对于由脆性材料制成的构件,应力集中现象将一直保持到最大局部应力到达强度极限之前。
因此,在设计脆性材料构件时,应考虑应力集中的影响。
对于由塑性材料制成的构件,应力集中对其在静载荷作用下的强度则几乎无影响。
所以,在研究塑性材料构件的静强度问题时,通常不考虑应力集中的影响。
承受轴向拉伸、压缩的构件,只有在寓加力区域稍远且横截面尺寸又无剧烈变化的区域内,横截面上的应力才是均匀分布的。
然而实际工程构件中,有些零件常存在切口、切槽、油孔、螺纹等,致使这些部位上的截面尺寸发生突然变化。
如开有圆孔和带有切口的板条,当其受轴向拉伸时,在圆孔和切口附近的局部区域内,应力的数值剧烈增加,而在离开这一区域稍远的地方,应力迅速降低而趋于均匀。
这时,横截面上的应力不再均匀分布,这已为理论和实验证实。
在静荷载作用下,各种材料对应力集中的敏感程度是不同的。
像低碳钢那样的塑性材料具有屈服阶段,当孔边附近的最大应力达到屈服极限时,该处材料首先屈服,应力暂时不再增大。
如外力继续增加,增加的应力就由截面上尚未屈服的材料所承担,是截面上其他点的应力相继增大到屈服极限,该截面上的应力逐渐趋于平均,如图2-32所示。
因此,用塑性材料制作的零件,在静载荷作用下可以不考虑应力集中的影响。
而对于组织均匀的脆性材料,因材料不存在屈服,当孔边最大应力的值达到材料的强度极限时,该处首先断裂。
1.应力集中的现象及概念材料在交变应力作用下发生的破坏称为疲劳破坏。
通常材料承受的交变应力远小于其静载下的强度极限时,破坏就可能发生。
另外材料会由于截面尺寸改变而引起应力的局部增大,这种现象称为应力集中。
对于组织均匀的脆性材料,应力集中将大大降低构件的强度,这在构件的设计时应特别注意。
承受轴向拉伸、压缩的构件,只有在寓加力区域稍远且横截面尺寸又无急剧变化的区域内,横截面上的应力才是均匀分布的。
然而工程中由于实际需要,某些零件常有切口、切槽、螺纹等,因而使杆件上的横截面尺寸发生突然改变,这时,横截面上的应力不再均匀分布,这已为理论和试验所证实。
如图 2-31[a] 所示的带圆孔的板条,使其承受轴向拉伸。
由试验结果可知 : 在圆孔附近的局部区域内,应力急剧增大,而在离开这一区域稍远处,应力迅速减小而趋于均匀( 图 2 — 31[b]) 。
这种由于截面尺寸突然改变而引起的应力局部增大的现象称为应力集中。
在 I — I 截面上,孔边最大应力与同一截面上的平均应力之比,用表示称为理论应力集中系数,它反映了应力集中的程度,是一个大于 1 的系数。
而且试验结果还表明 : 截面尺寸改变愈剧烈,应力集中系数就愈大。
因此,零件上应尽量避免带尖角的孔或槽,在阶梯杆截面的突变处要用圆弧过渡。
在静荷作用下,各种材料对应力集中的敏感程度是不相同的。
像低碳钢那样的塑性材料具有屈服阶段,当孔边附近的最大应力达到屈服极限时,该处材料首先屈服,应力暂时不再增大。
如外力继续增加,增加的应力就由截面上尚未屈服的材料所承担,使截面上其它点的应力相继增大到屈服极限,该截面上的应力逐渐趋于平均,如图2-32 所示。
因此,用塑性材料制作的零件,在静荷作用下可以不考虑应力集中的影响。
而对于组织均匀的脆性材料,因材料不存在屈服,当孔边最大应力的值达到材料的强度极限时,该处首先断裂。
因此用脆性材料制作的零件,应力集中将大大降低构件的强度,其危害是严重的。
应力集中分析假设应力在整个横截面上均匀分布而且整个杆件是均匀的,则有公式A F=σ,F为该截面上的拉内力,A 为材料该截面的横截面积。
而实际上,构件并不是如此理想的,由于某种用途,在构件上经常需要有些孔洞、键槽、缺口、轴肩、螺纹或者是其他杆件在几何外形上的突变。
所以在实际工程中,这些看似细小的变形可能导致构件在这些部位产生巨大的应力,其应力峰值远大于由基本公式算得的应力值,这种现象称为应力集中,从而可能产生重大的安全隐患。
应力集中削弱了构件的强度,降低了构件的承载能力。
应力集中处往往是构件破坏的起始点,是引起构件破坏的主要因素。
同时,应力集中的存在降低了整个构件的材料利用率,因为可能为了一部分结构的稳定而采用较高的等级的材料,与此同时构件其他部分的强度并不需要如此高的性能。
因此,为了确保构件的安全使用,提高产品的质量和经济效益,必须科学地处理构件的应力集中问题。
一、 应力集中的表现及解释(主要分析拉压应力)1、 理论应力集中系数:工程上用应力集中系数来表示应力增高的程度。
应力集中处的最大应力max σ与基准应力n σ之比,定义为理论应力集中系数,简称应力集中系数,即n maxσσα= (4)在(4)式中,最大应力max σ可根据弹性力学理论、有限元法计算得到,也可由实验方法测得;而基准应力n σ是人为规定的应力比的基准,其取值方式不是唯一的,大致分为以下三种:(1) 假设构件的应力集中因素(如孔、缺口、沟槽等)不存在,以构件未减小时截面上的应力为基准应力。
(2) 以构件应力集中处的最小截面上的平均应力作为基准应力。
(3) 在远离应力集中的截面上,取相应点的应力作为基准应力。
理论应力集中系数反映了应力集中的程度,是一个大于1的系数。
而且实验结果还表明:洁面尺寸改变愈剧烈,应力集中系数就愈大。
2、几种常见表现[1]一块铝板,两端受拉,其中部横截面上的拉应力 (单位面积上的力) 均匀分布,记为 ,见图 1(a ) , 此时没有应力集中。
应力集中是指受力构件由于几何形状、外形尺寸发生突变而引起局部范围内应力显著增大的现象。
当材料受力时材料表面及内部缺陷处的应力远大于平均应力的现象称为应力集中现象,简称应力集中。
通过提高冶金质量、加工质量可有效减小应力集中。
脆性材料在外力作用下(如拉伸、冲击等)仅产生很小的变形即破坏断裂的性质。
对于由脆性材料制成的构件,应力集中现象将一直保持到最大局部应力到达强度极限之前。
因此,在设计脆性材料构件时,应考虑应力集中的影响。
对于由塑性材料制成的构件,应力集中对其在静载荷作用下的强度则几乎无影响。
所以,在研究塑性材料构件的静强度问题时,通常不考虑应力集中的影响。
铸铁(牌号一般为以Q、HT等开头的材料),与非金属材料都是脆性材料,碳钢(如45、20等)、铬钢、硅合金钢还有其他一些硬度较小而韧性较好的合金钢为塑性材料延伸率δ是衡量材料塑性性能的指标。
——工程上通常把δ>5%的材料称为塑性材料,如钢、铜、铝合金等;把δ<5%的材料称为脆性材料,如铸铁、陶瓷、石材等。
低碳钢是典型的塑性材料,其延伸率δ为20~30%。
铸铁是典型的脆性材料,其延伸率δ<1%。
由低碳钢等塑性材料制成的构件,当应力达到屈服极限σs时,会因显著的塑性变形而使构件原有形状和尺寸发生改变,不再能够正常工作。
由铸铁等脆性材料制成的构件,会因应力达到强度极限σb而发生断裂,尽管断裂之前变形还很小。
构件失去正常工作能力或发生断裂破坏时的应力,称为极限应力。
塑性材料在断裂前已发生显著的塑性变形,故塑性材料的极限应力应是屈服极限σs,而脆性材料直至断裂时也无显著的变形,故脆性材料的极限应力就是强度极限σb。
塑性材料和脆性材料在力学性能上的主要差异是:塑性材料在断裂前的变形较大,塑性指标(断面收缩率和伸长率)较高,抵抗拉断的能力较好,其常用的强度指标是屈服极限,而且一般地说,在拉伸和压缩时的屈服极限值相同。
脆性材料在断裂前变形较小,塑性指标较低,其强度指标是强度极限,而其抗拉强度远低于抗压强度。
应力集中是指受力构件由于几何形状、外形尺寸发生突变而引起局部范围内应力显著增大的现象。
当材料受力时材料表面及内部缺陷处的应力远大于平均应力的现象称为应力集中现象,简称应力集中。
通过提高冶金质量、加工质量可有效减小应力集中。
脆性材料在外力作用下(如拉伸、冲击等)仅产生很小的变形即破坏断裂的性质。
对于由脆性材料制成的构件,应力集中现象将一直保持到最大局部应力到达强度极限之前。
因此,在设计脆性材料构件时,应考虑应力集中的影响。
对于由塑性材料制成的构件,应力集中对其在静载荷作用下的强度则几乎无影响。
所以,在研究塑性材料构件的静强度问题时,通常不考虑应力集中的影响。
铸铁(牌号一般为以Q、HT等开头的材料),与非金属材料都是脆性材料,碳钢(如45、20等)、铬钢、硅合金钢还有其他一些硬度较小而韧性较好的合金钢为塑性材料延伸率δ是衡量材料塑性性能的指标。
——工程上通常把δ>5%的材料称为塑性材料,如钢、铜、铝合金等;把δ<5%的材料称为脆性材料,如铸铁、陶瓷、石材等。
低碳钢是典型的塑性材料,其延伸率δ为20~30%。
铸铁是典型的脆性材料,其延伸率δ<1%。
由低碳钢等塑性材料制成的构件,当应力达到屈服极限σs时,会因显著的塑性变形而使构件原有形状和尺寸发生改变,不再能够正常工作。
由铸铁等脆性材料制成的构件,会因应力达到强度极限σb而发生断裂,尽管断裂之前变形还很小。
构件失去正常工作能力或发生断裂破坏时的应力,称为极限应力。
塑性材料在断裂前已发生显著的塑性变形,故塑性材料的极限应力应是屈服极限σs,而脆性材料直至断裂时也无显著的变形,故脆性材料的极限应力就是强度极限σb。
塑性材料和脆性材料在力学性能上的主要差异是:塑性材料在断裂前的变形较大,塑性指标(断面收缩率和伸长率)较高,抵抗拉断的能力较好,其常用的强度指标是屈服极限,而且一般地说,在拉伸和压缩时的屈服极限值相同。
脆性材料在断裂前变形较小,塑性指标较低,其强度指标是强度极限,而其抗拉强度远低于抗压强度。
应力集中手册应力集中手册:为您解读和应对应力集中现象一、引言应力集中是材料工程中的重要概念,它指的是在结构中产生局部应力的现象。
应力集中会导致材料的破坏,影响结构的安全性和可靠性。
为了帮助工程师和研究人员更好地理解和解决应力集中问题,我们编写了这本应力集中手册。
二、什么是应力集中应力集中是指在结构中存在局部应力异常集中的现象。
通常,这种集中是由结构形状、应力加载方式、材料性质等因素造成的。
当应力集中超过材料的强度极限时,就会引发结构的破坏。
应力集中的常见表现形式包括孔洞、凹槽、棱角、接头等局部几何形状。
三、应力集中的危害应力集中会引起结构的局部断裂、裂纹扩展以及永久变形等问题。
这不仅降低了结构的强度和刚度,还可能导致结构的失效。
在工程实践中,应力集中是常见的结构失效原因之一。
四、应力集中的分析与计算为了准确评估和解决应力集中问题,我们需要进行应力分析和计算。
常用的方法包括有限元方法、应力集中系数法和应力分布法。
这些方法可以帮助我们定量地评估结构中的应力集中程度,并设计合适的改善措施。
五、应对应力集中问题的措施针对不同类型的应力集中问题,我们可以采取一系列的改善措施。
例如,可以通过增加结构的强度、改变结构的几何形状、优化材料的选择等方式来减轻应力集中的影响。
此外,合理的工艺控制和结构设计也可以有助于降低应力集中。
六、应力集中的实例分析本手册还包含了一些典型的应力集中实例分析,如孔洞、凹槽和接头等。
通过这些实例,读者可以更好地理解应力集中的原因、危害以及解决方法。
七、结语应力集中是一个复杂的问题,在工程实践中具有重要的意义。
这本应力集中手册旨在为工程师、设计师和研究人员提供一份全面的指南,帮助他们更好地理解和应对应力集中现象,提高结构的安全性和可靠性。
希望这本手册能为广大读者带来帮助,并在工程实践中发挥积极的作用。
应力集中点解释-概述说明以及解释1.引言1.1 概述引言应力集中点是指在材料中存在的局部应力远远高于周围区域的点。
它是材料疲劳、断裂和变形的主要起因之一,引起了广泛的学术关注和工程实践。
应力集中点的形成是由于材料内部的几何形状或应力的非均匀分布导致的。
当材料在受到力的作用下发生变形时,应力会在材料中传递并分布。
在一些几何形状复杂或应力集中的地方,导致应力分布不均匀,形成应力集中点。
这些点通常呈现出局部应力远远高于周围区域的特点。
应力集中点对材料的影响是十分显著的。
它会导致材料的疲劳寿命大幅降低,甚至引发断裂。
此外,应力集中点也会造成材料的变形不均匀,影响材料的使用性能。
因此,对于应力集中点的研究和解释具有重要意义。
本文将对应力集中点进行深入的解释和分析。
首先,将对应力集中点的定义和特点进行阐述,帮助读者更好地理解应力集中点的本质。
接着,将探讨应力集中点的成因,从而揭示应力集中点形成的原理和机制。
最后,将探讨应力集中点在工程实践中的重要性,并提供应对应力集中点的方法和技术。
通过本文的阅读,读者将对应力集中点有更深入的了解,并能够更好地应对和解决与应力集中点相关的问题。
相信本文能够为读者提供有价值的参考和指导。
文章结构部分的内容可以如下所示:1.2 文章结构本文将按照以下顺序来介绍应力集中点的解释:2.正文2.1 应力集中点的定义和特点在这一部分,将详细解释应力集中点的概念以及其特点。
首先,会给出应力集中点的定义,即当力的作用下,在工程结构中的某个局部位置产生应力远大于周围区域的现象。
接着,会探讨应力集中点的特点,比如应力集中程度的高低、应力集中位置的局部性等。
2.2 应力集中点的成因这一部分将详细分析导致应力集中点产生的原因。
首先,会介绍结构形状和材料特性对应力集中的影响,即不同形状和材料的结构在受力下会产生不同程度的应力集中。
其次,会介绍力的作用方式对应力集中的影响,如拉伸、压缩、扭曲等力的作用方式会导致应力集中点分布的不同。