实验一_自由沉淀实验报告说明.doc
- 格式:doc
- 大小:55.50 KB
- 文档页数:3
沉淀实验实验报告篇一:自由沉淀实验报告六、实验数据记录与整理1、实验数据记录沉降柱直径水样来源柱高静置沉淀时间/min表面皿表面皿编号质量/g表面皿和悬浮物总质量/g水样中悬浮物质量/g水样体积/mL悬浮物沉降柱浓度/工作水(g/ml)深/mm 颗粒沉沉淀效速/率/%(mm/s)残余颗粒百分比/%0 5 10 20 30 60 1200 1 2 3 4 5 679.0438 80.7412 1.6974 81.7603 83.2075 1.4472 64.1890 65.4972 1.3082 66.1162 67.3286 1.2124 73.7895 74.9385 1.1490 83.4782 84.6290 1.1508 75.0332 76.1573 1.124131.0 30.0 30.0 30.0 30.0 31.0 31.00.0548 0.0482 0.0436 0.0404 0.0383 0.0371 0.0363846.0 808.0 780.0 724.0 664.0 500.0 361.01.860 0.883 0.395 0.230 0.069 0.02111.40 20.44 26.28 30.11 32.30 33.76100 87.96 79.56 73.72 69.89 67.70 66.242、实验数据整理(2)绘制沉淀曲线:E-t 、E-u 、ui~pi曲线如下: 2-1、绘制去除率与沉淀时间的曲线如下:图2.2:沉淀时间t与沉淀效率E的关系曲线2-2、绘制去除率与沉淀速度的曲线如下:图2.2:颗粒沉速u与沉淀效率E的关系曲线2-3、绘制去除率与沉淀速度的曲线如下:图2.3:颗粒沉速u与残余颗粒百分比的关系曲线(1)选择t=60min 时刻:(大家注意哦!这部分手写的,不要直接打印!) 水样中悬浮物质量=表面皿和悬浮物总质量-表面皿质量,如表格所示。
原水悬浮物的浓度:C0?水样中悬浮物质量1.6974??0.0548g/ml水样体积31.0悬浮物的浓度:C5?水样中悬浮物质量1.1508??0.0371g/ml水样体积31.0沉淀速率:u?h?10(500-250)??0.069mm/sti?6060?60C0-C50.0548-0.0371?100%??100%?32.30 C00.0548C50.0371?100%??100%?67.70 C00.0548沉淀效率:E5?残余颗粒百分比P5?篇二:混凝沉淀实验报告实验名称:混凝沉淀实验一、实验目的1、通过实验观察混凝现象、加深对混凝沉淀理论的理解;2、掌握确定最佳投药量的方法,选择和确定最佳混凝工艺条件;3、了解影响混凝条件的相关因数。
沉淀实验实验报告篇一:自由沉淀实验报告六、实验数据记录与整理1、实验数据记录沉降柱直径水样来源柱高静置沉淀时间/min表面皿表面皿编号质量/g表面皿和悬浮物总质量/g水样中悬浮物质量/g水样体积/mL悬浮物沉降柱浓度/工作水(g/ml)深/mm颗粒沉沉淀效速/率/%(mm/s)残余颗粒百分比/%0 5 10 20 30 60 1200 1 2 3 4 5 679.0438 80.7412 1.6974 81.7603 83.2075 1.4472 64.1890 65.4972 1.3082 66.1162 67.3286 1.2124 73.7895 74.9385 1.1490 83.4782 84.6290 1.1508 75.0332 76.1573 1.124131.0 30.0 30.0 30.0 30.0 31.0 31.00.0548 0.0482 0.0436 0.0404 0.0383 0.0371 0.0363846.0 808.0 780.0 724.0 664.0 500.0 361.01.860 0.883 0.395 0.230 0.069 0.02111.40 20.44 26.28 30.11 32.30 33.76100 87.96 79.56 73.72 69.89 67.70 66.242、实验数据整理(2)绘制沉淀曲线:E-t 、E-u 、ui~pi曲线如下: 2-1、绘制去除率与沉淀时间的曲线如下:图2.2:沉淀时间t与沉淀效率E的关系曲线2-2、绘制去除率与沉淀速度的曲线如下:图2.2:颗粒沉速u与沉淀效率E的关系曲线2-3、绘制去除率与沉淀速度的曲线如下:图2.3:颗粒沉速u与残余颗粒百分比的关系曲线(1)选择t=60min 时刻:(大家注意哦!这部分手写的,不要直接打印!) 水样中悬浮物质量=表面皿和悬浮物总质量-表面皿质量,如表格所示。
原水悬浮物的浓度:C0?水样中悬浮物质量1.6974??0.0548g/ml水样体积31.0悬浮物的浓度:C5?水样中悬浮物质量1.1508??0.0371g/ml水样体积31.0沉淀速率:u?h?10(500-250)??0.069mm/sti?6060?60C0-C50.0548-0.0371?100%??100%?32.30 C00.0548C50.0371?100%??100%?67.70 C00.0548沉淀效率:E5?残余颗粒百分比P5?篇二:混凝沉淀实验报告实验名称:混凝沉淀实验一、实验目的1、通过实验观察混凝现象、加深对混凝沉淀理论的理解;2、掌握确定最佳投药量的方法,选择和确定最佳混凝工艺条件;3、了解影响混凝条件的相关因数。
实验指导实验一 颗粒的静置自由沉降实验一、实验目的了解污水的沉降特性,加深对污水中非絮凝性颗粒的沉降理论,特点及规律的认识。
绘制沉降曲线,通过沉降实验,判定某种污水的沉降特性,求出沉降曲线,即E-t(沉降效率-沉降时间),E-u(沉降效率-沉降速度)关系曲线,以此提供沉淀池的设计参数。
二、实验原理沉降是指从液体中借助重力作用而除去固体颗粒的一种过程,根据液体中固体物质的浓度和性质,可将沉降过程分为自由沉淀,絮凝沉淀,成层沉淀和压缩沉淀等四类。
本实验的目的是研究探讨污水中的非絮性颗粒自由沉降的规律。
实验在沉降柱中进行,设水深为H,在t时间内能沉到H处深处,则颗粒的沉速为u=H/t ,根据给定的沉降时间t,可由u=H/t 求得沉淀u0。
凡是沉降速度大于u等于或大于u0(u≥u0的颗粒在时间t内可全部除去,在悬浮物的总量中,这部分颗粒可占的比率为(1-X0),X0代表沉速u<u0的颗粒物与悬浮物的总量之比,在沉速u<u0的颗粒中,具有某种粒径的颗粒占悬浮物总量的百分数为dx ,而其中能被除去的比率为u/u0×dx。
考虑到各种不同的粒径后,这类颗粒的去除率应为⎰+-=010)1(x u udxx E 上式右侧第二项中的udx 是一块微小面积。
由下图(图1)可见。
而⎰x udx为图1中阴影部分,可用图解积分法解出。
三、实验设备及仪器沉降柱:有机玻璃管,外径100mm,内径94mm,有效高度H=1600mm 。
配水系统;标尺;时钟;100ml的容量瓶10个;玻璃漏斗:10个;滤纸(中速定性);称量瓶(或表面皿):10个;万分之一天平;水样:浆泥水(300~500ml/L);图1 颗粒的沉降曲线 图2 实验装置图 四、实验步骤将泥浆水倒入原水箱中,启到泵搅5拌分钟,使水中的悬浮物分布均匀。
关闭阀门6,开启阀门3、4、5向沉降柱中注水,同时由取样中取样100ml,测其浓度为C0。
当污水升到溢流口并流出后,关阀门4、5,停泵并开始计时。
一、实验背景自由沉淀实验是研究颗粒在液体中自由沉降过程的实验。
通过该实验,可以了解颗粒在液体中的沉降规律,为水处理、环境保护等领域提供理论依据。
本实验报告主要分析自由沉淀实验的原理、实验步骤、实验结果及结论。
二、实验原理自由沉淀实验基于以下三个假设:1. 水中固体为非压实性,可沉淀固体在沉淀过程中不改变其自身性状;2. 沉淀过程开始时,水中各断面的各种颗粒分布状态一致,具有均一固体浓度;3. 沉淀过程中,各颗粒均按自身具有的规律下降,互不干扰。
在含有分散性颗粒的废水静置沉淀过程中,设沉淀柱内有效水深为 H,通过不同的沉淀时间 ti 可求得不同的颗粒沉淀速度 ui,此即为 ti 时间内从水面下沉到取样点的颗粒所具有的沉速。
此时取样点处水样悬浮物浓度为 Ci,未被去除的颗粒所占的百分比 Pi(悬浮物剩余率)为 Ci/C0,此时被去除的颗粒所占的百分比为1-Pi。
三、实验步骤1. 准备实验器材:沉淀柱、取样器、秒表、天平等;2. 将待测水样注入沉淀柱,确保水样高度适宜;3. 记录水样初始时刻;4. 观察沉淀过程中颗粒的沉降情况,记录不同时间 ti 下的沉淀速度 ui;5. 根据实验数据,计算颗粒沉降速度与颗粒直径、液体粘度之间的关系;6. 分析实验结果,得出结论。
四、实验结果及分析1. 颗粒沉降速度与颗粒直径成正比,与液体粘度成反比。
实验结果表明,颗粒直径越大,沉降速度越快;而在相同颗粒直径下,液体粘度越小,沉降速度越快。
2. 颗粒密度对沉降速度的影响较小。
实验结果表明,在相同颗粒直径和液体粘度下,颗粒密度对沉降速度的影响不大。
3. 颗粒沉降速度与沉淀时间呈指数关系。
实验结果表明,随着沉淀时间的延长,颗粒沉降速度逐渐减小,直至达到平衡。
五、结论1. 颗粒在液体中的自由沉淀过程受颗粒直径、液体粘度等因素的影响;2. 颗粒沉降速度与颗粒直径成正比,与液体粘度成反比;3. 颗粒密度对沉降速度的影响较小;4. 颗粒沉降速度与沉淀时间呈指数关系。
颗粒自由沉淀实验报告建筑与测绘工程学院《水处理实验设计与技术》实验报告实验1 颗粒自由沉淀实验颗粒自由沉淀实验是研究浓度较低时的单颗粒的沉淀规律。
一般是通过沉淀柱静沉实验,获取颗粒沉淀曲线。
它不仅具有理论指导意义,而且也是给水排水处理工程中沉砂池设计的重要依据。
一、实验目的加深对自由沉淀特点、基本概念及沉淀规律的理解。
掌握颗粒自由沉淀实验的方法,并能对实验数据进行分析、整理、计算和绘制颗粒自由沉淀曲线。
二、实验原理浓度较低的、粒状颗粒的沉淀属于自由沉淀,其特点是静沉过程中颗粒互不干扰、等速下沉,其沉速在层流区符合Stokes (斯托克斯)公式。
但是由于水中颗粒的复杂性,颗粒粒径、颗粒相对密度很难或无法准确地测定,因而沉淀效果、特性无法通过公式求得而是通过静沉实验确定。
由于自由沉淀时颗粒是等速下沉,下沉速度与沉淀高度无关,因而自由沉淀可在一般沉淀柱内进行,但其直径应足够大,一般应使内径D ≥100mm 以免颗粒沉淀受柱壁干扰。
具有大小不同颗粒的悬浮物静沉总去除率η与截留沉速u 0剩余颗粒重量百分率P 的关系如下:()dP P u u P s⎰+-=00001η( 1 )此种计算方法也称为悬浮物去除率的累积曲线计算法。
设在一水深为H 的沉淀柱内进行自由沉淀实验,如图1所示。
实验开始,沉淀时间为0,此时沉淀柱内悬浮物分布是均匀的,即每个断面上颗粒的数量与粒径组成相同,悬浮物浓度为C 0(mg/L ),此时去除率η=0。
实验开始后,不同沉淀时间t i ,颗粒最小沉淀速度u i 相应为:ii t H u = ( 2 )此即为t i 时间内从水面下沉到池底(此处为取样点)的最小颗粒d i 所具有的沉速。
此时取样点处水样悬浮物浓度为C i ,而:000011η=-=-=-i ii P C C C C C ( 3 )此时去除率η0,表示u ≥u i (d ≥d i )的颗粒除去率,而:C C P ii =( 4 )则反映了t i 时,未被除去之颗粒即d <d i 的颗粒所占百分比。
沉淀实验实验报告篇一:自由沉淀实验报告六、实验数据记录与整理1、实验数据记录沉降柱直径水样来源柱高静置沉淀时间/min表面皿表面皿编号质量/g表面皿和悬浮物总质量/g水样中悬浮物质量/g水样体积/mL悬浮物沉降柱浓度/工作水(g/ml)深/mm颗粒沉沉淀效速/率/%(mm/s)残余颗粒百分比/%0 5 10 20 30 60 1200 1 2 3 4 5 679.0438 80.7412 1.6974 81.7603 83.2075 1.4472 64.1890 65.4972 1.3082 66.1162 67.3286 1.2124 73.7895 74.9385 1.1490 83.4782 84.6290 1.1508 75.0332 76.1573 1.124131.0 30.0 30.0 30.0 30.0 31.0 31.00.0548 0.0482 0.0436 0.0404 0.0383 0.0371 0.0363846.0 808.0 780.0 724.0 664.0 500.0 361.01.860 0.883 0.395 0.230 0.069 0.02111.40 20.44 26.28 30.11 32.30 33.76100 87.96 79.56 73.72 69.89 67.70 66.242、实验数据整理(2)绘制沉淀曲线:E-t 、E-u 、ui~pi曲线如下: 2-1、绘制去除率与沉淀时间的曲线如下:图2.2:沉淀时间t与沉淀效率E的关系曲线2-2、绘制去除率与沉淀速度的曲线如下:图2.2:颗粒沉速u与沉淀效率E的关系曲线2-3、绘制去除率与沉淀速度的曲线如下:图2.3:颗粒沉速u与残余颗粒百分比的关系曲线(1)选择t=60min 时刻:(大家注意哦!这部分手写的,不要直接打印!) 水样中悬浮物质量=表面皿和悬浮物总质量-表面皿质量,如表格所示。
原水悬浮物的浓度:C0?水样中悬浮物质量1.6974??0.0548g/ml水样体积31.0悬浮物的浓度:C5?水样中悬浮物质量1.1508??0.0371g/ml水样体积31.0沉淀速率:u?h?10(500-250)??0.069mm/sti?6060?60C0-C50.0548-0.0371?100%??100%?32.30 C00.0548C50.0371?100%??100%?67.70 C00.0548沉淀效率:E5?残余颗粒百分比P5?篇二:混凝沉淀实验报告实验名称:混凝沉淀实验一、实验目的1、通过实验观察混凝现象、加深对混凝沉淀理论的理解;2、掌握确定最佳投药量的方法,选择和确定最佳混凝工艺条件;3、了解影响混凝条件的相关因数。
自由沉淀实验报告自由沉淀实验报告图3:颗粒沉速u与残余颗粒百分比的关系曲线(1)选择t=60min 时刻:水样中悬浮物质量=表面皿和悬浮物总质量-表面皿质量,如表格所示。
原水悬浮物的浓度:C0?水样中悬浮物质量1.6974 0.0548gml 水样体积31.0悬浮物的浓度:C5?水样中悬浮物质量1.1508 0.0371gml 水样体积31.0沉淀速率:u?h?10(500-250)0.069mms ti?6060?60 C0-C50.0548-0.0371?100%100%?330 C00.0548 C50.0371?100%100%?67.70 C00.0548 沉淀效率:E5? 残余颗粒百分比P5?篇二:自由沉淀实验《环工综合实验(1)》(自由沉淀实验)实验报告专业环境工程班级环卓1201 姓名艾海平指导教师李响成绩东华大学环境科学与工程学院实验中心二0一四年十一月篇三:环境工程专业----实验报告颗粒自由沉淀实验一、实验目的1、过实验学习掌握颗粒自由沉淀的试验方法。
2、进一步了解和掌握自由沉淀的规律,根据实验结果绘制时间-沉淀率(t-E)、沉速-沉淀率(u-E)和Ct Co~u的关系曲线。
二、实验原理沉淀是指从液体中借重力作用去除固体颗粒的一种过程。
根据液体中固体物质的浓度和性质,可将沉淀过程分为自由沉淀、沉淀絮凝、成层沉淀和压缩沉淀等4类。
本实验是研究探讨污水中非絮凝性固体颗粒自由沉淀的规律。
实验用沉淀管进行。
设水深为h,在t时间内能沉到深度h颗粒的沉淀速度vht。
根据给定的时间to计算出颗粒的沉速uo。
凡是沉淀速度等于或大于u0的颗粒在t0时就可以全部去除。
设原水中悬浮物浓度为Co则沉淀率=式中:C0——原水中所含悬浮物浓度,mgl C1————经t时间后,污水中残存的悬浮物浓度,mgl; h ——取样口高度m; t ——取样时间,min。
三、实验步骤1、做好悬浮固体测定的准备工作。
自由沉淀实验报告自由沉淀实验报告图3:颗粒沉速u与残余颗粒百分比的关系曲线(1)选择t=60min 时刻:水样中悬浮物质量=表面皿和悬浮物总质量-表面皿质量,如表格所示。
原水悬浮物的浓度:C0?水样中悬浮物质量1.6974 0.0548gml 水样体积31.0悬浮物的浓度:C5?水样中悬浮物质量1.1508 0.0371gml 水样体积31.0沉淀速率:u?h?10(500-250)0.069mms ti?6060?60 C0-C50.0548-0.0371?100%100%?330 C00.0548 C50.0371?100%100%?67.70 C00.0548 沉淀效率:E5? 残余颗粒百分比P5?篇二:自由沉淀实验《环工综合实验(1)》(自由沉淀实验)实验报告专业环境工程班级环卓1201 姓名艾海平指导教师李响成绩东华大学环境科学与工程学院实验中心二0一四年十一月篇三:环境工程专业----实验报告颗粒自由沉淀实验一、实验目的1、过实验学习掌握颗粒自由沉淀的试验方法。
2、进一步了解和掌握自由沉淀的规律,根据实验结果绘制时间-沉淀率(t-E)、沉速-沉淀率(u-E)和Ct Co~u的关系曲线。
二、实验原理沉淀是指从液体中借重力作用去除固体颗粒的一种过程。
根据液体中固体物质的浓度和性质,可将沉淀过程分为自由沉淀、沉淀絮凝、成层沉淀和压缩沉淀等4类。
本实验是研究探讨污水中非絮凝性固体颗粒自由沉淀的规律。
实验用沉淀管进行。
设水深为h,在t时间内能沉到深度h颗粒的沉淀速度vht。
根据给定的时间to计算出颗粒的沉速uo。
凡是沉淀速度等于或大于u0的颗粒在t0时就可以全部去除。
设原水中悬浮物浓度为Co则沉淀率=式中:C0——原水中所含悬浮物浓度,mgl C1————经t时间后,污水中残存的悬浮物浓度,mgl; h ——取样口高度m; t ——取样时间,min。
三、实验步骤1、做好悬浮固体测定的准备工作。
自由沉淀实验报告
自由沉淀是一种常见的实验方法,通过这种方法可以分离出悬浮在液体中的固体颗粒。
在这个实验中,我们将探讨自由沉淀的原理、实验步骤和实验结果。
首先,我们来看一下自由沉淀的原理。
自由沉淀是利用固体颗粒在液体中的沉降速度不同而实现分离的方法。
根据斯托克斯定律,颗粒的沉降速度与颗粒的直径和密度、液体的粘度以及重力加速度有关。
因此,通过调节这些参数,我们可以实现对颗粒的分离。
接下来,我们将介绍自由沉淀的实验步骤。
首先,我们需要准备一个透明的圆柱形容器,并将需要分离的颗粒悬浮在液体中。
然后,我们将观察颗粒在液体中的沉降情况,记录下颗粒沉降的时间,并根据斯托克斯定律计算出颗粒的沉降速度。
最后,我们可以根据颗粒的沉降速度来实现分离,将不同速度的颗粒分离出来。
在实验中,我们发现了一些有趣的现象。
首先,我们发现颗粒的沉降速度与颗粒的直径成正比,这与斯托克斯定律的预测一致。
其次,我们发现颗粒的沉降速度与液体的粘度成反比,这也与理论相符。
最后,通过实验,我们成功地实现了对颗粒的分离,验证了自由沉淀的有效性。
总的来说,自由沉淀是一种简单而有效的分离方法,通过调节实验条件,我们可以实现对固体颗粒的分离。
在今后的实验中,我们可以进一步探讨自由沉淀的应用,以及对实验条件的优化,从而更好地应用于实际生产中。
通过本次实验,我们对自由沉淀有了更深入的了解,相信在今后的学习和工作中,这将为我们带来更多的启发和帮助。
希望我们能够继续探索实验科学,不断学习,不断进步。
颗粒自由沉淀实验报告
实验目的:
通过颗粒自由沉淀实验,探究颗粒在不同条件下的沉淀规律,了解颗粒在液体中的沉降特性。
实验原理:
颗粒自由沉降是指在液体中,颗粒受到重力作用而自由下沉的过程。
根据斯托克斯定律,颗粒自由沉降速度与颗粒直径、密度、液体粘度以及重力加速度有关。
在实验中,我们将通过调整颗粒的直径、液体的粘度和颗粒的密度,来观察颗粒自由沉降的规律。
实验材料和方法:
材料,玻璃试管、颗粒样品(如沙子、铁粉等)、不同浓度的液体(如水、盐水等);
方法:
1. 将玻璃试管填满不同浓度的液体;
2. 将颗粒样品均匀地撒入试管中;
3. 观察颗粒在液体中的沉降情况,并记录下时间和沉降距离。
实验结果与分析:
经过一系列实验,我们发现颗粒自由沉淀的速度与颗粒直径成正比,与液体粘度成反比。
颗粒密度对沉降速度的影响较小。
在相同液体中,颗粒直径越大,沉降速度越快;而在相同颗粒直径下,液体粘度越大,沉降速度越慢。
结论:
颗粒自由沉淀实验结果表明,颗粒在液体中的沉降速度受到多种因素的影响,包括颗粒直径、液体粘度和颗粒密度。
通过实验,我们可以更加深入地了解颗粒在液体中的运动规律,为相关领域的研究提供重要参考。
实验中的注意事项:
1. 实验过程中要注意操作规范,避免颗粒样品的飞溅和液体的溅出;
2. 实验结束后要及时清理试验台和玻璃试管,保持实验环境整洁;
3. 实验中要注意安全,避免发生意外。
通过本次颗粒自由沉淀实验,我们对颗粒在液体中的沉降规律有了更深入的了解,这对于相关领域的研究和应用具有重要的意义。
希望本次实验能够为相关领域的研究工作提供一定的参考价值。
自由沉淀实验报告自由沉淀是一种常见的实验方法,用于研究固体颗粒在液体中的沉降速度及其与环境因素的关系。
通过该实验可以了解颗粒的密度、粒径等物理性质,并且还可以探究溶液浓度、温度、搅拌等因素对沉降速度的影响。
1. 实验目的本次实验的目的是通过观察和测量溶液中固体颗粒的沉降速度,探究不同因素对沉降速度的影响,以及分析颗粒的物理性质。
2. 实验材料与设备- 固体颗粒:选用具有一定大小和可见度的沉降颗粒,如砂子或小玻璃珠等;- 溶液:选用透明的液体作为溶液,如清水或食用盐水溶液等;- 容器:使用透明的容器,如玻璃烧杯或塑料瓶等;- 搅拌器:可选用玻璃棒或磁力搅拌子等。
3. 实验步骤a. 准备工作:清洗容器和搅拌器,确保无杂质;b. 加入溶液:按照实验要求,加入一定量的溶液到容器中;c. 加入颗粒:将一定数量的颗粒加入到溶液中;d. 开始计时:在开始观察颗粒沉降前,记录开始时间;e. 观察和记录:观察颗粒在溶液中的沉降情况,并记录不同时间点的沉降高度或沉降速度;f. 添加搅拌:根据实验需要,可以添加搅拌器进行搅拌,并观察搅拌对沉降速度的影响;g. 改变温度或浓度:根据实验要求,可以改变温度或浓度,并观察对沉降速度的影响;h. 结束实验并记录数据:当颗粒沉降到一定高度或实验时间结束后,停止观察并记录实验数据。
4. 实验结果与分析根据实验数据,可以制作颗粒的沉降曲线图,用沉降高度或沉降速度随时间的关系来表示。
通过观察沉降曲线,我们可以得出以下结论:a. 颗粒的沉降速度随时间的增加而减小,最终趋于稳定;b. 搅拌会影响颗粒的沉降速度,搅拌越强,沉降速度越快;c. 浓度对颗粒的沉降速度有一定影响,浓度越高,沉降速度越快;d. 温度对颗粒的沉降速度也有影响,温度越高,沉降速度越快。
5. 结论与讨论通过本次实验,我们得出了颗粒沉降速度与时间、搅拌、浓度和温度等因素之间的关系。
这些关系对于理解颗粒在液体中的运动行为和物理性质具有重要意义。
一、实验目的1. 了解水的沉淀原理和过程;2. 掌握沉淀实验的操作方法;3. 分析沉淀效果,探讨影响沉淀效果的因素。
二、实验原理水的沉淀是指通过物理或化学方法将水中悬浮物、胶体和部分溶解物质从水中分离出来的过程。
沉淀过程主要分为自由沉淀、絮凝沉淀和成层沉淀三种类型。
自由沉淀:在重力作用下,悬浮物颗粒下沉,不发生相互碰撞和聚集,形成单独的沉淀物。
絮凝沉淀:在絮凝剂的作用下,悬浮物颗粒相互碰撞、聚集,形成絮凝体,然后下沉。
成层沉淀:在沉淀池中,悬浮物颗粒在重力作用下形成沉淀层,上层清水与沉淀层分离。
三、实验材料与仪器1. 实验材料:水样、絮凝剂、沉淀剂、滤纸、漏斗等;2. 实验仪器:沉淀池、天平、烧杯、量筒、滴定管、pH计等。
四、实验步骤1. 沉淀实验(1)取一定量的水样置于沉淀池中;(2)加入适量的絮凝剂,搅拌均匀;(3)静置一段时间,观察沉淀效果;(4)取出沉淀物,称量并记录数据。
2. 沉淀效果分析(1)观察沉淀物颜色、形状、沉淀速度等;(2)通过pH计测定水样和沉淀物的pH值;(3)比较不同絮凝剂对沉淀效果的影响;(4)分析沉淀效果与沉淀时间、絮凝剂投加量等因素的关系。
3. 沉淀实验结果处理(1)绘制沉淀曲线,分析沉淀速度与时间的关系;(2)计算沉淀效率,分析沉淀效果;(3)分析沉淀过程中可能发生的化学反应,探讨影响沉淀效果的因素。
五、实验结果与分析1. 沉淀效果通过实验观察,发现加入絮凝剂后,水中的悬浮物、胶体和部分溶解物质得到了有效去除,沉淀效果较好。
2. 沉淀效果分析(1)沉淀速度与时间的关系:随着沉淀时间的增加,沉淀速度逐渐降低,沉淀效果逐渐提高;(2)沉淀效率:通过计算沉淀效率,发现沉淀效果较好,说明絮凝剂对沉淀过程起到了良好的促进作用;(3)pH值:实验结果表明,水样和沉淀物的pH值较为接近,说明沉淀过程中未发生明显的酸碱反应。
3. 影响沉淀效果的因素(1)絮凝剂种类:不同絮凝剂对沉淀效果的影响不同,实验结果表明,所选絮凝剂对沉淀效果较好;(2)絮凝剂投加量:絮凝剂投加量对沉淀效果有显著影响,过量的絮凝剂会导致沉淀效果下降;(3)沉淀时间:沉淀时间对沉淀效果有显著影响,随着沉淀时间的增加,沉淀效果逐渐提高;(4)pH值:pH值对沉淀效果有一定影响,实验结果表明,水样和沉淀物的pH值较为接近,说明沉淀过程中未发生明显的酸碱反应。
一、实验目的1. 了解自由沉淀反应的基本原理和过程;2. 掌握自由沉淀反应的实验操作方法;3. 通过实验,分析影响自由沉淀反应的因素;4. 训练实验数据处理和结果分析能力。
二、实验原理自由沉淀反应是指在一定条件下,两种或两种以上物质在溶液中相互作用,形成不溶于溶液的固体沉淀物。
实验中,通过控制反应条件,观察沉淀的形成过程,分析影响沉淀反应的因素。
三、实验仪器与试剂1. 仪器:烧杯、电子天平、滴定管、移液管、玻璃棒、漏斗、滤纸等;2. 试剂:NaCl溶液、AgNO3溶液、NaOH溶液、酚酞指示剂、NaCl固体、AgNO3固体等。
四、实验步骤1. 配制NaCl溶液:称取一定量的NaCl固体,加入适量蒸馏水溶解,配制成一定浓度的NaCl溶液;2. 配制AgNO3溶液:称取一定量的AgNO3固体,加入适量蒸馏水溶解,配制成一定浓度的AgNO3溶液;3. 沉淀反应:取一定量的NaCl溶液,滴加AgNO3溶液,观察沉淀的形成过程;4. 沉淀反应速率测定:记录沉淀形成的时间,分析影响沉淀反应速率的因素;5. 沉淀质量测定:将沉淀过滤、洗涤、干燥,称量沉淀质量,分析影响沉淀质量的因素;6. 沉淀溶解实验:在沉淀反应体系中,加入NaOH溶液,观察沉淀的溶解情况,分析影响沉淀溶解的因素。
五、实验结果与分析1. 沉淀形成过程:实验中发现,当NaCl溶液与AgNO3溶液混合后,立即产生白色沉淀,随着反应的进行,沉淀逐渐增多;2. 沉淀反应速率:实验结果表明,沉淀反应速率受反应物浓度、温度等因素的影响。
随着反应物浓度的增加,沉淀反应速率加快;随着温度的升高,沉淀反应速率也加快;3. 沉淀质量:实验结果表明,沉淀质量受反应物浓度、温度等因素的影响。
随着反应物浓度的增加,沉淀质量增大;随着温度的升高,沉淀质量也增大;4. 沉淀溶解:实验结果表明,在沉淀反应体系中,加入NaOH溶液后,沉淀逐渐溶解。
这是由于NaOH溶液中的OH-离子与Ag+离子发生配位反应,形成可溶性的AgOH络合物,导致沉淀溶解。
颗粒自由沉淀实验报告实验目的:本实验旨在通过观察和研究颗粒在液体中的沉降过程,了解颗粒自由沉淀的原理和规律。
实验器材:1. 透明玻璃容器:用于放置液体和颗粒;2. 液体:选择适当的液体,如水或酒精;3. 颗粒:选择不同大小、形状或密度的颗粒,如沙子、小石子或铁屑;4. 实验室天平:用于测量颗粒的质量;5. 实验室计时器:用于计时。
实验步骤:1. 准备工作:清洁玻璃容器,确保无沉积物或污渍;2. 将适量液体倒入玻璃容器中,使液体高度超过颗粒高度;3. 将颗粒轻轻撒入液体中,确保均匀分布;4. 开始计时,观察颗粒的沉降过程;5. 记录颗粒开始沉降的时间,并记录每个固定时间间隔下颗粒的位置或高度;6. 持续观察和记录,直到颗粒完全沉降或沉降速度变得非常缓慢。
实验结果与分析:通过实验观察和记录,我们得到了颗粒自由沉降的数据。
根据实验结果,我们可以得出以下结论:1. 颗粒的沉降速度与颗粒的大小、形状和密度有关。
一般来说,较大、较重的颗粒沉降速度更快。
这是因为较大的颗粒受到的阻力较小,重力起主导作用,使其沉降速度较快。
2. 随着时间的推移,颗粒的沉降速度逐渐减小。
这是因为颗粒在液体中沉降时会扰动液体,形成一个类似于涡流的结构,增加了阻力。
同时,随着颗粒沉降,液体中颗粒的浓度也逐渐增大,导致颗粒间相互碰撞,进一步增加了阻力,从而使沉降速度减小。
3. 不同颗粒之间可能存在分层现象。
在实验过程中,我们观察到较大颗粒往往比较容易沉降到底部,而较小颗粒则更容易分散在液体中。
这是因为颗粒的大小和密度不同,使其受到的阻力和重力也有所不同,导致沉降速度的差异。
实验结论:通过本次实验,我们了解了颗粒在液体中的自由沉降过程。
我们发现颗粒的沉降速度与颗粒的大小、形状和密度有关,随着时间的推移,沉降速度逐渐减小,并且不同颗粒之间可能存在分层现象。
这些结论对于理解颗粒自由沉降的原理和应用具有重要意义。
颗粒自由沉降在许多领域都有应用,例如环境工程中的颗粒去除、颗粒分离和颗粒传输等。
实验一自由沉淀实验一、实验目的(1)加深对自由沉淀特点、基本概念及沉淀规律的理解;(2)掌握颗粒自由沉淀的实验方法;(3)对实验数据进行分析、整理、计算和绘制颗粒自由沉淀曲线。
二、实验原理如果不明白也可以仔细阅读课本p33的内容。
浓度较稀的、粒状颗粒的沉淀属于自由沉淀,其特点是静沉过程中颗粒互不干扰、等速下沉,其沉速在层流区符合stokes(斯笃克斯)公式。
非絮凝性或弱絮凝性固体颗粒在稀悬浮液中的沉淀,属于自由沉淀。
由于悬浮固体浓度低,而且颗粒之间不发生聚集,因此在沉降过程中颗粒的形状、粒径和密度都保持不变,互不干扰地各自独立完成匀速沉降过程。
自由沉淀实验一般在沉淀柱里进行,其直径应足够大,一般应使d≥100mm,以免颗粒沉淀受柱壁干扰。
在沉淀柱内,某个沉淀时长t对应着一个颗粒沉速u0 = h / t。
此时颗粒物的总去除效率为e?(1?p0)?1u0?p00udp 式中 e----总沉淀效率;p0----沉速小于u0的颗粒在全部悬浮颗粒中所占的百分数(也就是我们测定的残留率);1-p0----沉速大于或等于u0的颗粒去除百分数;u0----某一指定颗粒的最小沉降速度;u----小于最小沉降速度u0的颗粒沉速。
工程上常用下式计算e?(1?p0)??p?u u0三、实验设备与试剂1. 沉淀用有机玻璃柱,内径d=150mm,高h=1700mm。
工作水深即由柱内液面至取样口的距离。
2. 配水系统一套。
3. 计量水深用标尺、计时用秒表;4. 本实验使用浊度来代替悬浮物的测定。
1四、实验步骤按照实际的实验步骤来写,下面的是参考。
1. 检查沉淀装置连接情况、保证各个阀门完全闭合;各种用具是否齐全。
3. 准备实验用原水。
先将一定量的高岭土和自来水投入到配水箱中,然后启动搅拌装置使分散均匀。
4. 配水箱中水质均匀后,启动水泵,同时打开进水管及沉淀柱底部的放空阀门,适当冲洗管路中的沉淀物。
稍后,关闭放空阀门,进水至刻度线处。
《环工综合实验(1)》(自由沉淀实验)实验报告专业环境工程班级环卓1201姓名艾海平指导教师李响成绩东华大学环境科学与工程学院实验中心二0一四年十一月三、实验原理自由沉淀的特征是:水中的固体悬浮物浓度不是很高,而且不具有凝聚的性质,在沉淀的过程中,固体颗粒不改变形状、尺寸,也不互相粘合,各自独立的完成沉淀过程。
废水中的固体颗粒在沉砂池中的沉淀以及低浓度污水在初沉池中的沉降过程都是自由沉淀。
自由沉淀过程可以由斯托克斯公式(Stokes)进行描述:1、自由沉淀实验的各沉降曲线(U-P图、U-E图、t—E图)有何作用?分别绘制η—T(去除率—沉降时间),η—u(去除率—沉降速度),P—u(剩余率—沉降速度)曲线,从曲线中分析自由沉降的过程。
自由沉降曲线,可以使我们了解自由沉降的过程,推断沉淀池的沉降过程,利用自由沉降过程,从而更好的设计沉降池。
2、同样水样,沉淀柱有效水深分别为H=1m和H=1.5m,两组实验结果是否一样,为什么?答:不一样,改变了沉淀柱的深度,显然就相当于改变了取水口的高度,就像本实验20cm和50cm取水口的数值不一样。
四、实验步骤1、称重已烘干中速滤纸9张。
2、使用搅拌杆搅动沉淀柱内水体,使红砖粉混合均匀后,开始计时,并观察沉淀现象。
3、当时间为0、1、2、5、10、20、40、60、90分钟时,用100ML量筒在取样口取样(取样前先排去取样口积水),水样用已烘干的滤纸过滤,烘干称量,计算不同时间取样口处悬浮固体浓度。
4、实验注意事项(1)搅拌时间要足够,否则沉淀柱内的悬浮物浓度不够高或者不均匀,会导致曲线的范围变窄。
(2)搅拌停止以后,要尽快的采集原水悬浮物浓度的样品,否则会因为悬浮物自身的沉淀导致数据偏差。
(3)采样间隔的时间不必规定死,但要保证数据足够,并且开始的时候采样时间应该短。
(4)由于取样必然会导致液面的变化,实际上取样口的深度会一直减小,但是在实际当中随时的测量水深又不方便,考虑到使用新的悬浮物浓度测量方法以后,需要的样品水量很小,所以这种误差可以忽略。
建筑与测绘工程学院《水处理实验设计与技术》实验报告实验1 颗粒自由沉淀实验颗粒自由沉淀实验是研究浓度较低时的单颗粒的沉淀规律。
一般是通过沉淀柱静沉实验,获取颗粒沉淀曲线。
它不仅具有理论指导意义,而且也是给水排水处理工程中沉砂池设计的重要依据。
一、实验目的加深对自由沉淀特点、基本概念及沉淀规律的理解。
掌握颗粒自由沉淀实验的方法,并能对实验数据进行分析、整理、计算和绘制颗粒自由沉淀曲线。
二、实验原理浓度较低的、粒状颗粒的沉淀属于自由沉淀,其特点是静沉过程中颗粒互不干扰、等速下沉,其沉速在层流区符合Stokes (斯托克斯)公式。
但是由于水中颗粒的复杂性,颗粒粒径、颗粒相对密度很难或无法准确地测定,因而沉淀效果、特性无法通过公式求得而是通过静沉实验确定。
由于自由沉淀时颗粒是等速下沉,下沉速度与沉淀高度无关,因而自由沉淀可在一般沉淀柱内进行,但其直径应足够大,一般应使内径D≥100mm 以免颗粒沉淀受柱壁干扰。
具有大小不同颗粒的悬浮物静沉总去除率η与截留沉速u 0剩余颗粒重量百分率P 的关系如下:()dP P u u P s⎰+-=00001η( 1 )此种计算方法也称为悬浮物去除率的累积曲线计算法。
设在一水深为H 的沉淀柱内进行自由沉淀实验,如图1所示。
实验开始,沉淀时间为0,此时沉淀柱内悬浮物分布是均匀的,即每个断面上颗粒的数量与粒径组成相同,悬浮物浓度为C 0(mg/L ),此时去除率η=0。
实验开始后,不同沉淀时间t i ,颗粒最小沉淀速度u i 相应为:ii t H u = ( 2 ) 此即为t i 时间内从水面下沉到池底(此处为取样点)的最小颗粒d i 所具有的沉速。
此时取样点处水样悬浮物浓度为C i ,而:000011η=-=-=-i ii P C C C C C ( 3 )此时去除率η0,表示u ≥u i (d ≥d i )的颗粒除去率,而:C C P ii =( 4 )则反映了t i 时,未被除去之颗粒即d <d i 的颗粒所占百分比。
实验一 自由沉淀实验
一、实验目的
(1)加深对自由沉淀特点、基本概念及沉淀规律的理解;
(2)掌握颗粒自由沉淀的实验方法;
(3)对实验数据进行分析、整理、计算和绘制颗粒自由沉淀曲线。
二、实验原理
如果不明白也可以仔细阅读课本P33的内容。
浓度较稀的、粒状颗粒的沉淀属于自由沉淀,其特点是静沉过程中颗粒互不干扰、等速下沉,其沉速在层流区符合Stokes(斯笃克斯)公式。
非絮凝性或弱絮凝性固体颗粒在稀悬浮液中的沉淀,属于自由沉淀。
由于悬浮固体浓度低,而且颗粒之间不发生聚集,因此在沉降过程中颗粒的形状、粒径和密度都保持不变,互不干扰地各自独立完成匀速沉降过程。
自由沉淀实验一般在沉淀柱里进行,其直径应足够大,一般应使D ≥100mm ,以免颗粒沉淀受柱壁干扰。
在沉淀柱内,某个沉淀时长t 对应着一个颗粒沉速u0 = H / t 。
此时颗粒物的总去除效率为
⎰+-=00001
)1(P udP u P E
式中 E----总沉淀效率;
P 0----沉速小于u 0的颗粒在全部悬浮颗粒中所占的百分数(也就是我们测定的残留率);
1-P 0----沉速大于或等于u0的颗粒去除百分数;
u 0----某一指定颗粒的最小沉降速度;
u----小于最小沉降速度u 0的颗粒沉速。
工程上常用下式计算
0)1(u u P P E ∑⋅∆+
-= 三、实验设备与试剂
1. 沉淀用有机玻璃柱,内径D=150mm ,高H=1700mm 。
工作水深即由柱内液面至取样口的距离。
2. 配水系统一套。
3. 计量水深用标尺、计时用秒表;
4. 本实验使用浊度来代替悬浮物的测定。
四、 实验步骤
按照实际的实验步骤来写,下面的是参考。
1. 检查沉淀装置连接情况、保证各个阀门完全闭合;各种用具是否齐全。
3. 准备实验用原水。
先将一定量的高岭土和自来水投入到配水箱中,然后启动搅拌装置使分散均匀。
4. 配水箱中水质均匀后,启动水泵,同时打开进水管及沉淀柱底部的放空阀门,适当冲洗管路中的沉淀物。
稍后,关闭放空阀门,进水至 刻度线处。
同时启动秒表记录时间,沉淀实验开始。
5. 当时间为 时,用量筒在取样口处取水样100 mL (注意:取水样时,需先放掉一些水,以便冲洗取样口处的沉淀物),在每次取样前后读出水面高度H 。
6. 测定浊度。
五、实验结果整理
实验数据整理按照上课时说的方法列表并计算。
以颗粒沉速u 为横坐标,残留率P 为纵坐标,用计算机绘制u-P 关系曲线。
将此曲线图打印后贴在实验报告中,用于下面的图解。
习题:
利用图解法列表计算某个指定沉速u0(自己指定,可选用实验结果曲线范围的某个沉速)时悬浮物的总去除率。
(总去除率即是实验原理部分的公式所定。
)
图解法如图所示:
对于某个沉速u0,曲线上可以对应P0,这样就求出了去除率的第一部分。
图中需要积分的面积即为公式⎰+-=00001
)1(P udP u P E 中的⎰0
0P udP ,这样就求出了去除率的第2部分。
具体计算时,可以列表求出每个矩形的面积,然后加起来:
序号 △P u u ﹒△P。