爱分析:2019年中国BI商业智能行业报告
- 格式:docx
- 大小:5.76 MB
- 文档页数:50
2019中国人工智能发展报告2019 中国人工智能发展报告目录前言 . ......................................................................... .............................................................................. .........2 一、1、2、3、4、5、人工智能的新时代到来:情境驱动时代 (4)人工智能发展历史 . ......................................................................... ....................................4 人工智能市场预测 . ......................................................................... ....................................9 数据视角下当前AI 的技术布局 . ......................................................................... ........ 11 AI 解决的痛点与存在的不足 ........................................................................... ............ 14 AI 对人类社会的影响 ........................................................................... .. (16)二、无数据不AI ........................................................................... .......................................................... 17 1、2、数据与AI 的关系 ........................................................................... .................................. 17 新的商业竞争范式 . ......................................................................... (19)三、行业全景与企业玩家分类 . ......................................................................... ................................. 21 1、2、数据视角下的中国人工智能行业全景 (21)中国企业玩家分类及各自的速赢策略 (24)四、未来人工智能的发展趋势以及对策............................................................................ ............. 27 1、2、3、中国人工智能行业发展趋势 ........................................................................... ............. 27 中国人工智能行业玩家的应对策略 . ..........................................................................30 对中国监管者的启示 ........................................................................... ........................... 31 1前言今年以来又出现了很多热词,不止大数据,人工智能(AI )、深度学习(deep learning)、机器学习(machine learning)、AR 、VR ……形色的创业团队鲸吞了市场上相当一大部分的投资。
2019年版人工智能行业市场调研分析报告(部分内容)China's Industrial Market Research and Prospect Forecast Analysis Report(2019-2025)(专业、精准、高效,助力企业决策)2019年2015-2017年机器人产业发展综况一、全球机器人行业规模分析当前,全球机器人市场规模持续扩大,工业、特种机器人市场增速稳定,服务机器人增速突出。
技术创新围绕仿生结构、人工智能和人机协作不断深入,产品在教育陪护、医疗康复、危险环境等领域的应用持续拓展,企业前瞻布局和投资并购异常活跃,全球机器人产业正迎来新一轮增长。
全球市场规模根据调研的数据,2017年,全球机器人市场规模达到232亿美元,2012-2017年的平均增长率接近17%。
其中,工业机器人147亿美元,服务机器人29亿美元,特种机器人56亿美元。
图1:2017年全球机器人规模占比(一)工业机器人:销量稳步增长,亚洲市场依然最具潜力目前,工业机器人在汽车、金属制品、电子、橡胶及塑料等行业已经得到了广泛的应用。
随着性能的不断提升,以及各种应用场景的不断明晰,2012年以来,工业机器人的市场正以年均15.2%的速度快速增长。
据IFR统计显示,2016年全球工业机器人销售额首次突破132亿美元,其中亚洲销售额76亿美元,欧洲销售额26.4亿美元,北美地区销售额达到17.9亿美元。
中国、韩国、日本、美国和德国等主要国家销售额总计占到了全球销量的3/4,这些国家对工业自动化改造的需求激活了工业机器人市场,也使全球工业机器人使用密度大幅提升,目前在全球制造业领域,工业机器人使用密度已经超过了70台/万人。
2017年,工业机器人将进一步普及,销售额有望突破147亿美元,其中亚洲仍将是最大的销售市场。
图2:2012-2020年全球工业机器人销售额及增长率(二)服务机器人:人工智能兴起,行业迎来高速发展新机遇随着信息技术快速发展和互联网快速普及,以2006年深度学习模型的提出为标志,人工智能迎来第三次高速发展。
2019中国数据智能行业分析报告⽬目录⼀. 大数据新篇章——数据智能07⼀. 数据中台的出现与未来18三. 业务中台带来模式创新27四. 场景争夺成为主旋律律35五. 跨场景要寻找数据洼地38六. 三大应⼀用场景相对成熟42⼤数据新篇章——数据智能7|爱分析·中国数据智能⼀行行业报告1. 大数据新篇章——数据智能1.1 大数据发展历程整个大数据⼀行行业发展分为五个时期,即收集、监测、洞洞察、决策和重塑。
五个时期对应着两大阶段,业务数据化和业务智能化,其中收集、监测和洞洞察是业务数据化阶段,决策和重塑是业务智能化阶段。
2019年,大数据正式进⼀入业务智能化阶段,开启数据智能新篇章。
图1:大数据发展历程数据来源:爱分析2013年,企业开始认知到数据价值,金融、电信、公安等⼀行行业开始建设大数据平台并购买大量外部数据,希望通过外部数据快速挖掘数据价值,因此对外输出数据的数据服务公司获得了了发展机遇。
2015年,数据大屏等监测业务成为大数据最先成熟的应⼀用,大数据进⼀入到业务监测阶段。
政府、央企以及大型国企等优质客群对于数据监测展现应⼀用需求旺盛,BI与可视化公司发展迅速。
2017年,随着大数据平台建设完善以及企业精细化运营的需求不不断提升,单纯的数据展现很难满⼀足企业需求,大数据开始与业务场景结合,⼀行行业进⼀入到业务洞洞察阶段。
此时,单纯的数理理统计很难满⼀足企业需求,因此出现了了大量数据挖掘、数据建模的需求,AI建模平台、数据科学平台开始进⼀入⼀人们的视野。
明略略数据、百分点、同盾科技、百融金服等公司在这⼀一时期成⼀长为⼀行行业内的明星公司。
2019年,大数据从业务洞洞察进⼀入到业务决策阶段,即由机器器形成数据报表或者数据报告,业务⼀人员进⼀行行决策,变为机器器直接给出决策建议,让机器器具备推理理能⼀力力。
例例如,在外卖、出⼀行行场景,美团和滴滴的系统直接形成最佳调度⼀方式,⼀自动完成决策环节,将任务下发给骑⼀手和司机。
2019-2024年中国人工智能行业现状深度及产业综合评估报告自从2017年中国政府发布《新一代人工智能发展规划》,推动人工智能技术的发展,中国人工智能行业迎来了蓬勃发展的机遇。
截至2019年,中国已成为全球最大的人工智能市场,在算法、芯片、数据等方面均有明显进展。
本篇报告将对中国人工智能行业未来五年的发展现状进行深入的评估。
首先,当下中国人工智能行业的重点领域是数据处理、机器人、自动化及应用等技术。
现有技术的不斩chou,介入领域面广,这些优势将促进中国人工智能行业全面向纵深发展,使得人工智能技术具体应用的衍生能力及负面效应上升,整个产业体系将进一步被构建完善。
其次,在人工智能领域,中国的潜力和竞争优势依然具有显著的优势。
随着技术的不断进步,中国越来越能够在诸如机器视觉和自然语言处理等领域媲美或超越美国和欧洲的公司。
在人工智能领域,中国最大的优势也许是数据,由于中国人口的数量巨大,可以为企业采集大量的数据,从而推出更好的算法或模型。
而且,中国政府致力于支持创新创业,鼓励人工智能行业的发展。
政府提出了不少在智能制造、智能物流、智能医疗等方面的支持政策,同时也为人才提供相应的奖学金、津贴和税收免费等优惠措施。
这将激励中国人工智能企业进一步深入引领全球技术和市场发展。
但是,人工智能的技术和发展也会带来一些负面影响和挑战。
例如,会导致失业和社会不公等问题。
但是,中国政府也在加强相关政策的制定,以应对这些负面影响并确保人工智能产业的健康发展。
综上所述,未来五年,中国的人工智能行业将迎来更广泛的分享和利用。
与此同时,中国政府将继续推动人工智能的发展,并加强对人工智能技术的监管。
整体而言,中国人工智能行业将继续保持快速发展的趋势,但也需要在政策和监管方面加强基础设施和治理, 才能让人工智能为社会带来更多的好处。
自中国政府提出《新一代人工智能发展规划》以来,中国人工智能行业迎来了高速发展的阶段。
从数据上来看,以下是相关数据分析:一、市场规模根据IDC的报告,中国的人工智能市场在2019年达到了77.1亿美元。
2019人工智能发展报告2019 Report of Artificial Intelligence Development清华大学-中国工程院知识智能联合研究中心中国人工智能学会吴文俊人工智能科学技术奖评选基地2019年11月编写委员会(按姓氏拼音排序)主编:李涓子唐杰编委:曹楠程健贾珈李国良刘华平宋德雄喻纯余有成朱军责任编辑:景晨刘佳编辑:毕小俊程时伟韩腾侯磊刘德兵刘越骆昱宇麻晓娟仇瑜王若琳徐菁技术支持:北京智谱华章科技有限公司1 编制概要 (1)1.1 编制背景 (1)1.2 编制目标与方法 (3)2 机器学习 (4)2.1 机器学习概念 (4)2.2 机器学习发展历史 (6)2.3 机器学习经典算法 (7)2.4 深度学习 (21)2.4.1 卷积神经网络 (24)2.4.2 AutoEncoder (26)2.4.3 循环神经网络RNN (28)2.4.4 网络表示学习与图神经网络(GNN) (30)2.4.5 增强学习 (32)2.4.6 生成对抗网络 (34)2.4.7 老虎机 (35)2.5 人才概况 (37)2.6 代表性学者简介 (39)2.6.1 国际顶级学者 (40)2.6.2 国内知名学者 (50)2.7 论文解读 (60)2.7.1 ICML历年最佳论文解读 (63)2.7.2 NeurlPS历年最佳论文解读 (71)3 计算机视觉 (85)3.1 计算机视觉概念 (85)3.2 计算机视觉发展历史 (87)3.3 人才概况 (89)3.4 论文解读 (91)3.5 计算机视觉进展 (105)4 知识工程 (107)4.1 知识工程概念 (107)4.2 知识工程发展历史 (108)4.3 人才概况 (111)4.4 论文解读 (113)4.5 知识工程最新进展 (129)5 自然语言处理 (131)5.1 自然语言处理概念 (131)5.2 自然语言的理解发展历史 (132)5.3 人才概况 (133)5.4 论文解读 (136)5.5 自然语言处理最新进展 (153)6 语音识别 (155)6.1 语音识别概念 (155)6.2 语音识别发展历史 (156)6.3 人才概况 (158)16.4 论文解读 (160)6.5 语音识别进展 (173)7 计算机图形学 (175)7.1 计算机图形学概念 (175)7.2 计算机图形学发展历史 (175)7.3 人才概况 (178)7.4 论文解读 (181)7.5 计算机图形学进展 (194)8 多媒体技术 (197)8.1 多媒体概念 (197)8.2 多媒体技术发展历史 (198)8.3 人才概况 (200)8.4 论文解读 (203)8.5 多媒体技术进展 (215)9 人机交互技术 (217)9.1 人机交互概念 (217)9.2 人机交互发展历史 (218)9.2.1 简单人机交互 (218)9.2.2 自然人机交互 (219)9.3 人才概况 (222)9.4 论文解读 (225)9.5 人机交互进展 (239)10 机器人 (241)10.1 机器人概念 (241)10.2 机器人发展历史 (242)10.3 人才概况 (245)10.4 论文解读 (247)10.5 机器人进展 (260)11 数据库技术 (263)11.1 数据库概念 (263)11.2 数据库技术历史 (264)11.3 人才概况 (266)11.4 论文解读 (269)11.5 数据库技术重要进展 (287)12 可视化技术 (289)12.1 可视化技术概念 (289)12.2 可视化技术发展历史 (290)12.3 人才概况 (294)12.4 论文解读 (296)12.5 可视化进展 (313)12.6 可视化应用 (315)12.6.1 社交媒体可视化 (315)12.6.2 体育数据可视化 (316)12.6.3 医疗数据可视化 (318)13 数据挖掘 (321)13.1 数据挖掘概念 (321)13.2 数据挖掘的发展历史 (323)13.3 人才概况 (324)13.4 论文解读 (326)13.5 数据挖掘进展 (337)14 信息检索与推荐 (339)14.1 信息检索与推荐概念 (339)14.2 信息检索和推荐技术发展历史 (341)14.3 人才概况 (345)14.4 论文解读 (348)14.5 信息检索与推荐进展 (362)15 结束语 (365)参考文献 (366)附录 (372)3编制概要1编制概要1.1编制背景21世纪前两个十年,在大规模GPU服务器并行计算、大数据、深度学习算法和类脑芯片等技术的推动下,人类社会相继进入互联网时代、大数据时代和人工智能时代。
2019中国数据智能行业分析报告⽬目录⼀. 大数据新篇章——数据智能07⼀. 数据中台的出现与未来18三. 业务中台带来模式创新27四. 场景争夺成为主旋律律35五. 跨场景要寻找数据洼地38六. 三大应⼀用场景相对成熟42⼤数据新篇章——数据智能7|爱分析·中国数据智能⼀行行业报告1. 大数据新篇章——数据智能1.1 大数据发展历程整个大数据⼀行行业发展分为五个时期,即收集、监测、洞洞察、决策和重塑。
五个时期对应着两大阶段,业务数据化和业务智能化,其中收集、监测和洞洞察是业务数据化阶段,决策和重塑是业务智能化阶段。
2019年,大数据正式进⼀入业务智能化阶段,开启数据智能新篇章。
图1:大数据发展历程数据来源:爱分析2013年,企业开始认知到数据价值,金融、电信、公安等⼀行行业开始建设大数据平台并购买大量外部数据,希望通过外部数据快速挖掘数据价值,因此对外输出数据的数据服务公司获得了了发展机遇。
2015年,数据大屏等监测业务成为大数据最先成熟的应⼀用,大数据进⼀入到业务监测阶段。
政府、央企以及大型国企等优质客群对于数据监测展现应⼀用需求旺盛,BI与可视化公司发展迅速。
2017年,随着大数据平台建设完善以及企业精细化运营的需求不不断提升,单纯的数据展现很难满⼀足企业需求,大数据开始与业务场景结合,⼀行行业进⼀入到业务洞洞察阶段。
此时,单纯的数理理统计很难满⼀足企业需求,因此出现了了大量数据挖掘、数据建模的需求,AI建模平台、数据科学平台开始进⼀入⼀人们的视野。
明略略数据、百分点、同盾科技、百融金服等公司在这⼀一时期成⼀长为⼀行行业内的明星公司。
2019年,大数据从业务洞洞察进⼀入到业务决策阶段,即由机器器形成数据报表或者数据报告,业务⼀人员进⼀行行决策,变为机器器直接给出决策建议,让机器器具备推理理能⼀力力。
例例如,在外卖、出⼀行行场景,美团和滴滴的系统直接形成最佳调度⼀方式,⼀自动完成决策环节,将任务下发给骑⼀手和司机。