高等代数第九章 7第七节 向量到子空间的距离.最小二乘法
- 格式:ppt
- 大小:154.50 KB
- 文档页数:1
《高等代数》考试大纲一、《高等代数》的课程性质高等代数是数学与应用数学专业、信息与计算机科学专业和统计学专业一门重要基础课,是中学代数的继续和提高,但是又与中学代数有很大不同,表现在内容的深度和广度上,更主要表现在观点和方法上。
具体表现在内容的高度抽象性、推理的严密性和解题技巧的独特性。
本课程最活跃研究内容:数域上一元多项式理论、行列式、线性方程组、二次型、线性空间、线性变换矩阵、欧氏空间和双线性函数。
方法的特点:在阐述上更强调一般性原则,广泛使用公理化方法,用结构化方法揭示代数系统的内部构造,用矩阵表示作为主线,受整体、统一思想的支配,逐步抽象出高等代数的各个基本概念,揭示代数研究问题的基本方法。
二、《高等代数》课程的教学目的和要求高等代数的教学目的要求是:通过本课程的学习,不仅要求学生掌握一元多项式和线性代数的基础知识、基本理论和基本技能,而且要求学生初步熟悉和掌握抽象的、严格的代数方法,理解具体与抽象、特殊与一般、有限与无限的辩证关系。
培养学生整体思考问题的能力,使之理解代数思想、公理化方法,把握概念的内涵和外延,提高抽象思维、逻辑推理、分析问题和解决问题的能力,为进一步后继课程的学习及继续深造或从事教学工作打下坚实的基础。
三、《高等代数》课程的知识点与考核要求第一章:多项式1、考核知识点:(1)、一元多项式的定义、运算、性质,次数的定义和次数公式;(2)、多项式整除的定义,整除的性质,带余除法;(3)、最大公因子的定义、性质和求法;(4)、多项式互素的概念和性质;(5)、多项式的可约性,因式分解及唯一性定理,标准分解式;(6)、重因式的概念与判别法,求多项式重因式的方法;(7)、多项式函数、多项式根的概念,根的个数定理,多项式相等与根的关系,判别某数是多项式根的综合除法;(8)、复数域和实数域上不可约多项式的特征,因式分解定理;(9)、有理系数多项式是否可约的判别法,根与系数的关系,有理根的求法。
高等代数使用教材及辅导材料课程:高等代数高等代数北京大学数学系几何与代数教研室高等教育出版社 1978高等代数丘维声高等教育出版社 1996高等代数张禾瑞郝炳新高等教育出版社 1983高等代数习题课教材钱芳华黎有高卜淑云邓培民广西师范大学出版社 1997高等代数解题方法许甫华张贤科清华大学出版社 2001高等代数习题课参考书张均本高等教育出版社 1991线性代数试题选解魏宗宣中南工业大学出版社 1986用MAPLEV学习线性代数丘维声(译)高等教育出版社施普林格出版社 2001高等代数教学大纲数学与应用数学专业《高等代数》教学大纲一、课程说明:《高等代数》是河北师范大学数学与应用数学专业(数学系)的一门重要的基础课,其主要任务是使学生获得数学的基本思想方法和多项式理论、行列式、线性方程组、矩阵论、二次型、线性空间、线性变换、欧氏空间等方面的系统知识。
它一方面为后继课程(如近世代数、数论、离散数学、计算方法、微分方程、泛涵分析)提供一些所需的基础理论和知识;另一方面还对提高学生的思维能力,开发学生智能、加强“三基”(基础知识、基本理论、基本理论)及培养学生创造型能力等重要作用。
二、教学目的及要求:通过本课程教学的主要环节(讲授与讨论,习题课,作业,辅导等),使学生对多项式理论、线性代数的“解析理论”、与“几何理论”及其思想方法有较深的认识和理解,从而有助于学生正确理解高等代数的基本概念和论证方法及提高分析问题解决问题的能力。
三、教学重点及难点:带余除法、最大公因式的性质、不可约多项式的定义及性质、重因式、多项式的有理根等;计算行列式的一些方法;线性方程组及其相关理论的理解及应用;矩阵理论的灵活应用;正定二次型的等价条件及二次型的标准形;向量空间一些基本概念的理解及相关理论的灵活应用;线性变换与矩阵的联系、矩阵相似、线性变换在不同基下的矩阵、矩阵的特征值、特征向量及子空间理论;一些基本概念(内积空间、欧氏空间、正交矩阵、酉空间)的理解。
高等代数课程教学大纲一、课程说明1、课程性质:高等代数是高等院校数学系数学与应用数学专业的一门重要基础课。
对学生数学思想的形成有着重要意义,是进一步学习近世代数、常微分方程等后继课的基础,也为深入理解中学数学打下必要的基础。
高等代数是现代数学的基础知识,是学习其它数学学科和现代科学知识的必备基础和重要工具,尤其在本世纪,计算机技术、通讯信息技术和现代生物工程技术已成为最热门的学科领域,这些学科的发展均需要代数学的知识与支持。
高等代数也是师范院校数学与应用数学专业的一门重要基础课程,既是中学代数的继续和提高,对于中学数学教学工作具有重要的理论指导作用,又是输送更高层次优秀人才的专业知识保证。
2、课程教学目的要求(1)使学生掌握多项式理论、线性代数理论的基础知识和基本理论,着重培养学生解决问题的基本技能。
(2) 使学生熟悉和掌握本课程所涉及的现代数学中的重要思想方法,提高其抽象思维、逻辑推理和代数运算的能力。
(3) 使学生进一步掌握具体与抽象、特殊与一般、有限与无限等辩证关系,培养其辩证唯物主义观点。
(4) 逐步培养学生的对真理知识的发现和创新的能力,训练其对特殊实例的观察、分析、归纳、综合、抽象概括和探索性推理的能力。
(5) 使学生对中学数学有关内容从理论上有更深刻的认识,以便能够居高临下地掌握和处理高级中学数学教材,进一步提高中学数学教学质量。
(6) 根据教学的实际内容的需要,对大纲所列各章内容,分别提出了具体的目的要求,教学时必须着重抓住重点内容进行教学。
本课程分以一元多项式为主体的多项式理论和线性代数两部分。
线性代数部分涉及行列式、矩阵、线性方程组、二次型、线性空间、线性变换、λ-矩阵、欧几里得空间等。
本课程教学重点应放在多项式理论与线性代数理论。
多项式理论以一元多项式的因式分解唯一性定理为主体介绍了有关多项式的一些必要的知识,为后继课提供准备;线性代数部分则较为系统地介绍了线性方程组,线性空间与线性变换理论。
第九章 欧氏空间1.设()ij a =A 是一个n 阶正定矩阵,而),,,(21n x x x =α, ),,,(21n y y y =β,在n R 中定义内积βαβα'A =),(,1) 证明在这个定义之下, n R 成一欧氏空间; 2) 求单位向量)0,,0,1(1 =ε, )0,,1,0(2 =ε, … , )1,,0,0( =n ε,的度量矩阵;3) 具体写出这个空间中的柯西—布湿柯夫斯基不等式。
解 1)易见βαβα'A =),(是n R 上的一个二元实函数,且 (1) ),()(),(αβαβαββαβαβα='A ='A '=''A ='A =, (2) ),()()(),(αβαββαβαk k k k ='A ='A =,(3) ),(),()(),(γβγαγβγαγβαγβα+='A '+'A ='A +=+, (4) ∑='A =ji j i ijy x a,),(αααα,由于A 是正定矩阵,因此∑ji j i ijy x a,是正定而次型,从而0),(≥αα,且仅当0=α时有0),(=αα。
2)设单位向量)0,,0,1(1 =ε, )0,,1,0(2 =ε, … , )1,,0,0( =n ε,的度量矩阵为)(ij b B =,则)0,1,,0(),()( i j i ij b ==εε⎪⎪⎪⎪⎪⎭⎫ ⎝⎛nn n n n n a a a a a aa a a212222211211)(010j ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛ =ij a ,),,2,1,(n j i =, 因此有B A =。
4) 由定义,知∑=ji ji ij y x a ,),(βα,α==β==故柯西—布湿柯夫斯基不等式为2.在4R 中,求βα,之间><βα,(内积按通常定义),设: 1) )2,3,1,2(=α, )1,2,2,1(-=β, 2) )3,2,2,1(=α, )1,5,1,3(-=β, 3) )2,1,1,1(=α, )0,1,2,3(-=β。