应力状态的基本概念1
- 格式:ppt
- 大小:1.95 MB
- 文档页数:30
弹性⼒学_第⼆章__应⼒状态分析第⼆章应⼒状态分析⼀、内容介绍弹性⼒学的研究对象为三维弹性体,因此分析从微分单元体⼊⼿,本章的任务就是从静⼒学观点出发,讨论⼀点的应⼒状态,建⽴平衡微分⽅程和⾯⼒边界条件。
应⼒状态是本章讨论的⾸要问题。
由于应⼒⽮量与内⼒和作⽤截⾯⽅位均有关。
因此,⼀点各个截⾯的应⼒是不同的。
确定⼀点不同截⾯的应⼒变化规律称为应⼒状态分析。
⾸先是确定应⼒状态的描述⽅法,这包括应⼒⽮量定义,及其分解为主应⼒、切应⼒和应⼒分量;其次是任意截⾯的应⼒分量的确定—转轴公式;最后是⼀点的特殊应⼒确定,主应⼒和主平⾯、最⼤切应⼒和应⼒圆等。
应⼒状态分析表明应⼒分量为⼆阶对称张量。
本课程分析中使⽤张量符号描述物理量和基本⽅程,如果你没有学习过张量概念,请进⼊附录⼀,或者查阅参考资料。
本章的另⼀个任务是讨论弹性体内⼀点-微分单元体的平衡。
弹性体内部单元体的平衡条件为平衡微分⽅程和切应⼒互等定理;边界单元体的平衡条件为⾯⼒边界条件。
⼆、重点1、应⼒状态的定义:应⼒⽮量;正应⼒与切应⼒;应⼒分量;2、平衡微分⽅程与切应⼒互等定理;3、⾯⼒边界条件;4、应⼒分量的转轴公式;5、应⼒状态特征⽅程和应⼒不变量;知识点:体⼒;⾯⼒;应⼒⽮量;正应⼒与切应⼒;应⼒分量;应⼒⽮量与应⼒分量;平衡微分⽅程;⾯⼒边界条件;主平⾯与主应⼒;主应⼒性质;截⾯正应⼒与切应⼒;三向应⼒圆;⼋⾯体单元;偏应⼒张量不变量;切应⼒互等定理;应⼒分量转轴公式;平⾯问题的转轴公式;应⼒状态特征⽅程;应⼒不变量;最⼤切应⼒;球应⼒张量和偏应⼒张量§2.1 体⼒和⾯⼒学习思路:本节介绍弹性⼒学的基本概念——体⼒和⾯⼒,体⼒F b和⾯⼒F s的概念均不难理解。
应该注意的问题是,在弹性⼒学中,虽然体⼒和⾯⼒都是⽮量,但是它们均为作⽤于⼀点的⼒,⽽且体⼒是指单位体积的⼒;⾯⼒为单位⾯积的作⽤⼒。
体⼒⽮量⽤F b表⽰,其沿三个坐标轴的分量⽤F b i(i=1,2,3)或者F b x、F b y和F b z表⽰,称为体⼒分量。
一 一点的应力状态与应力张量二 主应力与应力不变量对于一般空间问题,一点的应力状态可以由九个应力分量表示,如P 点处应力状态在直角坐标系可表示为ij S σ==x xy xz yx y yz zx zy z στττστττσ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦如图1-1所示。
在固定受力情况下,应力分量大小与坐标轴方向有关,但由弹性力学可知,新旧坐标的应力分量具有一定变换关系。
通常,我们称这种具有特定变换关系的一些量为张量。
式(1-1)就是应力张量,它是二阶张量。
因为它具有xz τ=zx τ,xy τ=yx τ,yz τ=zy τ。
已知物体内某点P 的九个应力分量,则可求过该点的任意倾斜面上的应力。
在P 点处取出一无限小四面体oabc (图1-2)它的三个面分别与x,y,z 三个轴相垂直。
另一方面即任意斜面,它的法线N ,其方向余弦为l,m,n 。
分别以dF 、x dF 、y dF 、z dF 代表abc 、obc 、oac 、 oab 三角形面积。
x y z dF ldF dF mdF dF ndF ⎫=⎪=⎬⎪=⎭(1.2)在三个垂直于坐标的平面上有应力分量,在倾斜面abc 上有合应力N P ,它可分解为正应力N σ及切向剪应力N τ,即222N N N P στ=+N P 沿坐标轴方向分量为N x ,N y ,N z ,由平衡条件可得N x xy xz N yx y yz N zx zy z x l m n y l m n z l m n στττστττσ⎫=++⎪=++⎬⎪=++⎭求出N x ,N y ,N z 在法线上的投影之和,即得正应力N σ222222N N N N x y z xy yz zx x l y m z n l m n lm mn nl σσσστττ=++=+++++ 1-5而剪应力则由式1-5得 2N τ=2N P -2N σ在空间应力状态下一点的应力张量有三个主方向,三个主应力。
材料力学应力状态分析材料力学是研究物质内部力学性质和行为的学科,其中应力状态分析是材料力学中的重要内容之一。
应力状态分析是指对材料内部受力情况进行分析和研究,以揭示材料在外力作用下的应力分布规律和应力状态特征,为工程设计和材料选用提供依据。
本文将从应力状态的基本概念、分类和分析方法等方面展开讨论。
首先,我们来介绍一下应力状态的基本概念。
应力是指单位面积上的力,是描述物体内部受力情况的物理量。
在材料力学中,通常将应力分为正应力和剪应力两种基本类型。
正应力是指垂直于截面的应力,而剪应力是指平行于截面的应力。
在实际工程中,材料往往同时受到多种应力的作用,因此需要对应力状态进行综合分析。
其次,我们将对应力状态进行分类。
根据应力的作用方向和大小,可以将应力状态分为拉应力状态、压应力状态和剪应力状态三种基本类型。
拉应力状态是指材料内部受到拉力作用的状态,压应力状态是指材料内部受到压力作用的状态,而剪应力状态是指材料内部受到剪切力作用的状态。
这三种应力状态在工程实践中都具有重要的意义,需要我们进行深入的分析和研究。
接下来,我们将介绍应力状态分析的方法。
应力状态分析的方法有很多种,常用的有应力分析法、应变分析法和能量方法等。
应力分析法是通过应力分布的计算和分析来揭示应力状态的特征,应变分析法则是通过应变分布的计算和分析来揭示应力状态的特征,而能量方法则是通过能量原理和平衡条件来揭示应力状态的特征。
这些方法各有特点,可以根据具体情况选择合适的方法进行分析。
最后,我们需要注意的是,在进行应力状态分析时,需要考虑材料的本构关系、边界条件和载荷情况等因素,以确保分析结果的准确性和可靠性。
同时,还需要注意应力状态分析的结果对工程实践的指导意义,以便更好地指导工程设计和材料选用。
总之,材料力学应力状态分析是一个复杂而重要的课题,需要我们进行深入的研究和分析。
只有深入理解应力状态的特征和规律,才能更好地指导工程实践,为实际工程问题的解决提供科学依据。
一、实验目的1. 了解并掌握应力状态的基本概念。
2. 学习如何通过实验方法测定应力状态。
3. 掌握应力状态分析的基本原理和方法。
4. 培养实验操作技能和数据分析能力。
二、实验原理应力状态是指物体内部在受力作用下,各个点上的应力分布情况。
应力状态分析是研究物体内部应力分布规律的重要方法。
本实验主要研究平面应力状态和空间应力状态。
三、实验设备1. 载荷试验机2. 应变片3. 数据采集系统4. 比较材料5. 标准试验件四、实验步骤1. 实验准备(1)将试验件放置在试验机上,确保试验机水平。
(2)将应变片粘贴在试验件表面,确保应变片粘贴牢固。
(3)连接数据采集系统,检查系统是否正常工作。
2. 加载过程(1)按照实验要求对试验件进行加载。
(2)在加载过程中,实时采集应变数据。
(3)记录加载过程中的应力、应变数据。
3. 数据处理(1)将采集到的应变数据输入计算机,进行数据处理。
(2)根据应力-应变关系,计算应力状态。
(3)分析应力状态的变化规律。
4. 结果分析(1)根据实验数据,绘制应力-应变曲线。
(2)分析应力状态的变化规律,得出结论。
五、实验结果与分析1. 平面应力状态(1)在平面应力状态下,试验件表面出现正应力和剪应力。
(2)通过实验数据,可以计算出应力状态的变化规律。
(3)结果表明,随着加载力的增大,正应力和剪应力逐渐增大。
2. 空间应力状态(1)在空间应力状态下,试验件表面出现正应力和剪应力。
(2)通过实验数据,可以计算出应力状态的变化规律。
(3)结果表明,在空间应力状态下,应力状态的变化规律与平面应力状态相似。
六、实验结论1. 本实验成功地测定了应力状态,并分析了应力状态的变化规律。
2. 通过实验,掌握了应力状态分析的基本原理和方法。
3. 本实验为后续的应力分析、结构设计等提供了实验依据。
七、实验注意事项1. 实验过程中,确保试验机水平,避免试验误差。
2. 在粘贴应变片时,注意粘贴牢固,避免脱落。
应力是指物体内部受到的力的作用,它可以通过单位面积上的力来描述。
在工程力学中,应力是非常重要的物理量,它与物体的形状、材料特性和外部力的作用密切相关。
本文将围绕应力的概念展开讨论,针对其在材料力学中的应用进行深入分析。
一、应力的定义和分类1.1 应力的概念应力是单位面积上的力,常用符号表示为σ,其计算公式为力F除以面积A,即σ=F/A。
在物体内部,由于外部力的作用,各处都会受到应力的作用,这种应力称为内应力。
而外部施加在物体表面上的力也会导致应力的产生,这种应力称为外部应力。
1.2 应力的分类根据应力的作用方向和大小,可以将应力分为正应力、剪切应力和法向应力三种类型。
正应力是垂直于物体截面的应力,常用符号表示为σn。
而沿着截面方向的应力称为剪切应力,常用符号表示为τ。
另外,法向应力是指作用在物体某一点上的应力。
二、应力状态的描述2.1 应力张量在三维空间中,一个点的应力状态可以由一个3x3的对称矩阵来描述,这个对称矩阵称为应力张量。
应力张量的分量代表了在不同方向上的应力情况,可以通过数学方法进行求解和分析。
2.2 应力状态的表示一个点处的应力状态可以通过应力张量的特征值和特征向量来表示。
特征值代表了应力状态的大小,特征向量则代表了应力作用的方向。
通过对特征值和特征向量的分析,可以判断物体处于何种应力状态,从而进行相应的力学分析和设计。
三、应力的应用3.1 工程材料的性能应力是描述物体受力情况的重要参数,它直接影响着材料的强度、刚度和韧性等性能。
在工程中,通过对材料的应力状态进行分析,可以评估材料的可靠性和安全性,为工程设计提供参考依据。
3.2 结构的稳定性对结构件的受力状态进行分析,可以判断结构在外部载荷作用下的稳定性。
通过对结构的应力分布和应力集中区域的分析,可以预测结构是否会发生破坏或失稳现象,为结构设计和改进提供重要参考。
3.3 力学设计在工程实践中,需要根据实际的力学要求来设计各种零部件和结构件。
应力的基本概念应力是物理学中一个非常重要的概念,它描述的是物体内部各部分之间相互作用的力,以保持物体的完整性和稳定性。
应力的定义、描述、分类、计算和应用等方面都是应力研究中不可或缺的内容。
1.应力的定义应力是指物体在受到外力作用时,其内部各部分之间相互作用而产生的力。
应力的定义可以理解为物体内部各部分之间的相互作用,这种相互作用是为了保持物体的完整性和稳定性。
应力的单位是牛顿(N),常用的单位还有帕斯卡(Pa)和千帕斯卡(kPa)。
2.应力的描述应力可以用数学公式进行描述,也可以用图形进行表示。
在数学公式中,应力通常被表示为一个向量,其大小和方向取决于外力的性质和物体的形状。
在图形中,应力可以用箭头表示,箭头的大小和方向表示应力的数值和方向。
3.应力的分类应力可以根据不同的分类标准进行分类,比如可以根据作用在物体上的外力类型分为拉应力、压应力、剪切应力和弯曲应力等;也可以根据应力的性质分为弹性应力和塑性应力等。
不同类型的应力具有不同的特征和表现形式,对物体的影响也不尽相同。
4.应力的计算应力的计算是应力研究中非常重要的一部分。
应力的计算公式通常是根据实验和实践经验得出的,也可以根据物体的材料性质和外力作用情况进行估算。
常用的应力计算公式包括胡克定律、弹性力学公式、梁的弯曲公式等。
5.应力的应用应力在日常生活和工业生产中有着广泛的应用。
比如在建筑、机械、材料等领域中,应力的计算和分析是设计和制造过程中必不可少的环节;在生物医学工程中,应力的研究可以帮助人们更好地理解和改善人体结构和功能;在地质学中,应力的研究可以帮助人们了解地壳构造和地震机理。
总之,应力的基本概念是物理学中一个非常重要的概念,它涉及到物体内部各部分之间的相互作用和物体的完整性和稳定性。
应力的描述、分类、计算和应用等方面都是应力研究中不可或缺的内容,对应力的研究和发展有着重要的意义。
应力分析知识点总结一、引言应力分析是指在实际工程中,对物体内外受到的力在空间和时间上的分布规律进行研究,从而了解物体受力情况的一种理论和方法。
应力分析在工程领域中有着重要的应用,可以帮助工程师们更好地设计和制造各种工程结构,确保结构的安全性和稳定性。
本文将从应力分析的基本概念、应力分析的理论基础、常用的应力分析方法以及应力分析在工程中的应用等方面进行总结和介绍。
二、应力分析的基本概念1. 应力的定义应力是指物体内部分子间的相互作用所产生的一种内在力,通常表示为单位面积上的力。
在工程中,应力常常用来描述物体受力时的内部力状态,可以分为正应力和剪应力两种类型。
正应力是指垂直于物体截面的应力,可以表示为施加在物体上的正向压力或拉力。
而剪应力是指与物体截面平行的应力,通常形成剪切力。
2. 应变的定义应变是指物体在受力作用下发生的形变现象,通常用来描述物体受力后的形状和大小变化。
应变可以分为线性应变和剪切应变两种类型,线性应变指物体在受到正应力作用下发生的长度变化,而剪切应变则是描述物体在受到剪应力作用下产生的形变。
3. 应力和应变的关系应力和应变之间存在着一定的关系,这一关系通常通过材料的力学性能参数来描述。
在弹性范围内,应力与应变之间存在着线性关系,可以通过杨氏模量、泊松比等参数来描述。
而在非弹性范围内,应力和应变之间的关系则需要通过材料的本构方程来描述。
三、应力分析的理论基础1. 弹性力学理论弹性力学理论是应力分析的重要理论基础,其研究范围包括材料的应力分布规律、应力和应变的关系、材料的本构关系等内容。
弹性力学理论可以帮助工程师们更好地理解和预测物体在受力条件下的力学性能,进而设计和优化工程结构。
2. 材料力学性能参数材料力学性能参数是描述材料抗力性能的重要指标,包括杨氏模量、泊松比、屈服强度、极限强度、断裂韧性等内容。
这些参数可以帮助工程师们更好地了解材料的力学特性,从而在设计和制造过程中选择合适的材料和工艺。
《弹塑性力学》课程第一篇 基础理论部分第一章 应力状态理论1.1 基本概念1. 应力的概念应力:微分面上内力的分布集度。
从数学上看,应力sPF s ∆∆=→∆0lim ν由于微分面上的应力是一个矢量,因此,它可以分解成微分面法线方向的正应力νσ和微分面上的剪应力ντ。
注意弹塑性力学中正应力和剪应力的正负号规定。
2. 一点的应力状态(1)一点的应力状态概念凡提到应力,必须同时指明它是对物体内哪一点并过该点的哪一个微分面。
物体内同一点各微分面上的应力情况,称为该点的应力状态。
(2)应力张量物体内任一点不同微分面上的应力情况一般是不同的,这就产生了一个如何描绘一点的应力状态的问题。
应力张量概念的提出,就是为了解决这个问题。
在直角坐标系里,一点的应力张量可表示为⎪⎪⎪⎪⎭⎫⎝⎛=z zy zx yz yyx xz xy x ij στττστττσσ若已知一点的应力张量,则过该点任意微分面ν上的应力矢量p就可以由以下公式求出:n m l p xz xy x x ττσν++= (1-1’a ) n m l p yz y yx y τστν++=(1-1’b )n m l p z zy zx z σττν++=(1-1’c )由式(1-1),还可进一步求出该微分面上的总应力p 、正应力νσ和剪应力v τ: 222z y x p p p p ++=(1-2a )nl mn lm n m l zx yz xy z y x τττσσσσν222222+++++=(1-2b )22ννστ-=p(1-2c )(3)主平面、主方向与主应力由一点的应力状态概念可知,通过物体内任一点都可能存在这样的微分面:在该微分面上,只有正应力,而剪应力为零。
这样的微分面即称为主平面,该面的法线方向即称为主方向,相应的正应力称为主应力。
主应力、主方向的求解在数学上归结为求解以下的特征问题:}{}]{[i n i ij n n σσ=(1-3)式中,][ij σ为该点应力张量分量构成的矩阵,n σ为主应力,}{i n 为主方向矢量。