色谱分离条件的选择
- 格式:doc
- 大小:92.50 KB
- 文档页数:3
正相色谱条件选择
正相色谱是一种常用的分离技术,其条件选择对于获得良好的分离效果至关重要。
以下是一些常见的正相色谱条件选择:
1. 流动相选择:正相色谱通常使用非极性溶剂作为流动相,如石油醚、氯仿等。
这些溶剂可以与样品中的极性化合物形成氢键,从而实现分离。
在选择流动相时,需要考虑样品的性质和目标分析物的极性。
2. 固定相选择:正相色谱的固定相通常是具有不同孔径和表面积的硅胶或聚合物颗粒。
固定相的选择取决于样品的性质和目标分析物的分子大小。
较大的分子通常需要较大的孔径来容纳,而较小的分子则需要较小的孔径来实现更好的分离。
3. 柱温选择:柱温对于正相色谱的分离效果也有一定的影响。
较高的柱温可以提高样品在固定相上的扩散速率,从而加快分离速度。
然而,过高的柱温可能导致样品分解或固定相的降解。
因此,在选择柱温时需要权衡分离速度和样品稳定性。
4. 流速选择:流速决定了样品在色谱柱上的停留时间,从而影响分离效果。
较高的流速可以减少分析时间,但可能导致分离不完全。
较低的流速可以提高分离度,但会增加分析时间。
因此,在选择流速时需要根据样品的性质和分析要求进行平衡。
5. 检测器选择:正相色谱常使用紫外可见光检测器(UV-
Vis)或荧光检测器进行检测。
选择合适的检测器需要考虑目标分析物的吸收或发射特性以及检测器的灵敏度和选择性。
6. 进样量选择:进样量的大小会影响色谱图的分辨率和分离度。
过大的进样量可能导致峰形变宽和分离不完全,而过小的进样量可能降低检测灵敏度。
因此,在选择进样量时需要根据样品的性质和分析要求进行优化。
气相色谱分离操作条件的选择气相色谱(GC)是一种广泛应用于化学分析的分离技术。
在进行气相色谱分离操作时,需要选择合适的操作条件以保证分离效果和分析结果的准确性。
操作条件的选择涉及到以下几个方面:1.色谱柱选择:色谱柱是GC分离的关键。
选择适合待分析物性质和样品基质的色谱柱非常重要。
常见的色谱柱有填充型和毛细管型两类,填充型色谱柱适用于绝大多数分析,毛细管型色谱柱适用于高分辨、高效率以及样品量较少的分析。
2.色谱流动相选择:色谱流动相的选择主要受样品性质、待测分子的化学活性以及待测物的反应性等因素的影响。
通常选择常见的有机溶剂(如乙腈、二甲基甲酰胺、甲醇等)作为色谱流动相。
3.蒸发器温度选择:蒸发器温度影响样品的蒸汽压和蒸发速率。
温度过低会导致待分析物不能完全蒸发,影响分离的效果;温度过高则可能导致样品的不稳定性和分解。
因此,需要根据待分析物的特性选择合适的蒸发器温度。
4.柱温选择:柱温是影响GC分离效果的关键因素之一、低温时,分离速度较慢,但分离程度较好;高温时,分离速度较快,但分离程度较差。
因此,柱温需要根据样品和待测物的性质以及分离要求进行调整。
5. 柱流速选择:柱流速影响分析的快速性以及分离效果。
流速过快会导致分离效果较差,分离峰变宽,而流速过慢则分离时间较长。
常用的柱流速一般为1-2 mL/min,根据样品性质和分析时间的要求进行选择。
6.应用适当的柱保护剂:GC分析过程中,待分析物有可能对柱产生损害,因此通常要考虑使用柱保护剂。
柱保护剂可减少来自于样品中杂质的残留和柱的损伤,提高色谱分析的稳定性和重复性。
选择合适的柱保护剂需要考虑样品性质、柱类型和待分析物化学性质等因素。
7.检测器选择:GC常用的检测器有火焰离子化检测器(FID)、热导检测器(TCD)、质谱检测器(MS)等。
根据分析要求选择合适的检测器。
8.样品前处理:样品前处理是样品在进入色谱仪之前的处理步骤,目的是去除样品中的杂质、浓缩待测物等。
气相色谱分离条件的选择一.载气及流速1. 载气对柱效的影响:主要表现在组分在载气中的扩散系数D m(g)上,它与载气分子量的平方根成反比,即同一组分在分子量较大的载气中有较小的D m(g) 。
根据速率方程:(1)涡流扩散项与载气流速无关;(2)当载气流速u 小时,分子扩散项对柱效的影响是主要的,因此选用分子量较大的载气,如N2、Ar,可使组分的扩散系数D m(g)较小,从而减小分子扩散的影响,提高柱效;(3)当载气流速u 较大时,传质阻力项对柱效的影响起主导作用,因此选用分子量较小的气体,如H2、He 作载气可以减小气相传质阻力,提高柱效。
2. 流速(u)对柱效的影响:从速率方程可知,分子扩散项与流速成反比,传质阻力项与流速成正比,所以要使理论塔板高度H最小,柱效最高,必有一最佳流速。
对于选定的色谱柱,在不同载气流速下测定塔板高度,作H-u 图。
由图可见,曲线上的最低点,塔板高度最小,柱效最高。
该点所对应均流速即为最佳载气流速。
在实际分析中,为了缩短分析时间,选用的载气流速稍高于最佳流速。
图1 H-u 曲线二. 固定液的配比又称为液担比。
从速率方程式可知,固定液的配比主要影响Csu,降低df,可使Csu减小从而提高柱效。
但固定液用量太少,易存在活性中心,致使峰形拖尾;且会引起柱容量下降,进样量减少。
在填充柱色谱中,液担比一般为5%~25%。
三. 柱温的选择重要操作参数,主要影响来自于K、k、D m(g) 、Ds(l) ;从而直接影响分离效能和分析速度。
柱温与R和t 密切相关。
提高t,可以改善Cu,有利于提高R,缩短t。
但是提高柱温又会增加B/u 导致R 降低,r21变小。
但降低t 又会使分析时间增长。
在实际分析中应兼顾这几方面因素,选择原则是在是在难分离物质对能得到良好的分离,分析时间适宜且峰形不托尾的前提下,尽可能采用较低的柱温。
同时,选用的柱温不能高于色谱柱中固定液的最高使用温度(通常低20-50℃)。
浅谈气相色谱分离条件的选择在气相色谱分析中,人们期望的理想状态是在最短的时间内对样品中各个组分完全分离并分析。
所以,选择高效率的色谱柱和适当的分离条件十分重要。
本文简要介绍了气相色谱仪分离条件的选择原则,并列举了应用实例。
1、固定相的选择一般来说,载体或固定相的粒度越小越有利于提高柱效率,但是粒度过小会使分析时间变长。
一般要求填充颗粒直径是柱直径的十分之一左右,即60~80目或80~100目。
粒度要均匀,粒度越一致,填充的越均匀,柱效率越高。
除分析气体外,分析其他物质大多使用涂装固定相的色谱柱。
其优点是可在较低温度下分析高沸点的样品,由于柱温低,固定相选择系数增大,从而提高了柱效率。
同时,固定相含量低,缩小了保留值,节省了分析时间。
固定相配比的选择取决于样品性质(如沸点、极性)、载体性质及柱温等,此外要求固定相粘度小,蒸汽压力低。
2、色谱柱的选择制作色谱柱的材料很多,其中不锈钢和玻璃是最常用的材料。
不锈钢柱质地坚硬,化学稳定性好,耐高温高压,应用最为广泛。
玻璃柱表面吸附性小,化学活性差,常用于微量分析或分析某些和金属发生化学反应以及易受热金属表面催化作用而分解的样品。
制作毛细管柱的材质主要是玻璃或石英。
在其他操作条件不变的前提下,适当增加柱长能获得较好的分离效果。
但柱子增长,分析时间也相应增加。
如在相同的操作条件下,柱长L1=1.0m时求得样品的分离度R1=0.8,若R2=1.5时,样品完全分离,则此条件下理想的柱长L2=L1/(R1/R2)2≈3.5m。
3、载气压力和流速的选择载气压力对柱效率有直接的影响。
如提高柱内压力,有助于提高柱效率。
但只提高入口压力,使流速加大且压降太大时,反而会降低柱效率,因此也必须提高出口压力。
一般采用在柱后加装适当气阻的方法来解决这一问题。
载气流速是决定色谱分离的重要因素之一。
一般情况下,流速高色谱峰窄,反之则宽些,但流速过高或过低对分离都有不利的影响。
流速要求要平稳,常用的流速范围为20~70mL/min。
气相色谱法色谱条件的选择
气相色谱法(Gas Chromatography, GC)是常用的一种分离和
定性分析方法,其色谱条件的选择对于分析结果的准确性和稳定性至关重要。
以下是一些建议的气相色谱法色谱条件的选择:
1. 色谱柱选择:根据分析物的性质选择合适的色谱柱,如非极性柱、极性柱、离子柱等。
需要注意柱长、内径和填充物粒径的选择,这些参数可以根据分离目标和分析物的性质进行优化。
2. 载气选择:常用的载气包括氮气、氢气和乙烷等。
选择载气时要考虑分析物的挥发性、稳定性以及色谱柱的耐受性等因素。
此外,压力和流速也是需要考虑的参数,可以根据柱长和类型进行调整。
3. 柱温选择:柱温对于色谱分离的效果和分析时间有很大影响。
一般情况下,柱温可以根据分析物的挥发性和热稳定性进行优化,一般在室温至300℃之间选择。
4. 检测器选择:常用的检测器有火焰离子化检测器(Flame Ionization Detector, FID)、热导率检测器(Thermal Conductivity Detector, TCD)、质谱检测器(Mass Spectrometry, MS)等。
选择检测器时要考虑分析物的性质以
及灵敏度、选择性等因素。
5. 标准品选择:根据分析物的特性和分析要求选择合适的标准品,可以是单一化合物的标准品、混合标准品或是内标法等。
综上所述,选择适合的色谱条件是确保气相色谱法分析准确性和稳定性的重要环节,需要综合考虑分析物特性和要求、色谱柱、载气、柱温、检测器和标准品等各方面因素进行优化。
气相色谱分离操作条件的选择包括以下几个方面:
1.柱温选择:柱温是气相色谱分离操作中最关键的因素之一,它直接影响到分离效果和分离速度。
一般来说,选择较高的柱温可以提高分离速度,但也会降低分离效果。
因此,需要根据样品的性质和分析目的来选择适当的柱温。
2.载气流速选择:载气流速也是影响气相色谱分离效果的重要因素之一。
一般来说,选择较高的载气流速可以提高分离速度,但也会降低分离效果。
因此,需要根据样品的性质和分析目的来选择适当的载气流速。
3.进样方式选择:进样方式包括顶空进样和液相进样两种方式。
顶空进样适用于挥发性较强的样品,而液相进样适用于挥发性较弱的样品。
需要根据样品的性质和分析目的来选择适当的进样方式。
4.柱子选择:柱子的选择也是影响气相色谱分离效果的重要因素之一。
不同类型的柱子具有不同的分离效果和分离速度,需要根据样品的性质和分析目的来选择适当的柱子。
5.检测器选择:检测器的选择也是影响气相色谱分离效果的重要因素之一。
不同类型的检测器具有不同的灵敏度和响应速度,需要根据样品的性质和分析目的来选择适当的检测器。
总之,选择适当的气相色谱分离操作条件需要综合考虑样品的性质、分析目的、仪器设备等多个因素,并通过试验和优化来确定最佳的操作条件。
气相色谱分离条件的选择分别条件的挑选是为了提高组分间的挑选性,提高柱效,使分别峰的个数尽量多,分析时光尽可能短,从而充分满足分别要求。
一液及其含量的挑选1.固定液挑选的普通逻辑普通可按“相像相溶”的原则来挑选固定液。
下列挑选固定液的普通逻辑,具有参考价值。
分别非极性化合物,普通选用非极性固定液,此时非极性固定液与试样间的作用力为色散力,被分别组分按沸点从低到高挨次流出;中等极性化合物,普通选用中等极性固定液,此时,固定液与试样间的作用力主要为诱导力和色散力,在这种状况下,组分基本按沸点从低到高先后流出,若沸点相近的极性和非极性化合物,普通非极性组分就先流出;强极性化合物,普通选用强极性固定液,固定液与组分之间主要是静电力(定向力)作用力,普通按极性从小到大的挨次流出;能形成氢键的化合物,普通选用极性或氢键型固定液,按试样组分与固定液分子形成氢键的能力从小到大地先后流出,不能形成氢键的组分最先流出;具有酸性或碱性的极性物质,可选用强极性固定液并加酸性或碱性添加剂;分别复杂的组分,可采纳两种或两种以上的混合固定液。
2.按照固定液挑选性常数挑选固定液固定液挑选性常数(Rohrschneider或McReynolds)能较好地反映固定液对不同类型化合物的分别挑选性。
固定液挑选性常数表可用于指导按组分和固定液之间的作用力来挑选合适的固定液。
假如在常数表中,挑选性类似的固定液有几种,就应挑选其中热稳定性好的固定液。
3.固定液含量以固定液与载体的质量比表示固定液的含量,它打算固定液的液膜厚度df,影响传质速率。
同时固定液含量的挑选与分别组分的极性、沸点以及固定液的性质有关。
低沸点试样多采纳高液载比(或液担比)的柱子,普通为20%一30%;高沸点试样则多采纳低液载比柱,普通为1%-10%。
二及其粒度的挑选若试样相对分子质量大、沸点高、极性大、用法的固定液量少,大都选用白色载体;试样的相对分子质量小、沸点低、非极性、固定液的用量多,则应选用红色载体;对于那些具有强极性、热和化学不稳定的化合物。
色谱分离条件选择中的几个主要方面色谱分离条件选择中的几个主要方面1.难分离物质的预测在分离多组分复杂混合物时,那些份子量级为相近,沸点差极小,结构相似又极性相近的组分,保留值相差小的为难分的物质对。
这样可以通过柱系统选择性指标Sd值大小和某些经验规律来预测难分物质对分离的影响,引出Sd值作难分物质的量度,在给定色谱条件下,规定Sd为:从上式中看到,决定物质对分离难易的不止是r2.1值,而是Sd值,其中主要有热力学因素,K'值影响,同时也有动力学系数β*的影响,Sd等值越小,则物质对就越难分,即此时K'值相差很小,故可将式近似地写为:想而易见,K'2/K'1比值越小,Sd值就越小,越难分。
日常工作中对难分物质对强调有可能,是指可以调整柱温改善热力学性质,几大K'2K'1比值;同时也可改变动力学系数β值(例如,改变流动相线速度,柱长)以达到Sd 设定值,使物质对分离,对高效液相色谱也可改变流动相组成,从而改善Sd值,达到同样的目的。
1.同系物种难分物质对的预测因为同系物种相邻二组分只差一个CH2量,其保留值服从碳数规律:式中:NC——同系物种的组成碳数A1——碳数规律中的经验常数C1——碳数规律中相关系数,即NC=0时1gVg值。
式中表明,当相差Nc相同时,分子量越大,则lgVg越大,K值越大,越易分离。
故同系物中难分离的物质对可能是系类中对组分,即流出柱的分子量小的一对,例如C1-C6烃中,乙烷-乙烯对难分,所以选择的色谱分离条件只要能分离好组分,则其余较大分子量组分对则不成问题。
2.异构体中难分物质对的预测同分异体中沸点差值小的物质对,可能是难分物质对,其保留变化服从沸点规律有上式可见,Tb上身,则1gVg值增加,对沸点差值相同的物质对,低沸点者难分离,故非极性或弱极性组分对,在非极性固定相上沸点且差值小的组分对难分离,若对芳烃异构体而言,间对位异构体不但沸点相近,且极性相当,构型相似,故难分离,若用柱系统选择性指标量度,则有:显然,Sd值决定于沸点差与之比,当△Tb=Tb2-Tb1很小时,“可能”还会得到好的分离,还有改善β*和K'的可能,毕竟有构型不同的溶解能力差别,同时β*的影响通前述。
分离度R作为色谱柱的分离效能指标,其定义为相邻两组分色谱峰保留值之差与两个组分色谱峰峰底宽度总和之半的比值
一、分离度
两个组分怎样才算达到完全分离?首先是两组分的色谱峰之间的距离必须相差足够大,若两峰间仅有一定距离,而每一个峰却很宽,致使彼此重叠,则两组分仍无法完全分离;第二是峰必须窄。
只有同时满足这两个条件时,两组分才能完全分离。
判断相邻两组分在色谱柱中的分离情况,可用分离度R作为色谱柱的分离效能指标。
其定义为相邻两组分色谱峰保留值之差与两个组分色谱峰峰底宽度总和之半的比值
R值越大,就意味着相邻两组分分离得越好。
因此,分离度是柱效能、选择性影响因素的总和,故可用其作为色谱柱的总分离效能指标。
从理论上可以证明,若峰形对称且满足于正态分布,则当R=1时,分离程度可达98%;当R=1.5时,分离程度可达99.7%因而可用R=1.5来作为相邻两峰已完全分开的标志。
当两组分的色谱峰分离较差,峰底宽度难于测量时,可用半峰宽代替峰底宽度,并用下式表示分离度:
二、色谱分离基本方程式:
值,亦可使分析时间在不至于过长。
使峰的扩展不会太严重对检测发生影响。
当流速较小时,分子扩散(B项)就成为色谱峰扩张的主要因素,此时应采用相对分子质量较大的载气(N2,Ar ),使组分在载气中有较小的扩散系数。
而当流速较大时,传质项(C项)为控制因素,宜采用相对分子质量较小的载气(H2,He ),此时组分在载气中有较大的扩散系数,可减小气相传质阻力,提高柱效。
2.柱温的选择
柱温直接影响分离效能和分析速度。
首先要考虑到每种固定液都有一定的使用温度。
柱温不能高于固定液的最高使用温度,否则固定液挥发流失。
3.固定液的性质和用量
固定液对分离是起决定作用的。
一般来说,担体的表面积越大,固定液用量可以越高,允许的进样量也就越多。
为了改善液相传质,应使液膜薄一些。
固定液液膜薄,柱效能提高,并可缩短分析时
间。
固定液的配比一般用5:100到25:100,也有低于5:100的。
不同的担体为要达到较高的柱效能,其固定液的配比往往是不同的。
一般来说,担体的表面积越大,固定液的含量可以越高。
4.担体的性质和粒度
要求担体的表面积大,表面孔径分布均匀。
这样,固定液涂在担体表面上成为均匀的薄膜,液相传质就快,柱效就可提高。
担体粒度均匀、细小,也有利于柱效提高。
但粒度过小,柱压降增大,对操作不利。
5.进样时间和进样量
进样必须快,一般在一秒钟之内。
进样时间过长,会增大峰宽,峰变形。
进样量一般液体0.1-5微升,气体0.1-10毫升,进样太多,会使几个峰叠加,分离不好。
6.气化温度
在保证试样不分解的情况下,适当提高气化温度对分离及定量有利。