旋转倒立摆设计报告
- 格式:doc
- 大小:108.00 KB
- 文档页数:12
专业实验报告摆杆受力和力矩分析θmg VH θX V X H图2 摆杆系统摆杆水平方向受力为:H 摆杆竖直方向受力为:V 由摆杆力矩平衡得方程:cos sin Hl Vl I φφθθπφθφ⎧-=⎪=-⎨⎪=-⎩(1) 代入V 、H ,得到摆杆运动方程。
当0φ→时,cos 1θ=,sin φθ=-,线性化运动方程:2()I ml mgl mlx θθ+-=1.2 传递函数模型以小车加速度为输入、摆杆角度为输出,令,进行拉普拉斯变换得到传递函数:22()()mlG s ml I s mgl=+- (2) 倒立摆系统参数值:M=1.096 % 小车质量 ,kg m=0.109 % 摆杆质量 ,kg0.1β= % 小车摩擦系数g=9.8 % 重力加速度,l=0.25 % 摆杆转动轴心到杆质心的长度,m I= 0.0034 % 摆杆转动惯量,以小车加速度为输入、摆杆角度为输出时,倒立摆系统的传递函数模型为:20.02725()0.01021250.26705G s s =- (3) 1.3 倒立摆系统状态空间模型以小车加速度为输入,摆杆角度、小车位移为输出,选取状态变量:(,,,)x x x θθ= (4)由2()I ml mgl mlx θθ+-=得出状态空间模型001001000000001330044x x x x x g g lμθθθθ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥'==+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦(5) μθθθ'⎥⎦⎤⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=0001000001 xx x y (6) 由倒立摆的参数计算出其状态空间模型表达式:(7)010000001000100029.403x x x x x μθθθθ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥'==+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦(8)00x μθθ⎤⎥⎡⎤⎥'+⎢⎥⎥⎣⎦⎥⎥⎦作用)增大,系统响应快,对提高稳态精度有益,但过大易作用)对改善动态性能和抑制超调有利,但过强,即校正装Ax B Cx μ+= 1n x ⎥⎥⎥⎦,1n x x x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,1111n n nn a A a a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ , 1n B b ⎥⎥⎥⎦,]n C c =。
简易旋转倒立摆及控制装置简易旋转倒立摆及控制装置摘要:本设计以AT90C51单片机为核心控制系统,由输入模块、角度传感器、液晶显示模块等组成旋转倒立摆控制装置。
以单片机控制步进电机转速,调节转轴,改变旋转倒立摆转角,并保证摆杆能做自由旋转。
从摆杆处于自然下垂状态开始,尽快增大摆杆的摆动幅度,能完成圆周运动。
外力拉起一定角度撤除后启动控制装置,摆杆能保持倒立时间不少于5s,期间旋转臂的转动角度不大于90度。
关键字:旋转倒立摆步进电机角度传感器Abstract: this design by AT90C51 single-chip microcomputer as the core control system, by the input module, Angle sensors, liquid crystal display module and so on rotational inverted pendulum control device. With single chip microcomputer control stepping motor speed, adjust the rotating shaft, change the rotational inverted pendulum Angle, and ensure the swinging rod can do free rotation. Starting from the swinging rod is in a state of natural prolapse, increase the motion of the pendulum rod amplitude as soon as possible, to finish circular motion. Pull force Angle after removal of start control device, swinging rod can keep on time not less than 5 s, during the rotation of the rotating arm Angle is not greater than 90 degrees.Key words: rotational inverted pendulum stepper motor Angle sensor.1、前言本设计对旋转倒立摆进行了探讨,旋转倒立摆作为一个被控对象, 是快速、多变量、开环不稳定、非线性的高阶系统, 必须施加十分强有力的控制手段才能使之稳定。
简易旋转倒立摆及控制装置设计报告及总结摘要倒立摆系统机理的研究不仅具有重要的理论价值,而且具有重要的现实意义,是控制类中经久不衰的经典题型。
本题中,简易旋转倒立摆,在C8051F040单片机的基础上,使用ZGB42FM直流减速电机,BTN7971B电机驱动,可变电阻(角度传感器),机械摆杆等模块。
通过编写、烧入程序,调控硬件协调工作,使摆杆首先实现一定角度的转动,再完成圆周运动,以及保持竖直向上的倒立状态。
用以满足题目的基本要求,进而深一步探究倒立摆在保持运动姿态方面的发展与应用。
关键字:单片机,倒立摆,摆杆,可变电阻。
引言:本题整体上只由一个电机A 提供动力,电机直接控制旋转臂C 做往复旋转运动,而通过转轴D 连接在旋臂C 上的摆杆E 是非常灵活的。
旋臂C 转动一定角度时,摆杆E 由于向心力会使摆杆E 继续向上旋转,以达到E 杆转动一个角度的效果。
相似,当C 的转动速度比较快,停下后,E 下端处的速度和向心力都比较大,能够使E 杆完成圆周运动。
为了使摆杆能够倒立,就要求摆杆转动到上半圆周面时,要通过单片机控制电机A 不断的调整使旋转臂C 转动多个角度,尽量的使摆杆E 与竖直面的角度变小,并能够受力平衡,这样就可以保持一段时间的倒立状态。
为达到角度的调整,就要测量出E 杆与竖直面间的角度差,经过单片机的控制,使电机A 做出相应的旋转动作,减小这个角度差。
1、方案设计与讨论: 1.1结构框图1.2方案论证: 1.21控制器模块本题,单片机只要接收来自传感器的信号,向电机驱动输入信号处理后计算出的高低电平即可。
方案一:用ATMEL 公司生产的AT89S52单片机,低功耗,高性能CMOS 8位处理器,使用广泛,算法较为简单,但是在执行复杂动作时,处理速度不够高。
方案二:用宏晶公司生产的STC89C52RC 单片机,STC 的单片机性能与ATMEL 的单片机相似,但是价格相对便宜。
缺点是易受潮湿影响,在调用子程序是频繁出错。
控制专题训练阶段性报告旋转倒立摆设计学生姓名:2017年5月24日摘要本系统以由stm32f103单片机作为中心控制系统,由精密电位器、电机驱动模块、电源电路组成。
角度监测模块采用采用双向编码器,实时测量摆杆与垂直方向的夹角;电机驱动部分使用TB6612驱动芯片驱动直流电机较精确地控制摆杆的灵敏度;具有操作简单,控制界面直观、简洁,系统性能指标达到了设计要求,工作可靠,功耗低,具有良好的人机交互性能。
关键字:STM32f103RC 精密电位器TB6612目录一、系统方案 (1)1、摆架框架的论证与选择 (1)2、驱动电机的选择 (1)2、角度传感器的选择 1二、系统理论分析与计算 (2)1、电机型号选择 (2)2、摆杆状态监测 (2)3、算法控制 (2)(1)比例控制规律....................................................................... 错误!未定义书签。
(2)比例积分控制规律............................................................... 错误!未定义书签。
(3)比例微分控制规律............................................................... 错误!未定义书签。
(4)比例积分微分控制规律....................................................... 错误!未定义书签。
三、电路与程序设计 (2)1、电路的设计 (3)(1)系统总体框图 (3)(2)PID算法子系统框图 (4)(3)主控制器模块设计 (4)(4)电源 (5)2、程序的设计 (5)(1)程序功能描述与设计思路 (5)(2)程序流程图 (6)四、测试方案与测试结果 (7)1、测试方案与论证 (7)2、测试条件与仪器 (8)3、测试结果及分析 (8)(1)测试结果(数据) .................................................................... 错误!未定义书签。
旋转倒立摆摘要:倒立摆的控制是控制理论研究中的一个经典问题,通过旋转式倒立摆控制系统的总体结构和工作原理,硬件系统和软件系统的设计与实现等方面,对系统模型进行动力学分析,建立合适的状态空间方程,通过反馈方法实现倒立控制,通过反复的实验,记录,分析数据,总结出比较稳定可行的控制方法。
本系统采用STC89C52作为主控制芯片,WDJ36-1高精度角位移传感器作为系统状态测试装置,通过ADC0832将采集的模拟电压量转化为数字量,传送给STC89C52进行分析处理,并依此为依据控制电机的运转状态,间接地控制摆杆的运动状态。
通过不断地测量、分析,并调整系统控制的参数,基本达到了题目的要求,并通过此次的练习,进一步熟悉掌握了单片机的应用,对控制系统的了解和兴趣。
关键词:单片机最小系统; WDJ36-1角位移传感器; 旋转倒立摆;状态反馈;稳定性;目录1.系统方案 (4)1.1 微控制器模块 (4)1.2电机模块 (4)1.3电机驱动模块 (4)1.4角度传感器模块 (5)1.5电源模块 (5)1.6显示模块 (5)1.7最终方案 (6)2.主要硬件电路设计 (6)2.1电机驱动电路的设计 (6)2.2角度检测电路的设计: (7)3.软件实现 (7)3.1理论分析 (7)3.2总体流程图 (7)3.3平衡调节流程图 (9)4 .系统理论分析及计算.................. . (10)4.1系统分析 (10)4.2 摆臂摆角的计算.................. . (10)5.系统功能测试: (10)5.1测试方案 (10)5.2测试结果 (10)5.3测试分析及结论 (10)6.结束语 (11)1.系统方案:1.1 微控制器模块方案一:采用可编程逻辑期间CPLD作为控制器。
CPLD可以实现各种复杂的逻辑功能、规模大、密度高、体积小、稳定性高、IO资源丰富、易于进行功能扩展。
采用并行的输入输出方式,提高了系统的处理速度,适合作为大规模控制系统的控制核心。
倒立摆系统__实验设计报告一、实验目的本实验旨在通过对倒立摆系统的研究与实验,探讨倒立摆的运动规律,并分析其特点和影响因素。
二、实验原理与方法1.实验原理倒立摆是指在重力作用下,轴心静止在上方的直立摆。
倒立摆具有自然的稳定性,能够保持在平衡位置附近,且对微小干扰具有一定的抵抗能力。
其本质是控制系统的一个重要研究对象,在自动控制、机器人控制等领域有广泛的应用。
2.实验方法(1)搭建倒立摆系统:倒立摆由摆杆、轴心和电机组成,摆杆在轴心上下运动,电机用于控制倒立摆的运动。
(2)调节电机控制参数:根据实验需要,调节电机的参数,如转速、力矩等,控制倒立摆的运动状态。
(3)记录数据:通过相机或传感器等手段,记录倒立摆的位置、速度、加速度等相关数据,用于后续分析。
(4)分析数据:根据记录的数据,分析倒立摆的运动规律、特点和影响因素,在此基础上进行讨论和总结。
三、实验步骤1.搭建倒立摆系统:根据实验需要,选取合适的材料和设备,搭建倒立摆系统。
2.调节电机参数:根据实验目的,调节电机的转速、力矩、控制信号等参数,使倒立摆能够在一定范围内保持平衡。
3.记录数据:利用相机或传感器等设备,记录倒立摆的位置、速度、加速度等相关数据。
4.分析数据:通过对记录的数据进行分析,研究倒立摆的运动规律和特点,并探讨影响因素。
5.总结讨论:根据实验结果,进行总结和讨论,对倒立摆的运动规律、特点和影响因素进行深入理解和探究。
四、实验设备与器材1.倒立摆系统搭建材料:包括摆杆、轴心、电机等。
2.记录数据设备:相机、传感器等。
五、实验结果与分析通过实验记录的数据,分析倒立摆的运动规律和特点,找出影响因素,并进行讨论和总结。
六、实验结论根据实验结果和分析,得出倒立摆的运动规律和特点,并总结影响因素。
倒立摆具有一定的稳定性和抵抗干扰的能力,在控制系统中具有重要的应用价值。
七、实验感想通过参与倒立摆系统的搭建和实验,深入了解了倒立摆的运动规律和特点,对控制系统有了更深刻的理解。
倒立摆系统实验设计报告实验设计报告:倒立摆系统摘要:本实验旨在研究倒立摆系统的控制问题,通过进行动力学建模、控制器设计和实验验证,探究不同控制策略对倒立摆系统的稳定性和控制性能的影响。
实验使用MATLAB/Simulink软件进行系统建模和控制器设计,并通过实际硬件平台进行实验验证。
实验结果表明,PID控制器在稳定性和控制精度方面表现出较好的性能。
本实验为进一步研究倒立摆系统控制提供了参考。
引言:倒立摆系统是控制理论中一个经典且具有挑战性的问题,具有广泛的应用背景。
倒立摆系统的研究对于制造可倒立行进的机器人、电梯调节、飞行器控制等领域具有重要意义。
本实验旨在通过对倒立摆系统进行动力学建模和控制器设计,研究不同控制策略对其稳定性和控制性能的影响。
方法与材料:1.实验平台:本实验使用一台倒立摆硬件平台,包括一个竖直支架、一个带电机和减速器的转动摆杆以及一个测量角度的传感器。
2. 软件工具:本实验使用MATLAB/Simulink进行倒立摆系统的建模和控制器设计。
并使用Simulink中的实时仿真模块进行实验验证。
实验步骤:1. 动力学建模:根据倒立摆系统的动力学方程,使用MATLAB/Simulink建立系统的状态空间模型。
2.控制器设计:设计不同控制策略的控制器,包括PID控制器、模糊控制器等。
3. 系统仿真:在Simulink中进行系统仿真,分析不同控制策略下的系统响应情况,比较其稳定性和控制性能。
5.数据分析:通过对实验数据进行分析,比较不同控制策略的实际控制效果。
结果与讨论:经过对倒立摆系统进行动力学建模和控制器设计,我们设计了PID控制器和模糊控制器两种控制策略,并在Simulink中进行了系统仿真。
仿真结果显示,PID控制器能够有效地控制倒立摆系统,在较短的时间内将摆杆恢复到竖直位置,并保持稳定。
而模糊控制器的控制性能相对较差,系统响应时间较长且存在一定的震荡。
实验验证结果表明,PID控制器在实际硬件平台上也能够较好地控制倒立摆系统。
专业实验报告学生姓名学号指导老师实验名称倒立摆与自动控制原理实验实验时间2014年7月5日一、实验内容(1)完成.直线倒立摆建模、仿真与分析;(2)完成直线一级倒立摆根轨迹校正与仿真控制实验:1)理解并掌握根轨迹控制的原理和方法,并应用于直线一级倒立摆的控制;2)在Simulink中建立直线一级倒立摆模型,通过实验的方法调整根轨迹参数并仿真波形;3)当仿真效果达到预期控制目标后,下载程序到控制机,进行物理实验并获得实际运行图形。
二、实验过程1. 实验原理(1)直线倒立摆建模方法倒立摆是一种有着很强非线性且对快速性要求很高的复杂系统,为了简化直线一级倒立摆系统的分析,在实际的建模过程中,我们做出以下假设:1、忽略空气阻力;2、将系统抽象成由小车和匀质刚性杆组成;3、皮带轮和传送带之间无滑动摩擦,且传送带无伸长现象;4、忽略摆杆和指点以及各接触环节之间的摩擦力。
实际系统的模型参数如下表所示:M 小车质量0.618 kgm 摆杆质量0.0737 kgb 小车摩擦系数0.1 N/m/sec0.1225 ml 摆杆转动轴心到杆质心的长度I 摆杆惯量0.0034 kg*m*mg 重力加速度9.8 kg.m/s(2)直线一级倒立摆根轨迹校正控制原理基于根轨迹法校正的基本思想是:假设系统的动态性能指标可由靠近虚轴的一对共轭闭环主导极点来表征,因此,可把对系统提出的时域性能指标的要求转化为一对期望闭环主导极点。
确定这对闭环主导极点的位置后,首先根据绘制根轨迹的相角条件判断一下它们是否位于校正前系统的根轨迹上。
如果这对闭环主导极点正好落在校正前系统的根轨迹上,则无需校正,只需调整系统的根轨迹增益即可;否则,可在系统中串联一个超前校正装置。
常见的校正器有超前校正、滞后校正以及超前滞后校正等。
2. 实验方法(1)直线倒立摆建模、仿真与分析利用牛顿-欧拉方法建立直线一级倒立摆系统的数学模型;依照根轨迹设计的步骤得到系统的控制器,利用MA TLAB Simulink中的工具进行仿真分析。
倒立摆实验报告倒立摆实验报告引言:倒立摆是一种经典的力学实验,通过研究倒立摆的运动规律,可以深入理解物理学中的一些基本概念和原理。
本实验旨在通过搭建倒立摆模型并观察其运动过程,探究摆动周期与摆长、质量等因素之间的关系,并分析影响倒立摆稳定性的因素。
一、实验器材和原理实验器材:1. 木质支架2. 杆状物体(作为摆杆)3. 重物(作为摆锤)4. 弹簧5. 电子计时器实验原理:倒立摆实验基于牛顿第二定律和能量守恒定律。
当摆杆倾斜一定角度时,重力将产生一个力矩,使摆杆产生转动。
而弹簧的作用则是提供一个恢复力,使摆杆回到竖直位置。
通过调整摆杆长度、质量和弹簧的初始拉伸量,可以控制倒立摆的运动。
二、实验步骤1. 搭建实验装置:将木质支架固定在平稳的桌面上,将摆杆固定在支架上,并在摆杆的一端挂上重物。
2. 调整初始条件:调整摆杆的长度和重物的位置,使摆杆处于平衡位置。
同时,将弹簧的一端固定在摆杆上。
3. 测量实验数据:使用电子计时器记录倒立摆的摆动周期,重复多次测量,取平均值。
4. 改变实验参数:分别改变摆杆的长度、重物的质量和弹簧的初始拉伸量,再次进行测量和记录。
5. 数据分析:根据实验数据,绘制摆动周期与摆杆长度、重物质量、弹簧初始拉伸量之间的关系曲线,并进行分析和讨论。
三、实验结果与讨论根据实验数据,我们可以得出以下结论:1. 摆动周期与摆杆长度成正比:当摆杆长度增加时,摆动周期也随之增加。
这是因为较长的摆杆需要更多的时间来完成一次摆动。
2. 摆动周期与重物质量无直接关系:在一定范围内,重物质量的增加并不会显著影响摆动周期。
这是因为重物的质量只会影响倒立摆的稳定性,而不会改变其运动速度。
3. 弹簧初始拉伸量对摆动周期的影响:当弹簧的初始拉伸量增加时,摆动周期减小。
这是因为较大的初始拉伸量会提供更大的恢复力,使摆杆回到竖直位置的速度更快。
通过实验结果的分析,我们可以得出以下结论:1. 摆杆长度是影响倒立摆运动周期的主要因素。
旋转倒立摆
摘要:
倒立摆的控制是控制理论研究中的一个经典问题,通过旋转式倒立摆控制系统的总体结构和工作原理,硬件系统和软件系统的设计与实现等方面,对系统模型进行动力学分析,建立合适的状态空间方程,通过反馈方法实现倒立控制,通过反复的实验,记录,分析数据,总结出比较稳定可行的控制方法。
本系统采用STC89C52作为主控制芯片,WDJ36-1高精度角位移传感器作为系统状态测试装置,通过ADC0832将采集的模拟电压量转化为数字量,传送给STC89C52进行分析处理,并依此为依据控制电机的运转状态,间接地控制摆杆的运动状态。
通过不断地测量、分析,并调整系统控制的参数,基本达到了题目的要求,并通过此次的练习,进一步熟悉掌握了单片机的应用,对控制系统的了解和兴趣。
关键词:单片机最小系统; WDJ36-1角位移传感器; 旋转倒立摆;状态反馈;稳定性;
目录
1.系统方案 (4)
1.1 微控制器模块 (4)
1.2电机模块 (4)
1.3电机驱动模块 (4)
1.4角度传感器模块 (5)
1.5电源模块 (5)
1.6显示模块 (5)
1.7最终方案 (6)
2.主要硬件电路设计 (6)
2.1电机驱动电路的设计 (6)
2.2角度检测电路的设计: (7)
3.软件实现 (7)
3.1理论分析 (7)
3.2总体流程图 (7)
3.3平衡调节流程图 (9)
4 .系统理论分析及计算.................. . (10)
4.1系统分析 (10)
4.2 摆臂摆角的计算.................. . (10)
5.系统功能测试: (10)
5.1测试方案 (10)
5.2测试结果 (10)
5.3测试分析及结论 (10)
6.结束语 (11)
1.系统方案:
1.1 微控制器模块
方案一:采用可编程逻辑期间CPLD作为控制器。
CPLD可以实现各种复杂的逻辑功能、规模大、密度高、体积小、稳定性高、IO资源丰富、易于进行功能扩展。
采用并行的输入输出方式,提高了系统的处理速度,适合作为大规模控制系统的控制核心。
但本系统不需要复杂的逻辑功能,对数据的处理速度的要求也不是非常高。
且从使用及经济的角度考虑我们放弃了此方案。
方案二:采用Atmel公司的stc89c52单片机作为主控制器。
Stc89c52是一个低功耗,高性能的51内核的CMOS 8位单片机,片内含8k空间的可反复擦些1000次的Flash只读存储器,具有256 bytes的随机存取数据存储器(RAM),32个IO口,2个16位可编程定时计数器。
且该系列的51单片机可以不用烧写器而直接用串口或并口就可以向单片机中下载程序。
我们自己制作51最小系统板,体积很小,下载程序方便,放在车上不会占用太多的空间。
从方便使用的角度考虑,我们选择了方案二,采用Atmel公司的STC89C52单片机作为主控制器。
1.2电机模块
方案一:用步进电机。
步进电机可以精确地控制角度和距离。
步进电机的输出力矩较低,随转速的升高而下降,且在转速较高时会急剧下降,故其转速较低,不适用于倒立摆等有一定速度要求的系统,并且它的体积大,价格高,质量大,另外步进电机的编程复杂,增加了编程的难度。
方案二:采用直流电机。
直流电机运转平稳,精度也有一定的保证,虽然没有步进电机那样高,但完全可以满足本题目的要求。
通过单片机的PWM输出同样可以控制直流电机的旋转速度,实现旋转臂的速度控制。
并且直流电机相对于步进电机价格经济。
综合性价比和功耗等方面的考虑,我们选择方案二,使用直流电机作为旋转倒立摆的驱动电机。
1.3电机驱动模块
方案一:采用继电器对电机的开关进行控制,可以完成电机的正转,反转,调速,但继电器响应时间慢,使倒立摆运动灵敏度降低,增加了摆角控制的难度。
而且机械结构易磨损,可靠性不高。
它适用于大功率电机的驱动,对于中小功率的电机则极不经济。
方案二:采用集成的驱动电路芯片L298N。
L298N驱动芯片具有体积小,可
靠性安全性高,抗干扰能力强等优点,适合控制旋转倒立摆的运动。
且有较大的电流驱动能力,连接方便简单。
综合以上考虑,我们选择方案二,使用L298驱动直流电机。
1.4角度传感器模块
MMA7361采用信号调理、单极低通滤波器和温度补偿技术,提供±1.5g/6g两个量程,用户可在这2个灵敏度中选择。
该器件带有低通滤波并已做0g补偿三轴加速度传感器是一种可以对物体运动过程中的加速度进行测量的电子设备,典型互动应用中的加速度传感器可以用来对物体的姿态或者运动方向进行检测
角位移传感器耐腐蚀,分辨率高,寿命长产品性能及特点:4-20mA CWY30U/I-300U/I系列高性能电子尺传感器采用导电塑料技术,利用分压器原理加入微电路模块后以电流形式输出(4-20mA)与直线位移成高精度的线性关系。
产品特点是线性精度高、平滑性好、动态噪声小、机械寿命长、伺服槽安装等优良性能。
1.5电源模块
在本系统中,需要用到的电源有单片机的5V,L298N芯片的电源5V和电机的电源7-15V。
所以需要对电源的提供必须正确和稳定可靠。
方案一:单电源供电。
用这种接法比较简单,但小车的电路功耗过大会导致后轮电机动力不足。
方案二:采用双电源。
为了确保单片机控制部分和后轮电机驱动的部分的电压不会互相影响,要把单片机的供电和驱动电路分开来,即:用直流电12v供给电机,单片机供电电源用直流5V,这样有助于消除电机干扰,提高系统的稳定性。
基于以上分析,我们选择了方案二,采用双电源供电。
1.6显示模块
方案一:用LED显示。
数码管能显示数字和符号,颜色鲜艳,易于观察,可实时动态显示,编程简单,易于控制,优点亮度高、成本低,但不能显示汉字,显示内容较少,人机关系较差。
方案二::采用带字库的LCD显示。
LCD可以用全中文界面显示,显示内容丰富,易于人机交流,且可以串行接口,节省I/O资源,显示简单。
考虑到本题的要求,只需要一片LCD就可以实现,故我们选择方案二。
1.7最终方案
经过反复论证,我们最终确定了如下方案:
1采用STC89C52单片机作为主控制器。
2电机采用直流减速电机。
3采用专用芯片L298N作为电机驱动芯片。
4采用角位移传感器
5采用双电源供电。
6采用LCD1602液晶显示摆动时摆杆角度
2主要硬件电路设计
2.1电机驱动电路的设计
L298N驱动直流电机,它靠两个引脚控制一个电机的运动。
智能寻迹小车采用后轮驱动,左右后轮各用一个直流减速电机驱动,通过调制后面两个轮子的转速或正反转来达到控制小车转向的目的。
图2 驱动电路图
2.2角度检测电路的设计:
图3 角位移传感器连接图
3软件实现
3.1理论分析
通过题目可知摆杆与竖直方向的夹角需要360度变化,当为0度角时摆杆处于平衡状态。
当角度变化时,对应的角位移传感器会有一个电压值变化,通过对这个角度和对应电压值的测量,列表,统计,再编写对应程序控制电机旋转方向和转速,达到对倒立摆系统的自动控制。
3.2总体流程图
图4 系统总体框图
图5 程序控制系统总流程图
图6 角度调整流程图3.3平衡调节流程图
图7 倒立程序流程
4 系统理论分析及计算
4.1系统分析
此系统以高频角位移传感器采集的电压为控制信号,通过AD转换,再通过经单片机对信号的比较,输出电压信号到驱动电路实现对电机的控制,由于系统简单,所以对数据采集和处理足够快,能达到对倒立摆的精确控制。
4.2摆角的计算
5系统功能测试
5.1测试方法
由于连接电路时,电路中连接有LCD1602显示器,所以可以通过系统电路直接对角度和电压值进行测量,省去了复杂的外部器件的连接,通过反复的手动调节转轴的角度,并对照角度盘上的角度和显示角度来观察系统测试的准确性,方便了数据测量和记录,使系统的校准和调节更加方便,使系统的状态变化更加直观。
5.2测试仪器
量角器,LCD显示屏(显示角度和电压),秒表
5.3测试数据
. 表1 角度和电压的对应值
通过反复的测试,该系统完成转角60度所需要的时间小于3秒
完成圆周运动所需时间在4秒左右
测试结果均达到了题目的基本要求,所以认为已经合格
结束语
经过我们小组的努力,我们终于成功的完成了题目的要求,并在此基础上进行了创新。
制作过程中,我们遇到了很多困难,比如角度传感器的使用,液晶的角度显示,摆杆寻找平衡点的不稳定性等。
但我们通过自己研究,小组讨论,向其他同学请教,都一一克服了。
经过这次比赛我们深刻体会到了团队精神和自己解决问题的能力,在此,衷心的感谢老师们对我们的培养。