当前位置:文档之家› CAD三维绘图基础教程

CAD三维绘图基础教程

CAD三维绘图基础教程
CAD三维绘图基础教程

三维绘图基础

本章要点

三维视图

用户坐标系(UCS)

绘制三维实体

编辑三维实体

中望CAD 2010有较强的三维绘图功能,可以用多种方法绘制三维实体,方便的进行编辑,并可以用各种角度进行三维观察。在本章中将介绍简单的三维绘图所使用的功能,利用这些功能,用户可以设计出所需要的三维图纸。

三维视图

要进行三维绘图,首先要掌握观看三维视图的方法,以便在绘图过程中随时掌握绘图信息,并可以调整好视图效果后进行出图。

13.1.1 视点

1.命令格式

命令行:Vpoint

菜单:[视图]→[三维视图]→[视点(V)]

工具栏:[视图]

控制观察三维图形时的方向以及视点位置。工具栏中的点选命令实际是视点命令的10个常用的视角:俯视、仰视、左视、右视、前视、后视、东南等轴测、西南等轴测、东北等轴测、西北等轴测,用户在变化视角的时候,尽量用这10个设置好的视角,这样可以节省不少时间。

2.操作步骤

图13-1中表示的是一个简单的三维图形,仅仅从平面视图,用户较难判断单位图形的样子。这时我们可以利用Vpoint命令来调整视图的角度,如图13-1中的右下角的视图,

从而能够直观的感受到图形的形状。

图13-1 用Vpoint命令观看三维图形

命令: Vpoint 执行Vpoint命令

透视(PE)/平面(PL)/旋转(R)/<视点> <0,0,1>: 设置视点,回车结束命令

以上各选项含义和功能说明如下:

视点:以一个三维点来定义观察视图的方向的矢量。方向为从指定的点指向原点(0,0,0)。

透视(PE):打开或关闭“透视”模式。

平面(P):以当前平面为观察方向,查看三维图形。

旋转(R):指定观察方向与 XY 平面中 X 轴的夹角以及与 XY 平面的夹角两个角度,确定新的观察方向。

3.注意

此命令不能在“布局”选项卡中使用。

在运行Vpoint命令后,直接按回车键,会出现图13-2的设置对话框,用户可以通过

对话框内的内容设置视点的位置。

图13-2 设置视点对话框

13.1.2 三维动态观察器

1.命令格式

命令行:Rtrot

菜单:[视图]→[三维动态观察器(B)]

工具栏:[三维动态观察器] →[三维动态观察]

进入三维动态观察模式,控制在三维空间交互查看对象。该命令可使用户同时从 X、Y、Z三个方向动态观察对象。

用户在不确定使用何种角度观察的时候,可以用该命令,因为该命令提供了实时观察的功能,用户可以随意用鼠标来改变视点,直到达到需要的视角的时候退出该命令,继续编辑。

2.注意

当 RTROT 处于活动状态时,显示三维动态观察光标图标,视点的位置将随着光标的移动而发生变化,视图的目标将保持静止,视点围绕目标移动。如果水平拖动光标,视点将平行于世界坐标系 (WCS) 的 XY 平面移动。如果垂直拖动光标,视点将沿 Z 轴移动。

也可分别使用RTROTX、RTROTY、RTROTZ命令,分别从X、Y、Z三个方向观察对象。

RTROT 命令处于活动状态时,无法编辑对象。

13.1.3 视觉样式

1.命令格式

命令行:Shademode

菜单:[视图]→[视觉样式]

设置当前视口的视觉样式。

2.操作步骤

针对当前视口,可进行如下操作来改变视觉样式。

命令: Shademode 执行Shademode命令

输入选项[二维线框(2D)/三维线框(3D)/消隐(H)/平面着色(F)/体着色(G)/

带边框平面着色(L)/带边框体着色(O)] <体着色>:选择视觉样式后回车结束命令以上各选项含义和功能说明如下:

二维线框(2D):显示用直线和曲线表示边界的对象。光栅和 OLE 对象、线型和线宽都是可见的。

三维线框(3D):显示用直线和曲线表示边界的对象。

消隐(H):显示用三维线框表示的对象并隐藏表示后面被遮挡的直线。

平面着色(F):在多边形面之间着色对象。此对象比体着色的对象平淡和粗糙。

体着色(G):着色多边形平面间的对象,并使对象的边平滑化。着色的对象外观较平滑和真实。

带边框平面着色(L):结合“平面着色”和“线框”选项。对象被平面着色,同时显示线框。

带边框体着色(O):结合“体着色”和“线框”选项。对象被体着色,同时显示线框。

图13-3 视觉样式示意

用户坐标系(UCS)

用户坐标系在二维绘图的时候也会用到,但没有三维那么重要。在三维制图的过程中,往往需要确定XY平面,很多情况下,单位实体的建立是在XY平面上产生的。所以用户坐标系在绘制三维图形的过程中,会根据绘制图形的要求,进行不断的设置和变更,这比绘制二维图形要频繁很多,正确地建立用户坐标系是建立3D模型的关键。

13.2.1UCS命令

1.命令格式

命令行:UCS

菜单:[工具]→[新建UCS(W)]

工具栏:[UCS]→[UCS]

用于坐标输入、操作平面和观察的一种可移动的坐标系统。

2.操作步骤

如图13-4(a)所示,把该图中的原点与C点重合,X轴方向为CA方向,Y轴方向为CB 方向,如图13-4(b)所示。

(a) (b)

图13-4 用Vpoint命令观看三维图形

命令: UCS 执行UCS命令

指定UCS的原点(O)/面(F)//对象(OB)/上一个(P)/视图(V)/世界(W)/3点(3)/

新建(N)/移动(M)/删除(D)/正交(G)/还原(R)/保存(S)/X/Y/Z/Z轴(ZA)/<世界>: 输入3 选择3点确定方式

新原点 <0,0,0>:点选点C 指定原点

正 X 轴上点

<,,>: 点选点A 指定X轴方向

X-Y 面上正 Y 值的点

<,,>:点选点B 指定Y轴方向

以上各选项含义和功能说明如下:

原点(O):只改变当前用户坐标系统的原点位置,X、Y 轴方向保持不变,创建新的 UCS。

图13-5 UCS设置原点

面(F):指定三维实体的一个面,使 UCS 与之对齐。可通过在面的边界内或面所在的边上单击以选择三维实体的一个面,亮显被选中的面。UCS 的 X 轴将与选

择的第一个面上的选择点最近的边对齐。

:列出所有定义的新 UCS 定义。

对象(OB):可选取弧、圆、标注、线、点、二维多义线、平面或三维面对象来定义新的 UCS。此选项不能用于下列对象:三维实体、三维多段线、三维网格、视

口、多线、面域、样条曲线、椭圆、射线、构造线、引线、多行文字。

图13-6 选择对象设置UCS

圆弧新 UCS 的原点为圆弧的圆心。X 轴通过距离选择点最近的圆弧端点。

圆新 UCS 的原点为圆的圆心。X 轴通过选择点。

标注新 UCS 的原点为标注文字的中点。新 X 轴的方向平行于当绘制该标注时生效的 UCS 的 X 轴。

直线离选择点最近的端点成为新 UCS 的原点。系统选择新的 X 轴使该直线位于新 UCS 的 XZ 平面上。该直线的第二个端点在新坐标系中

Y 坐标为零。

点该点成为新 UCS 的原点。

二维多段线多段线的起点成为新 UCS 的原点。X 轴沿从起点到下一顶点的线段延伸。

实体二维实体的第一点确定新 UCS 的原点。新 X 轴沿前两点之间的连线方向。

宽线宽线的“起点”成为新 UCS 的原点,X 轴沿宽线的中心线方向。三维面取第一点作为新 UCS 的原点,X 轴沿前两点的连线方向,Y 的正方向取自第一点和第四点。Z 轴由右手定则确定。

形、块参照、属性定义该对象的插入点成为新 UCS 的原点,新 X 轴由对象绕其拉伸方向旋转定义。用于建立新 UCS 的对象在新 UCS 中的旋转角度为零。

上一个(P):取回上一个 UCS 定义。

视图(V):以平行于屏幕的平面为 XY 平面,建立新的坐标系。UCS 原点保持不变。

图13-7 用当前视图方向设置UCS

世界(W):设置当前用户坐标系统为世界坐标系。世界坐标系 WCS 是所有用户坐标系的基准,不能被修改。

3点(3):指定新的原点以及 X、Y 轴的正方向。

新建(N):定义新的坐标系。

移动(M):移动当前 UCS 的原点或修改当前 UCS 的 Z 轴深度值,XY 平面的方向不发生改变

删除(D):删除已储存的坐标系统。

正交(G):以系统提供的六个正交 UCS 之一为当前 UCS。

图13-8 正交视图方向示意图

还原(R):取回已储存的 UCS,使之成为当前用户坐标系。

保存(S):保存当前 UCS 设置,并指定名称。

X、Y、Z:绕着指定的轴旋转当前的 UCS,以创建新的 UCS 。

图13-9 坐标系旋转示意

Z 轴(ZA):以特定的正向 Z 轴来定义新的 UCS。

13.2.2命名UCS

1.命令格式

命令行:DdUCS

菜单:[工具]→[命名UCS(U)]

工具栏:[UCS]→[显示UCS对话框]

命名UCS是UCS命令的辅助,通过命名UCS可以对以下三个方面进行设置。

1)“命名UCS”选项卡,显示当前图形中所设定的所有UCS,并提供详细的信息查询。可选择其中需要的UCS坐标置为当前使用。

图13-10 “命名UCS”显示和设置

2)“正交UCS”选项卡,列出相对于目前UCS的6个正交坐标系,有详细信息供查询,并提供置为当前功能。

图13-11 “正交UCS”显示和设置

3)“设置”选项卡,提供UCS的一些基础设定内同,如图13-12。一般情况下,没有特殊需要,不需要调整该设定。

图13-12 UCS的基本设置

绘制三维实体

13.3.1长方体

1.命令格式

命令行:Box

菜单:[绘图]→[实体]→[长方体(B)]

工具栏:[实体]→[长方体]

创建三维长方体对象。

2.操作步骤

创建边长都为10的立方体,如图13-13。

图13-13 用Box命令绘制立方体

命令: Box 执行Box命令

指定长方体的角点

或 [中心(C)] <0,0,0>: 点取一点指定图形的一个角点

指定角点或 [立方体(C)/长度(L)]: @10,10 指定XY平面上矩形大小

长方体高度: 10 指定高度,回车结束命令以上各选项含义和功能说明如下:

长方体的角点:指定长方体的第一个角点。

中心(C):通过指定长方体的中心点绘制长方体。

立方体(C):指定长方体的长、宽、高都为相同长度。

长度(L):通过指定长方体的长、宽、高来创建三维长方体。

3.注意

若输入的长度值或坐标值是正值,则以当前 UCS 坐标的X、Y、Z 轴的正向创建立图形;若为负值,则以X、Y、Z 轴的负向创建立图形。

13.3.2球体

1.命令格式

命令行:Sphere

菜单:[绘图]→[实体]→[球体(S)]

工具栏:[实体]→[球体]

绘制三维球体对象。默认情况下,球体的中心轴平行于当前用户坐标系 (UCS) 的 Z 轴。纬线与 XY 平面平行。

2.操作步骤

创建半径为10的球体,如图13-14。

图13-14 用Sphere命令创建球体

命令: Sphere 执行Sphere命令

球体中心: 点选一点指定球心位置

指定球体半径或 [直径(D)]:10 指定半径值,回车结束命令

以上各选项含义和功能说明如下:

球体半径(R):绘制基于球体中心和球体半径的球体对象。

直径(D):绘制基于球体中心和球体直径的球体对象。

13.3.3圆柱体

1.命令格式

命令行:Cylinder

菜单:[绘图]→[实体]→[圆柱体(C)]

工具栏:[实体]→[圆柱体]

创建三维圆柱体实体对象。

2.操作步骤

创建半径为10的,高度为10的圆柱体,如图13-15。

图13-15 用Cylinder命令创建圆柱体

命令: Cylinder 执行Cylinder命令

指定圆柱体底面的中心点或 [椭圆(E)] <0,0,0>: 点取一点指定圆心

指定圆柱体半径或 [直径(D)]: 10 指定圆半径

指定圆柱体高度或 [中心(C)]: 10 指定圆柱高度,回车结束命令

以上各选项含义和功能说明如下:

圆柱体底面的中心点:通过指定圆柱体底面圆的圆心来创建圆柱体对象。

椭圆(E):绘制底面为椭圆的三维圆柱体对象。

3.注意

若输入的高度值是正值,则以当前 UCS 坐标的Z 轴的正向创建立图形;若为负值,则以Z 轴的负向创建立图形。

13.3.4圆锥体

1.命令格式

命令行:Cone

菜单:[绘图]→[实体]→[圆锥体(O)]

工具栏:[实体]→[圆锥体]

创建三维圆锥体。

2.操作步骤

创建底面半径半径为10,高度为20的圆锥体,如图13-16。

图13-16 用Cone命令创建圆锥体

命令: Cone 执行Cone命令

指定圆锥体底面的中心点

或 [椭圆(E)] <0,0,0>: 点取一点指定底面圆心位置

指定圆锥体底面半径或 [直径(D)]: 10 指定底面圆半径

指定圆锥体高度或 [顶点(A)]: 20 指定高度,回车结束命令

以上各选项含义和功能说明如下:

圆锥体底面的中心点:指定圆锥体底面的中心点来创建三维圆锥体。

椭圆(E):创建一个底面为椭圆的三维圆锥体对象。

圆锥体高度:指定圆锥体的高度。输入正值,则以当前用户坐标系统 UCS 的 Z 轴正

方向绘制圆锥体,输入负值,则以 UCS 的 Z 轴负方向绘制圆锥体。13.3.5楔体

1.命令格式

命令行:Wedge

菜单:[绘图]→[实体]→[楔体(W)]

工具栏:[实体]→[楔体]

绘制三维楔体对象。

2.操作步骤

任意建立一个楔体,如图13-17。

图13-17 用Wedge命令创建楔体

命令: Wedge 执行Wedge命令

指定楔体的第一个角点或 [中心点(C)] <0,0,0>: 点取一点指定楔体位置

指定角点或 [立方体(C)/长度(L)]: 点取一点指点楔体底面矩形

楔高:点取一点指定楔体高度,回车结束命令

以上各选项含义和功能说明如下:

第一个角点:指定楔体的第一个角点。

立方体:创建各条边都相等的楔体对象

图13-18 各条边相等的楔体

长度:分别指定楔体的长、宽、高。其中长度与 X 轴对应,宽度与 Y 轴对应,高度与 Z 轴对应。

图13-19 楔体的长宽高示意

中心点(CE):指定楔体的中心点。

13.3.6圆环

1.命令格式

命令行:Torus

菜单:[绘图]→[实体]→[圆环体(T)]

工具栏:[实体]→[圆环]

绘制三维圆环实体对象。

2.操作步骤

建立一个管状物半径为10,圆环半径为20的圆环,如图13-20。

图13-20 用Torus命令创建圆环

命令: Torus 执行Torus命令

圆环体中心: <0,0,0> 点取一点指定圆环中心

指定圆环体的半径或 [直径(D)]: 20 指定圆环半径

指定圆管的半径或 [直径(D)]: 10 指定管状物半径,回车结束命令

以上各选项含义和功能说明如下:

半径(R):指定圆环体的半径。

直径(D):指定圆环体的直径。

3.注意

圆环由两半径定义:一个是管状物的半径,另一个是圆环中心到管状物中心的距离。

若指定的管状物的半径大于圆环的半径,即可绘制无中心的圆环,即自身相交的圆环。自交圆环体没有中心孔。

13.3.7拉伸

1.命令格式

命令行:Extrude

菜单:[绘图]→[实体]→[拉伸(X)]

工具栏:[实体]→[拉伸]

以指定的路径或指定的高度值和倾斜角度拉伸选定的对象来创建实体。

2.操作步骤

对图13-21(a)中的图形进行拉伸,拉伸高度为20,倾斜角为30度,结果如图13-21(b)。

(a) (b)

图13-21 用Extrude命令拉伸图形

命令: Extrude 执行Extrude命令

选择对象: 选择图形指定要拉伸的图形

选择集当中的对象: 1 提示选择对象的数量

选择对象: 回车结束选择

指定拉伸高度或拉伸路径(P): 20 指定拉伸高度

指定拉伸的倾斜角度 <0>: 30 指定拉伸倾角,回车结束命令

以上各选项含义和功能说明如下:

选择对象:选择要拉伸的对象。可进行拉伸处理的对象有平面三维面、封闭多段线、多边形、圆、椭圆、封闭样条曲线、圆环和面域。

指定拉伸高度:为选定对象指定拉伸的高度,若输入的高度值为正数,则以当前 UCS 的 Z 轴正方向拉伸对象,若为负数,则以 Z 轴负方向拉伸对象。

拉伸路径(P):为选定对象指定拉伸的路径,在指定路径后,系统将沿着选定路径拉伸选定对象的轮廓创建实体。

图13-22 用路径拉伸图形示意

3.注意

倾斜角度的值可为“-90—+90”之间的任何角度值,若输入正的角度值,则从基准对象逐渐变细地拉伸,若输入的为负的角度值,则从基准对象逐渐变粗地拉伸。角度为 0 时,表示在拉伸对象时,对象的粗细不发生变化,而且是在其所在平面垂直的方向上进行拉伸。当用户为对象指定的倾斜角和拉伸高度值很大时,将导致对象或对象的一部分在到达拉伸高度之前就已经汇聚到一点。

13.3.8旋转

1.命令格式

命令行:Revolve

菜单:[绘图]→[实体]→[旋转(R)]

工具栏:[实体]→[旋转]

将选取的二维对象以指定的旋转轴旋转,最后形成实体。

2.操作步骤

对图13-23(a)中的图形进行旋转360度,结果如图13-23(b)。

(a) (b)

图13-23 用Revolve命令创建旋转体

命令: Revolve 执行Revolve命令

选择对象: 选择要旋转的图形

选择集当中的对象: 1 提示选择对象的数量

选择对象: 回车结束选择

指定旋转轴的起始点或定义轴物体(O)/X轴(x)/Y轴(y): 点选轴端点

指定旋转轴一端点

指定轴的终点:点选轴另一端点指定旋转轴另一端点

指定旋转角度 <360>:360 指定旋转角度,回车结束命令

以上各选项含义和功能说明如下:

旋转轴的起始点:通过指定旋转轴上的两个点来确定旋转轴,轴的正方向为第一点指向第二点

物体(O):以选定的直线或多段线中的单条线段为旋转轴,接着围绕此旋转轴旋转一定角度,形成实体。

X 轴(x):以当前用户坐标系统 UCS 的 X 轴为旋转轴,旋转轴的正方向与 X 轴正方向一致。

Y 轴(y):以当前用户坐标系统 UCS 的 Y 轴为旋转轴,旋转轴的正方向与 Y 轴正方向一致。

旋转角度:指定旋转角度值。

13.3.9剖切

1.命令格式

命令行:Slice

菜单:[绘图]→[实体]→[剖切(L)]

工具栏:[实体]→[剖切]

将实体对象以平面剖切,并保留剖切实体的所有部分,或者保留指定的部分。

2.操作步骤

对图13-24(a)中的立方体进行剖切,留下一个四面体,结果如图13-24(b)。

(a) (b)

图13-24 用Slice命令剖切实体

命令: Slice 执行Slice命令

选择对象: 点选立方体指定剖切对象

选择集当中的对象: 1 提示选择对象的数量

选择对象: 回车结束选择

指定截面上的第一点或对象(O)/轴(Z)/视图(V)/平面(XY)/平面(YZ)/

平面(ZX): 点选点A

在平面上指定第二点:点选点B

在平面上指定第叁点: 点选点C 通过三点来确定剖切面

在要保留的一侧指定一点

或保留两侧(B):点选点D 指点保留部分,回车结束命令

以上各选项含义和功能说明如下:

截面上的第一点:通过指定三个点来定义剪切平面。

对象(O):定义剪切面与选取的圆、椭圆、弧、2D样条曲线或二维多段线对象对齐。轴(Z):通过指定剪切平面上的一个点,及垂直于剪切平面的一点定义剪切平面。

图13-25 通过设定Z轴确定剪切平面

视图(V):指定剪切平面与当前视口的视图平面对齐。

平面(XY):通过在 XY 平面指定一个点来确定剪切平面所在的位置,并使剪切平面与当前用户坐标系统 UCS 的 XY 平面对齐。

平面(YZ):通过在 YZ 平面指定一个点来确定剪切平面所在的位置,并使剪切平面与当前用户坐标系统 UCS 的 YZ 平面对齐。

平面(ZX):通过在 ZX 平面指定一个点来确定剪切平面所在的位置,并使剪切平面与当前用户坐标系统 UCS 的 ZX 平面对齐。

3.注意

剖切实体保留原实体的图层和颜色特性。

CAD三维图的绘制入门教程

图2-1 CAD 三维建模教程 一、工字型的绘制 步骤一:设置好绘图单位、绘图范围、线型、图层、颜色,打开捕捉功能。从下拉菜单View →Display →UCSIcon →On 关闭坐标显示。步骤二:根据图1所示尺寸绘制图形,得到如图1-1所示封闭图形。 步骤三:创建面域。在命令栏Command :输入Region ,用框选方式全部选中该图形,回车。出现提示:1 loop extracted ,1 Region created ,表示形成了一个封闭图形,创建了一 个面域。步骤四:对该面域进行拉伸操作。Draw →Solids →Extrude ,选中该面域的边框,回车。在命令栏提示:Specify height of extrusion or [Path]:30,回车,再回车。三维工字形实体就生成了。步骤五:观察三维实体。View →3D Views →SW Isometric ,再从View →Hide 进行消除隐藏线处理,观察,最后进行着色渲染,View →Shade →Gouraud Shaded ,如图1-2所示。 二、二维五角形到三维五角星的绘制 步骤一:设置好绘图单位、绘图范围、线型、图层、颜色,打开捕捉功能。步骤二:绘制一 个矩形,以矩形中心为圆心,作一个圆及一个椭圆,修整直线。步骤三:阵列直线,创建光 线效果。将直线段在360度范围内阵列72个,形成光线效果步骤。 步骤四:修整直线。以椭圆为边界,将直线每隔一条修剪至椭圆;同时以矩形为边界,将矩形外的线条全部修剪至矩形;矩形内没修的剪线条延伸至矩形。步骤五:绘制五角形。在上图的旁边绘制一个圆,再绘制这个圆的内接正五边形。将五边形的五个端点连成直线,修剪掉每边的中间部分就得到五角形。步骤六:绘制五角星。先用交叉窗口选择的方法将五角形 图1-1 平面图 图1-2 三维效果图 图2-2

CAD三维绘图基础教程

三维绘图基础 本章要点 三维视图 用户坐标系(UCS) 绘制三维实体 编辑三维实体 中望CAD 2010有较强的三维绘图功能,可以用多种方法绘制三维实体,方便的进行编辑,并可以用各种角度进行三维观察。在本章中将介绍简单的三维绘图所使用的功能,利用这些功能,用户可以设计出所需要的三维图纸。 三维视图 要进行三维绘图,首先要掌握观看三维视图的方法,以便在绘图过程中随时掌握绘图信息,并可以调整好视图效果后进行出图。 13.1.1 视点 1.命令格式 命令行:Vpoint 菜单:[视图]→[三维视图]→[视点(V)] 工具栏:[视图] 控制观察三维图形时的方向以及视点位置。工具栏中的点选命令实际是视点命令的10个常用的视角:俯视、仰视、左视、右视、前视、后视、东南等轴测、西南等轴测、东北等轴测、西北等轴测,用户在变化视角的时候,尽量用这10个设置好的视角,这样可以节省不少时间。 2.操作步骤 图13-1中表示的是一个简单的三维图形,仅仅从平面视图,用户较难判断单位图形的样子。这时我们可以利用Vpoint命令来调整视图的角度,如图13-1中的右下角的视图,

从而能够直观的感受到图形的形状。 图13-1 用Vpoint命令观看三维图形 命令: Vpoint 执行Vpoint命令 透视(PE)/平面(PL)/旋转(R)/<视点> <0,0,1>: 设置视点,回车结束命令 以上各选项含义和功能说明如下: 视点:以一个三维点来定义观察视图的方向的矢量。方向为从指定的点指向原点(0,0,0)。 透视(PE):打开或关闭“透视”模式。 平面(P):以当前平面为观察方向,查看三维图形。 旋转(R):指定观察方向与 XY 平面中 X 轴的夹角以及与 XY 平面的夹角两个角度,确定新的观察方向。 3.注意 此命令不能在“布局”选项卡中使用。 在运行Vpoint命令后,直接按回车键,会出现图13-2的设置对话框,用户可以通过

AUTOCAD三维绘图基础知识

AUTOCAD三维绘图基础知识 1、三维绘图的基本概念 ·平面 XY平面是2D平面,用户只能在Z=0的XY平面上建立2D模型. ·Z轴 Z轴是3D坐标中的第三轴, Z轴总是垂直于XY平面. ·平面视图(plan view) 当视线与Z轴平行时, 用户观察到的XY平面上的视图. ·标高(elevation): 从XY平面沿Z测量的Z坐标值.可以用ELEV命令设置对象的标高和厚度。 ·厚度(thickness) 对象从标高开始往上或往下拉伸的距离.可以用系统变量thickness来设置对象的厚度.具有厚度的对象可以进行消隐, 着色和渲染处理. 建立新文本时,将忽略当前的厚度设置而将其设置为0,但其后可用DDMODIFY命令修改. 2、建立简单的3D模型 3、3D坐标与视点 1) 3D空间中对象的位置用3D坐标来表示. 3D坐标是在2D坐标的基础上添加Z轴而实现的.

还可以用柱坐标(XY平面极坐标加Z轴坐标而成)或球坐标(用到原点的距离,XY平面从X轴开始的角度,与XY 平面的夹角)表示. 2)观察3D模型 在AUTOCAD中,用户可以使用系统本身提供的标准视图(俯视图、仰视图、前视图、后视图、右视图、以及各种轴侧视图)观察图形,也可以用有关命令设置视点的位置,从而建立新的视图。在建立了新的视图以后可以将其保存起来。AutoCAD 2004提供了灵活的选择视点的功能,Vpoint和DDVpoint命令是实现这一功能的两个不同的 操作方式,下面分别进行介绍。 在模型空间里,可以从不同的视点(VPOINT)来观察图形. 视点就是观察图形的方向. (1)设置视点 ·命令: DDVPOINT 弹出视点预置对话框,可以设定XY平面从X轴开始的角度,与XY平面的夹角的值.缺省时,两个角度都相对于WCS,如要相对于UCS选择相对于ucs. (2)使用三维动态观察器观察模型 ·命令: 3DORBIT

CAD3d三维建模制图的方法三维建模

CAD三维制图的方法 笔者于2003年在北京一家橱柜公司时,曾自行摸索了一套三维制图的方法。后来在从事集成家居、和室、园林等方面的设计工作中,又不时使用。个人认为简单的CAD三维制图、三维设计在有些时候是很好用的,起码以下两种情况挺好用:一是空间不大,如一个厨房、卫生间、一间和室;二是单体,如一个亭子、花架、座凳等等。 图纸是设计人员的意图的表达,一套好的图纸,是用最少的篇幅,表达出最全面的信息,它是设计人员的所有语言,让缺少专业读图基本技能的非专业人员——甲方、施工人员都能读懂,尤其在技术交底方面有优势。另外,在三视图完成后,可以旁边放一个透视图或轴测图,一是便于自己审视尺寸比例关系,二又有助于别人正确读图。 1、橱柜 2

一、首先要熟悉的 三维制图,第一部分是建模,而建模前首先要熟悉的就是以下几点: 1、等轴测视图; 2、实体创建,包括实体编辑; 3、熟练应用坐标系统; 4、根据我的经验,尽量选用东北等轴测视图。

二、实体创建 视图没什么好说的。接下来说实体创建,实体创建软件提供了几种办法:a、基本实体(图中2), b、由面域通过拉伸或旋转创建(图中3),c、稍为复杂的图形基本可以用“实体”及“实体编辑”工具栏的其余命令实现。其中用的最多的是布尔运算(图中4)。 了解和熟悉这些命令的办法很简单,鼠标放在相应图标上,左下角有提示。在操作过程中,请一定多留意,命令提示栏的内容,没事都试试,你会有惊 三、实体创建中要注意的 实体创建中最要注意的是,像做任何事一样,心中必须要有整体,在此基础上,要有合理分解的思想。下图示意:

如上,亭子(包括石桌石凳)在实际绘制过程中,仅仅分解成了共大小不同的7个部件。在实际作图中,要习惯于先粗后细,主要是借助图块的定义和在位编辑。可以用最省事的,带“基点复制”后“粘贴为块”的办法,手不用太快也2秒搞定。先搞好定位,布置位置后,用复制到空白处的图块,做在位编辑,进行细化。改图或调整尺寸也很方便。熟练以后,绘图用的时间远远小于你思考和构思的时间。

CAD三维图的绘制入门教程(20200315183725).pdf

图2-1 CAD 三维建模教程 一、工字型的绘制 步骤一:设置好绘图单位、绘图范围、线型、图层、颜色,打开捕捉功能。从下拉菜单View →Display →UCSIcon →On 关闭坐标显示。步骤二:根据图 1所示尺寸绘制图形,得到 如图1-1所示封闭图形。 步骤三:创建面域。在命令栏 Command :输入Region ,用框选方式全部选中该图形,回车。出现提示: 1 loop extracted ,1 Region created ,表示形成了一个封闭图形,创建了一个面域。步骤四:对该面域进行拉伸操作。 Draw →Solids →Extrude ,选中该面域的边框,回车。在命令栏提示: Specify height of extrusion or [Path]:30,回车,再回车。三维工字形实体就生成了。步骤五:观察三维实体。 View →3D Views →SW Isometric ,再从View →Hide 进行消除隐藏线处理,观察,最后进行着色渲染, View →Shade →Gouraud Shaded ,如图1-2所示。二、二维五角形到三维五角星的绘制 步骤一:设置好绘图单位、绘图范围、线型、图层、颜色,打开捕捉功能。步骤二:绘制一个矩形,以矩形中心为圆心,作一个圆及一个椭圆,修整直线。步骤三:阵列直线,创建光 线效果。将直线段在360度范围内阵列72个,形成光线效果步骤。 步骤四:修整直线。以椭圆为边界,将直线每隔一条修剪至椭圆;同时以矩形为边界,将矩形外的线条全部修剪至矩形;矩形内没修的剪线条延伸至矩形。步骤五:绘制五角形。在上 图的旁边绘制一个圆,再绘制这个圆的内接正五边形。将五边形的五个端点连成直线, 修剪掉每边的中间部分就得到五角形。步骤六:绘制五角星。先用交叉窗口选择的方法将五角形 图1-1 平面图 图1-2 三维效果图 图2-2

cad基础三维图形绘制教程

cad基础三维图形绘制教程 篇一:CAD三维绘图教程与案例,很实用 CAD 绘制三维实体基础 AutoCAD除具有强大的二维绘图功能外,还具备基本的三维造型能力。若物体并无复杂的外表曲面及多变的空间结构关系,则使用AutoCAD可以很方便地建立物体的三维模型。本章我们将介绍AutoCAD 三维绘图的基本知识。1、三维模型的分类及三维坐标系;2、三维图形的观察方法;3、创建基本三维实体;4、由二维对象生成三维实体; 5、编辑实体、实体的面和边; 11.1 三维几何模型分类 在AutoCAD中,用户可以创建3种类型的三维模型:线框模型、表面模型及实体模型。这3种模型在计算机上的显示方式是相同的,即以线架结构显示出来,但用户可用特定命令使表面模型及实体模型的真实性表现出来。 11.1.1线框模型(Wireframe Model) 线框模型是一种轮廓模型,它是用线(3D空间的直线及曲线)表达三维立体,不包含面及体的信息。不能使该模型消隐或着色。又由于其不含有体的数据,用户也不能得到对象的质量、重心、体积、惯性矩等物理特性,不能进行布尔运算。图11-1显示了立体的线框模型,在消隐模式下也看到后面的线。但线框模型结构简单,易于绘制。 11.1.2表面模型(Surface Model)

表面模型是用物体的表面表示物体。表面模型具有面及三维立体边界信息。表面不透明,能遮挡光线,因而表面模型可以被渲染及消隐。对于计算机辅助加工,用户还可以根据零件的表面模型形成完整的加工信息。但是不能进行布尔运算。如图11-2所示是两个表面模型的消隐效果,前面的薄片圆筒遮住了后面长方体的一部分。 图11-1线框模型1 图11-2表面模型 11.1.3 实体模型 实体模型具有线、表面、体的全部信息。对于此类模型,可以区分对象的内部及外部,可以对它进行打孔、切槽和添加材料等布尔运算,对实体装配进行干涉检查,分析模型的质量特性,如质心、体积和惯性矩。对于计算机辅助加工,用户还可利用实体模型的数据生成数控加工代码,进行数控刀具轨迹仿真加工等。如图11-3所示是实体模型。 图11-3实体模型 11.2三维坐标系实例——三维坐标系、长方体、倒角、删除面AutoCAD的坐标系统是三维笛卡儿直角坐标系,分为世界坐标系(WCS)和用户坐标系(UCS)。图11-4表示的是两种坐标系下的图标。图中“X”或“Y”的剪头方向表示当前坐标轴X轴或Y轴的正方向,Z轴正方向用右手定则判定。 世界坐标 图11-4表示坐标系的图标

CAD三维实体绘制详细教程+例题

CAD 绘制三维实体基础 1、三维模型的分类及三维坐标系; 2、三维图形的观察方法; 3、创建基本三维实体; 4、由二维对象生成三维实体; 5、编辑实体、实体的面和边; 1、建立用户坐标系; 2、编辑出版三维实体。 讲授8学时 上机8学时 总计16学时 AutoCAD除具有强大的二维绘图功能外,还具备基本的三维造型能力。若物体并无复杂的外表曲面及多变的空间结构关系,则使用AutoCAD可以很方便地建立物体的三维模型。本章我们将介绍AutoCAD三维绘图的基本知识。 11.1 三维几何模型分类 在AutoCAD中,用户可以创建3种类型的三维模型:线框模型、表面模型及实体模型。这3种模型在计算机上的显示方式是相同的,即以线架结构显示出来,但用户可用特定命令使表面模型及实体模型的真实性表现出来。 11.1.1线框模型(Wireframe Model) 线框模型是一种轮廓模型,它是用线(3D空间的直线及曲线)表达三维立体,不包含面及体的信息。不能使该模型消隐或着色。又由于其不含有体的数据,用户也不能得到对象的质量、重心、体积、惯性矩等物理特性,不能进行布尔运算。图11-1显示了立体的线框模型,在消隐模式下也看到后面的线。但线框模型结构简单,易于绘制。 11.1.2 表面模型(Surface Model) 表面模型是用物体的表面表示物体。表面模型具有面及三维立体边界信息。表面不透明,能遮

挡光线,因而表面模型可以被渲染及消隐。对于计算机辅助加工,用户还可以根据零件的表面模型形成完整的加工信息。但是不能进行布尔运算。如图11-2所示是两个表面模型的消隐效果,前面的薄片圆筒遮住了后面长方体的一部分。 11.1.3 实体模型 实体模型具有线、表面、体的全部信息。对于此类模型,可以区分对象的部及外部,可以对它进行打孔、切槽和添加材料等布尔运算,对实体装配进行干涉检查,分析模型的质量特性,如质心、体积和惯性矩。对于计算机辅助加工,用户还可利用实体模型的数据生成数控加工代码,进行数控刀具轨迹仿真加工等。如图11-3所示是实体模型。 11.2 三维坐标系实例——三维坐标系、长方体、倒角、删除面AutoCAD的坐标系统是三维笛卡儿直角坐标系,分为世界坐标系(WCS)和用户坐标系(UCS)。图11-4表示的是两种坐标系下的图标。图中“X”或“Y”的剪头方向表示当前坐标轴X轴或Y 图11-1 线框模型 图11-2 表面模型 图11-3 实体模型

CAD三维绘图指令

1.三维拉伸EXT 2.创建三维阵列 3A 3.创建三维面 3F 4.在三维空间创建由直线段组成的多段线 3P 5.在二维和三维空间中将某对象与其他对象对齐 AL 6.加载AutoLISP、ADS 和 ARX 应用程序 AP 7.创建圆弧 A 8.计算对象或定义区域的面积和周长 AA 9.创建按指定方式排列的多重对象拷贝 AR 10.执行外部数据库命令的管理功能 AAD 11.输出选择对象的链接信息 AEX 12.管理对象和外部数据库之间的链接 ALI 13.显示并编辑表数据并创建链接和选择集 ARO 14.从链接到文字选择集和图形选择集的行中创建选择集 ASE 15.执行结构查询语言 (SQL) 语句 ASQ 16.创建属性定义 -AT 17.改变不依赖于块定义的属性信息 -ATE 18.用图案填充封闭区域 H或BH 19.根据选定对象创建块定义 -B 20.用对话框定义块 B 21.用封闭区域创建面域或多段线 BO 22.(使用命令行)用封闭区域创建面域或多段线 -BO

23.部分删除对象或把对象分解为两部分 BR 24.给对象加倒角 CHA 25.修改现有对象的特性 -CH 26.根据圆心和直径或半径绘制圆 C 27.复制对象 CO或CP 28.创建属性定义 AT 29.编辑单个块的可变属性 ATE 30.修改对象的颜色、图层、线型和厚度 CH 31.设置新对象的颜色 COL 32.编辑文字和属性定义 ED 33.显示夹点并设置颜色 GR 34.创建并修改标注样式 D 35.插入块或另一图形 I 36.控制现有对象的特性 MO 37.修改对象名称 REN 38.设置绘图辅助工具 RM 39.设置对象选择模式 SE 40.管理已定义的用户坐标系 UC 41.选择预置用户坐标系 UCP 42.控制坐标和角度的显示格式及精度 UN 43.创建和恢复视图 V 44.设置三维观察方向 VP

CAD绘制三维实体教程

CAD 绘制三维实体基础 CAD 除具有强大的二维绘图功能外,还具备基本的三维造型能力。若物体并无复杂的外表曲面及多变的空间结构关系,则使用AutoCAD 可以很方便地建立物体的三维模型。本章我们将介绍CAD 三维绘图的基本知识。 11.1 三维几何模型分类 在AutoCAD 中,用户可以创建3种类型的三维模型:线框模型、表面模型及实体模型。这3种模型在计算机上的显示方式是相同的,即以线架结构显示出来,但用户可用特定命令使表面模型及实体模型的真实性表现出来。 11.1.1线框模型(Wireframe Model) 线框模型是一种轮廓模型,它是用线(3D 空间的直线及曲线)表达三维立体,不包含面及体的信息。不能使该模型消隐或着色。又由于其不含有体的数据,用户也不能得到对象的质量、重心、体积、惯性矩等物理特性,不能进行布尔运算。图11-1显示了立体的线框模型,在消隐模式下也看到后面的线。但线框模型结构简单,易于绘制。 11.1.2 表面模型(Surface Model ) 表面模型是用物体的表面表示物体。表面模型具有面及三维立体边界信息。表面不透明,能遮挡光线,因而表面模型可以被渲染及消隐。对于计算机辅助加工,用户还可以根据零件的表面模型形成完整的加工信息。但是不能进行布尔运算。如图11-2所示是两个表面模型的消隐效果,前面的 1、三维模型的分类及三维坐标系; 2、三维图形的观察方法; 3、创建基本三维实体; 4、由二维对象生成三维实体; 5、编辑实体、实体的面和边; 1、建立用户坐标系; 2、编辑出版三维实体。 讲授8学时 上机8学时 总计16学时

薄片圆筒遮住了后面长方体的一部分。 11.1.3 实体模型 实体模型具有线、表面、体的全部信息。对于此类模型,可以区分对象的内部及外部,可以对它进行打孔、切槽和添加材料等布尔运算,对实体装配进行干涉检查,分析模型的质量特性,如质心、体积和惯性矩。对于计算机辅助加工,用户还可利用实体模型的数据生成数控加工代码,进行数控刀具轨迹仿真加工等。如图11-3 所示是实体模型。 11.2 三维坐标系实例——三维坐标系、长方体、倒角、删除面 AutoCAD 的坐标系统是三维笛卡儿直角坐标系,分为世界坐标系(WCS )和用户坐标系(UCS )。图11-4表示的是两种坐标系下的图标。 图中“X ”或“Y ”的箭头方向表示当前坐标轴X 轴或Y 轴的正方向,Z 轴正方向用右手定则判定。 图11-1 线框模型 图11-2 表面模型 图11-3 实体模型

CAD三维绘图教程和案例很实用

CAD 绘制三维实体基础 AutoCAD除具有强大的二维绘图功能外,还具备基本的三维造型能力。若物体并无复杂的外表曲面及多变的空间结构关系,则使用AutoCAD可以很方便地建立物体的三维模型。本章我们将介绍AutoCAD三维绘图的基本知识。 11.1 三维几何模型分类 在AutoCAD中,用户可以创建3种类型的三维模型:线框模型、表面模型及实体模型。这3种模型在计算机上的显示方式是相同的,即以线架结构显示出来,但用户可用特定命令使表面模型及实体模型的真实性表现出来。 11.1.1线框模型(Wireframe Model) 线框模型是一种轮廓模型,它是用线(3D空间的直线及曲线)表达三维立体,不包含面及体的信息。不能使该模型消隐或着色。又由于其不含有体的数据,用户也不能得到对象的质量、重心、体积、惯性矩等物理特性,不能进行布尔运算。图11-1显示了立体的线框模型,在消隐模式下也看到后面的线。但线框模型结构简单,易于绘制。 11.1.2 表面模型(Surface Model) 表面模型是用物体的表面表示物体。表面模型具有面及三维立体边界信息。表面不透明,能遮挡光线,因而表面模型可以被渲染及消隐。对于计算机辅助加工,用户还可以根据零件的表面模型形成完整的加工信息。但是不能进行布尔运算。如图11-2所示是两个表面模型的消隐效果,前面的薄片圆筒遮住了后面长方体的一部分。 图11-1 线框模型 图11-2 表面模型 1、三维模型的分类及三维坐标系; 2、三维图形的观察方法; 3、创建基本三维实体; 4、由二维对象生成三维实体; 5、编辑实体、实体的面和边;

11.1.3 实体模型 实体模型具有线、表面、体的全部信息。对于此类模型,可以区分对象的内部及外部,可以对它进行打孔、切槽和添加材料等布尔运算,对实体装配进行干涉检查,分析模型的质量特性,如质心、体积和惯性矩。对于计算机辅助加工,用户还可利用实体模型的数据生成数控加工代码,进行数控刀具轨迹仿真加工等。如图11-3所示是实体模型。 11.2 三维坐标系实例——三维坐标系、长方体、倒角、删除面 AutoCAD的坐标系统是三维笛卡儿直角坐标系,分为世界坐标系(WCS)和用户坐标系(UCS)。图11-4表示的是两种坐标系下的图标。图中“X”或“Y”的剪头方向表示当前坐标轴X轴或Y轴的正方向,Z轴正方向用右手定则判定。 缺省状态时,AutoCAD的坐标系是世界坐标系。世界坐标系是唯一的,固定不变的,对于二维绘图,在大多数情况下,世界坐标系就能满足作图需要,但若是创建三维模型,就不太方便了,因为用户常常要在不同平面或是沿某个方向绘制结构。如绘制图11-5所示的图形,在世界坐标系下是不能完成的。此时需要以绘图的平面为XY坐标平面,创建新的坐标系,然后再调用绘图命令绘制图形。 图11-3 实体模型 图11-4 表示坐标系的图标 世界坐标

CAD三维入门经典教程

CAD三维建模 CAD三维建模 (1) 1.CAD三维建模首先应做什么? (2) 2.何为三维世界坐标系? (2) 3.如何灵活使用三维坐标? (2) 4.如何使用柱面坐标和球面坐标? (2) 5.如何认定CAD的作图平面? (3) 6.哪些二维绘图中的命令可以在三维模型空间继续使用? (3) 7.哪些二维编辑命令可在三维空间继续使用? (3) 8.如何确定三维观察方向? (3) 9.如何使用过滤坐标? (4) 10.为什么要采用多视口观察实体? (5) 11.如何将各分线段合并为一条多段线? (6) 12.如何创建面域并进行布尔运算? (6) 13.如何保证在三维建模时作图的清晰快捷? (6) 14.三维多义线有什么用途? (6) 15.如何使用三维平面命令? (6) 16.三维平面PFACE又如何使用呢? (7) 17.哪些三维曲面命令要经常使用? (7) 18.在使用四个三维多边形网格曲面之前应先做什么工作? (8) 19.三维旋转曲面有那些使用技巧? (8) 20.三维直纹曲面有什么使用技巧? (9) 21.边界曲面是否有更灵活的使用方法? (10) 22.虽说已对三维绘图命令较为熟练,但仍难以快速制作所要的模型,是什么原因? (10) 23.如何使用镜像命令? (11) 24.如何使用三维阵列命令? (11) 25.如何使用三维旋转命令? (13) 26.如何绘制三维四坡屋顶面? (13) 27.如何生成扭曲面? (14) 28.如何将两个不同方位的三维实体按要求对齐? (14) 29.在利用面域拉伸或旋转成实体时,看似封闭的线框为什么不能建立面域? (15) 30.三维实体命令在使用中有什么技巧? (15) 31.球体命令使用有什么技巧? (16) 32.圆柱体命令使用有什么技巧? (16) 33.圆锥体在三维设计中是否很少见? (17) 34.圆环体有哪些使用技巧? (17) 35.拉伸命令的使用技巧在哪些方面? (18)

cad三维建模基础教程

cad三维建模基础教程 cad三维建模基础教程: 11.1三维几何模型分类 在AutoCAD中,用户可以创建3种类型的三维模型:线框模型、表面模型及实体模型。这3种模型在计算机上的显示方式是相同的,即以线架结构显示出来,但用户可用特定命令使表面模型及实体模 型的真实性表现出来。 11.1.1线框模型(WireframeModel) 线框模型是一种轮廓模型,它是用线(3D空间的直线及曲线)表 达三维立体,不包含面及体的信息。不能使该模型消隐或着色。又 由于其不含有体的数据,用户也不能得到对象的质量、重心、体积、惯性矩等物理特性,不能进行布尔运算。图11-1显示了立体的线框 模型,在消隐模式下也看到后面的线。但线框模型结构简单,易于 绘制。 11.1.2表面模型(SurfaceModel) 表面模型是用物体的表面表示物体。表面模型具有面及三维立体边界信息。表面不透明,能遮挡光线,因而表面模型可以被渲染及 消隐。对于计算机辅助加工,用户还可以根据零件的表面模型形成 完整的加工信息。但是不能进行布尔运算。如图11-2所示是两个表 面模型的消隐效果,前面的薄片圆筒遮住了后面长方体的一部分。 11.1.3实体模型 实体模型具有线、表面、体的全部信息。对于此类模型,可以区分对象的内部及外部,可以对它进行打孔、切槽和添加材料等布尔 运算,对实体装配进行干涉检查,分析模型的质量特性,如质心、 体积和惯性矩。对于计算机辅助加工,用户还可利用实体模型的数 据生成数控加工代码,进行数控刀具轨迹仿真加工等。如图11-3所 示是实体模型。

11.2三维坐标系实例——三维坐标系、长方体、倒角、删除面 AutoCAD的坐标系统是三维笛卡儿直角坐标系,分为世界坐标系(WCS)和用户坐标系(UCS)。图11-4表示的是两种坐标系下的图标。 图中“X”或“Y”的剪头方向表示当前坐标轴X轴或Y轴的正方向,Z轴正方向用右手定则判定。 世界坐标系 缺省状态时,AutoCAD的坐标系是世界坐标系。世界坐标系是唯 一的,固定不变的,对于二维绘图,在大多数情况下,世界坐标系 就能满足作图需要,但若是创建三维模型,就不太方便了,因为用 户常常要在不同平面或是沿某个方向绘制结构。如绘制图11-5所示 的图形,在世界坐标系下是不能完成的。此时需要以绘图的平面为 XY坐标平面,创建新的坐标系,然后再调用绘图命令绘制图形。 用户坐标系 任务:绘制实体。 目的:通过绘制此图形,学习长方体命令、实体倒角、删除面命令和用户坐标系的建立方法。 知识的储备:基本绘图命令和对象捕捉、对象追踪的应用。 绘图步骤分解: 1.绘制长方体 调用长方体命令: 实体工具栏: 下拉菜单:[绘图][实体][长方体] 命令窗口:BOX' AutoCAD提示: 指定长方体的角点或[中心点(CE)]<0,0,0>:在屏幕上任意点单击

CAD2010三维绘图基础教程

三维绘图基础 本章要点 ?三维视图 ?用户坐标系(UCS) ?绘制三维实体 ?编辑三维实体 中望CAD 2010有较强的三维绘图功能,可以用多种方法绘制三维实体,方便的进行编辑,并可以用各种角度进行三维观察。在本章中将介绍简单的三维绘图所使用的功能,利用这些功能,用户可以设计出所需要的三维图纸。 13.1 三维视图 要进行三维绘图,首先要掌握观看三维视图的方法,以便在绘图过程中随时掌握绘图信息,并可以调整好视图效果后进行出图。 13.1.1 视点 1.命令格式 命令行:Vpoint 菜单:[视图]→[三维视图]→[视点(V)] 工具栏:[视图] 控制观察三维图形时的方向以及视点位置。工具栏中的点选命令实际是视点命令的10个常用的视角:俯视、仰视、左视、右视、前视、后视、东南等轴测、西南等轴测、东北等轴测、西北等轴测,用户在变化视角的时候,尽量用这10个设置好的视角,这样可以节省不少时间。 2.操作步骤 图13-1中表示的是一个简单的三维图形,仅仅从平面视图,用户较难判断单位图形的样子。这时我们可以利用Vpoint命令来调整视图的角度,如图13-1中的右下角的视图, - 274 -

实用标准文案 精彩文档 从而能够直观的感受到图形的形状。 图13-1 用Vpoint 命令观看三维图形 命令: Vpoint 执行Vpoint 命令 透视(PE)/平面(PL)/旋转(R)/<视点> <0,0,1>: 设置视点,回车结束命令 以上各选项含义和功能说明如下: 视点:以一个三维点来定义观察视图的方向的矢量。方向为从指定的点指向原点 (0,0,0)。 透视(PE):打开或关闭“透视”模式。 平面(P):以当前平面为观察方向,查看三维图形。 旋转(R):指定观察方向与 XY 平面中 X 轴的夹角以及与 XY 平面的夹角两个角 度,确定新的观察方向。 3.注意 此命令不能在“布局”选项卡中使用。 在运行Vpoint 命令后,直接按回车键,会出现图13-2的设置对话框,用户可以通过

CAD2007三维制图教程

CAD三维建模 1. CAD三维建模首先应做什么? 2.何为三维世界坐标系? 3.如何灵活使用三维坐标? 4.如何使用柱面坐标和球面坐标? 5.如何认定CAD的作图平面? 6.哪些二维绘图中的命令可以在三维模型空间继续使用? 7.哪些二维编辑命令可在三维空间继续使用? 8. 如何确定三维观察方向? 9.如何使用过滤坐标? 10.为什么要采用多视口观察实体? 11.如何将各分线段合并为一条多段线? 12.如何创建面域并进行布尔运算? 13.如何保证在三维建模时作图的清晰快捷? 14.三维多义线有什么用途? 15.如何使用三维平面命令? 16.三维平面PFACE又如何使用呢? 17.哪些三维曲面命令要经常使用? 18.在使用四个三维多边形网格曲面之前应先做什么工作? 19.三维旋转曲面有那些使用技巧? 20.三维直纹曲面有什么使用技巧? 21.边界曲面是否有更灵活的使用方法? 22.虽说已对三维绘图命令较为熟练,但仍难以快速制作所要的模型,是什么原因?23.如何使用镜像命令? 24.如何使用三维阵列命令? 25.如何使用三维旋转命令? 26.如何绘制三维四坡屋顶面? 27.如何生成扭曲面? 28.如何将两个不同方位的三维实体按要求对齐? 29.在利用面域拉伸或旋转成实体时,看似封闭的线框为什么不能建立面域? 30.三维实体命令在使用中有什么技巧? 31.球体命令使用有什么技巧? 32.圆柱体命令使用有什么技巧? 33.圆锥体在三维设计中是否很少见? 34.圆环体有哪些使用技巧? 35.拉伸命令的使用技巧在哪些方面? 1. CAD三维建模首先应做什么? 答:首先应当熟悉世界坐标系和三维空间的关系。其次是掌握CAD的用户坐标系以及多个视图的使用技巧。另外必须熟悉面域的操作和多段线的编辑。至于基本立体的绘图练习全靠反复训练,掌握各自的特点。 切记:CAD的每一个命令中都蕴涵着各自的技巧,好好探索和熟练它们。

cad里3d制图的入门教程

cad里3d制图的入门教程 CAD 绘制三维实体基础 AutoCAD除具有强大的二维绘图功能外,还具备基本的三维造型能力。若物体并无复杂的外表曲面及多变的空间结构关系,则使用AutoCAD可以很方便地建立物体的三维模型。本章我们将介绍AutoCAD三维绘图的基本知识。 1、三维模型的分类及三维坐标系; 2、三维图形的观察方法; 3、创建基本三维实体; 4、由二维对象生成三维实体; 5、实体、实体的面和边; 11.1 三维几何模型分类 在AutoCAD中,用户可以创建3种类型的三维模型:线框模型、表面模型及实体模型。这3种模型在计算机上的显示方式是相同的,即以线架结构显示出来,但用户可用特定命令使表面模型及实体模型的真实性表现出来。 11.1.1线框模型(Wireframe Model) 线框模型是一种轮廓模型,它是用线(3D空间的直线及曲线)表达三维立体,不包含面及体的信息。不能使该模型消隐或着色。又由于其不含有体的数据,用户也不能得到对象的质量、重心、体积、惯

性矩等物理特性,不能进行布尔运算。图11-1显示了立体的线框模型,在消隐模式下也看到后面的线。但线框模型结构简单,易于绘制。 11.1.2 表面模型(Surface Model) 表面模型是用物体的表面表示物体。表面模型具有面及三维立体边界信息。表面不透明,能遮挡光线,因而表面模型可以被渲染及消隐。对于计算机辅助加工,用户还可以根据零件的表面模型形成完整的加工信息。但是不能进行布尔运算。如图11-2所示是两个表面模型的消隐效果,前面的薄片圆筒遮住了后面长方体的一部分。 图11-1 线框模型 1 图11-2 表面模型 11.1.3 实体模型 实体模型具有线、表面、体的全部信息。对于此类模型,可以区分对象的内部及外部,可以对它进行打孔、切槽和添加材料等布尔运算,对实体装配进行干涉检查,分析模型的质量特性,如质心、体积和惯性矩。对于计算机辅助加工,用户还可利用实体模型的数据生成数控加工代码,进行数控刀具轨迹仿真加工等。如图11-3所示是实体模型。

cad三维建模教程

CAD三维建模 1.CAD三维建模首先应做什么?答:首先应当熟悉世界坐标系和三维空间的关系。其次是掌握CAD的用户坐标系以及多个视图的使用技巧。另外必须熟悉面域的操作和多段线的编辑。至于基本立体的绘图练习全靠反复训练,掌握各自的特点。 切记:CAD的每一个命令中都蕴涵着各自的技巧,好好探索和熟练它们。 2.何为三维世界坐标系?答:世界坐标系是CAD在作图时,用于确定平面或空间点位置的一个笛卡尔坐标体系,每一个坐标的正向和另两个坐标的旋向必须符合右手定则。CAD 在平面作图时的三维世界坐标系标志是坐标符号图中有一“W”字样。 一般将X-Y平面理解为水平面,Z轴方向表示高度距离,就是说“Z”值等同于用来确定X-Y水平面高度的标高命令“ELEV”。无论是“Z”值还是“ELEV”值,其“+”值表示在X-Y面上方,而“-”值表示在X-Y面的下方。用户在作图时要切记这一点。 注意:不管你的三维建模设计多复杂,作图过程中一定要有个基本坐标体系不能变。否则,作图方向的紊乱,将使你陷入困境! 3.如何灵活使用三维坐标?答:在三维实体建模的作图过程中,要经常地变换坐标系统,从而有利于作图。CAD的世界坐标系是不变的,主要是用户坐标系的变换,其命令为“UCS”,它可以完成平移、新建坐标方向、旋转等功能。执行过“UCS”后,命令行提示如下: 用户可以选择需要的项目。如果选择新建项,即键如“N”后回车,则命令行再次显示为: 用户即可确定Z轴方向,利用三点重新定坐标系或分别绕X、Y、Z轴旋转任意角度。也可以打开工具条点击图标,如图一所示,常用的项目用户一定要熟练。 图一坐标变换工具条 注意:坐标“UCS”的变换是作图方向或实体定位的需要,不可任意倾斜。 4.如何使用柱面坐标和球面坐标?答:这两个坐标主要适用于三维建模作图,而且在三维模型空间较为直观。尤其是在渲染效果图中用来确定灯光的位置十分方便。 柱面坐标的形式为:(R<角度1,H),相对坐标形式为:(@ R<角度1,H),其中R为柱面的半径,角度1为柱面上的点在X-Y平面上的投影点与X轴正向的夹角,H为距X-Y 平面的高度值。利用柱面坐标很容易在圆柱实体的表面上确定一点的位置。 球面坐标的形式为:(R<角度1<角度2),相对坐标形式为:(@ R<角度1<角度2),其中R为球面的半径,角度1为球面上的点X-Y平面上的投影点与X轴正向的夹角,X-Y 平面应过球面中心,角度2为球面上的点与X-Y平面的夹角。在球体表面上定点较为容易。 切记:柱面和球面坐标可以绘制三维空间折线,尤其是绘制圆柱和球面螺旋线。 5.如何认定CAD的作图平面?答:CAD的作图平面是X-Y坐标面,或者是在与X-Y坐标面平行的平面上作图。不论是二维绘图还是三维建模中的大部分作图都在该平面上完成,栅格也是在该平面上显示。因此一般将X-Y平面称为平面视图(PLAN)。

CAD三维建模练习

【三维练习题29】

本题主要是介绍: 1、再次复习“拉升”命令的使用。 2、再介绍“剖切”命令的用法。 最近几题,都是介绍“剖切”命令,这个命令的重要性,仅次于“拉升”、“旋转”和“布尔运算”,也是一个比较重要、且经【三维练习题28】

本题主要是介绍: 1、还是复习“拉升”命令的使用。 2、再介绍“剖切”命令的多种用法。 最近几题,都是介绍“剖切”命令,这个命令的重要性,仅次于“拉升”、“旋转”和“布尔运算”,也是一个比较重要、且经常要【AutoCAD三维建模 36 】—习题(36)—三维旋转、差集、倒角 【三维练习题36】

本题主要是介绍: 1、本题用“三维旋转”命令旋转面域,以达到所要求的角度 2、再使用“拉伸”命令,拉伸成三个实体 3、利用“差集”命令,在两个实体减去一个小实体 4、运用“倒角”命令,使实体达到预期目标用到的命令。希望大家多多练习。常要用到的命令。希望大家多多练习。AutoCAD三维建模 35 】—习题(35)—三维旋转、拉伸、交集 【三维练习题35】

本题主要是介绍: 1、本题用两次“三维旋转”命令旋转面域,以达到所要求的效果。 2、再使用“拉伸”命令,拉伸成交合的两个实体 3、利用“交集”命令,使两个实体产【AutoCAD三维建模 1 】—习题(1)—拉升、倒角 从现在开始,我们逐步进入到AutoCAD的三维建模中去,我准备了大量的三维习题,由简而繁,一道一道地讲解绘图过程,使大家逐步熟悉CAD各个三维命令的使用,通过这一系列的讲解,大家应能熟练地进行三维建模。 在机械制造业,如能提供一幅三视图纸,附加一个形象的立体图,给加工者去制作, 那是很完美的事情。因此我觉得,学好三维建模,其实比学会渲染更重要。所以对广大的 初学者而言,一开始,应尽心尽力地先学好三维建模,只有能熟练地进行三维建模以后, 再搞些渲染,这样,不仅图画的正确清爽,而且效果上佳,这就更是锦上添花了。 三维建模的实体,可以在AutoCAD里快速生成三视图和消隐立体图,从而付之打印。我每次发的三维题目(三视图和实体图),就是用这个方法生成的。目前,这个方法,我正在 整理,待完善后发专贴告诉大家。以期望对大家的工作有所帮助,也要让大家知道,在CAD 中做三维建模也是一件很方便的事,包括从建模到出图。 我的这个系列,不讲究突飞猛进,不搞花花活,讲究的是循序渐进,从最基础的做起 。只有基础打结实了,这高楼大厦才能稳固,才能造得高。 一开始的题目,可能对有一些基础的人来讲,过于简单,因我也是刚开始学习CAD的三维建模,但这些都是基础,我觉得很有必要讲解一下,不要等到搞复杂图形时,对某基础 命令不会用,再反过来学习,那就费时费工了。 由于每道题的绘图步骤不同,有多有少,我呢,就趁绘图步骤少的题,多讲一下命令 的使用。三维习题中的二维平面部分,比较简单,对这些二维平面部分,也许经常会一带

AutoCAD教程:根据二维图画三维图的方法及思路

AutoCAD教程:根据二维图画三维图的方法及思路 用Auto CAD进行二维绘图,对具有机械制图基础的人来说,一般都比较容易掌握。但对三维建模,特别是自学者,却总觉得不知从何下手。有鉴于此,特撰本教程,以冀对初学者有所帮助。 本教程旨在介绍由三视图绘制三维实体图时,整个建模过程的步骤和方法。一、分析三视图,确定主体建模的坐标平面 在拿到一个三视图后,首先要作的是分析零件的主体部分,或大多数形体的形状特征图是在哪个视图中。从而确定画三维图的第一步――选择画三维图的第一个坐标面。这一点很重要,初学者往往不作任何分析,一律用默认的俯视图平面作为建模的第一个绘图平面,结果将在后续建模中造成混乱。 看下面几例:图1 此零件主要部分为几个轴线平行的通孔圆柱,其形状特征为圆,特征视图明显都在主视图中,因此,画三维图的第一步,必须在视图管理器中选择主视图,即在主视图下画出三视图中所画主视图的全部图线。

此零件的特征图:上下底板-四边形及其中的圆孔,主体-圆筒及肋板等,都在俯视图,故应在俯视图下画出三视图中的俯视图。 图3是用三维图模画三维图,很明显,其主要结构的形状特征――圆是在俯视方向,故应首先在俯视图下作图。图3:

二、构型处理,尽量在一个方向完成基本建模操作 确定了绘图的坐标平面后,接下来就是在此平面上绘制建模的基础图形了。必须指出,建模的基础图形并不是完全照抄三视图的图形,必须作构型处理。所谓构型,就是画出各形体在该坐标平面上能反映其实际形状,可供拉伸或放样、扫掠的实形图。 如图1所示零件,三个圆柱筒,按尺寸要求画出图4中所示6个绿色圆。与三个圆筒相切支撑的肋板,则用多段线画出图4中的红色图形。其它两块肋板,用多段线画出图中的两个黄色矩形。图4:

相关主题
文本预览
相关文档 最新文档