高二数学数系的扩充与复数的概念
- 格式:ppt
- 大小:695.50 KB
- 文档页数:25
数系的扩充和复数的引入【要点梳理】要点一:复数的有关概念1.复数概念:形如()+a bi a b ∈R ,的数叫复数, 其中:a 叫复数的实部,b 叫复数的虚部,i 叫虚数单位(21=i -). 表示:复数通常用字母z 表示.记作:()=+z a bi a b ∈R ,.要点诠释:(1)一个复数一旦实部、虚部确定,那么这个复数就唯一确定;反之一样.(2)复数=+z a bi 中,实部a 和虚部b 都是实数,这一点不容忽视,它列方程求复数的重要依据..(3)i 是-1的一个平方根,即方程12=x -的一个根. 方程12=x -有两个根,另一个根是i -;并且i 可与实数进行四则运算,进行四则运算时,原有加、乘运算律仍然成立.2.复数集概念:复数的全体组成的集合叫作复数集.表示:通常用大写字母C 表示.要点诠释:⊆⊆⊆⊆N Z Q R C ,其中N 表示自然数集,Z 表示整数集Q 表示有理数集,R 表示实数集.3.复数相等概念:如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等.表示:如果,,,a b c d R ∈,那么a c a bi c di b d=⎧+=+⇔⎨=⎩ 特别地,00a bi a b +=⇔==.要点诠释:(1)根据复数a +b i 与c+di 相等的定义,可知在a =c ,b =d 两式中,只要有一个不成立,那么就有a +b i≠c+di (a ,b ,c ,d ∈R ).(2)一般地,两个复数只能说相等或不相等,而不能比较大小. 如果两个复数都是实数,就可以比较大小;也只有当两个复数全是实数时才能比较大小.(3)复数相等的充要条件提供了将复数问题化归为实数问题来解决的途径,这也是本章常用的方法, 简称为“复数问题实数化”.要点二:复数的分类表示:用集合表示如下图:要点三:复数的几何意义1. 复平面、实轴、虚轴:如图所示,复数z a bi =+(,a b R ∈)可用点(,)Z a b 表示,这个建立了直角坐标系来表示复数的平面叫做复平面,也叫高斯平面,x 轴叫做实轴,y 轴叫做虚轴.要点诠释:实轴上的点都表示实数.除了原点外,虚轴上的点都表示纯虚数.2.复数集与复平面内点的对应关系按照复数的几何表示法,每一个复数有复平面内唯一的一个点和它对应;反过来,复平面内的每一个点,有唯一的一个复数和它对应.复数集C 和复平面内所有的点所成的集合是一一对应关系,即 复数z a bi =+←−−−→一一对应复平面内的点(,)Z a b 这是复数的一种几何意义.3.复数集与复平面中的向量的对应关系在平面直角坐标系中,每一个平面向量都可以用一个有序实数对来表示,而有序实数对与复数是一一对应的,所以,我们还可以用向量来表示复数.设复平面内的点(,)Z a b 表示复数z a bi =+(,a b R ∈),向量OZ 由点(,)Z a b 唯一确定;反过来,点(,)Z a b 也可以由向量OZ 唯一确定.复数集C 和复平面内的向量OZ 所成的集合是一一对应的,即复数z a bi =+←−−−→一一对应平面向量OZ 这是复数的另一种几何意义.4.复数的模 设OZ a bi =+u u u r (,a b R ∈),则向量OZ 的长度叫做复数z a bi =+的模,记作||a bi +.即22||||0z OZ a b ==+u u u r .要点诠释:①两个复数不全是实数时不能比较大小,但它们的模可以比较大小.②复平面内,表示两个共轭复数的点关于x 轴对称,并且他们的模相等.【典型例题】类型一:复数的概念例1.请说出下面各复数的实部和虚部,有没有纯虚数?(1)23i +; (2)132i -; (3)1-3i ; (4)3-52i ; (5)π; (6)0.【思路点拨】将复数化为()+a bi a b ∈R ,的标准形式,实数为a ,虚部为b .当实部0a =,而虚部0b ≠时,该复数为纯虚数.【解析】(1)复数23i +的实部是2,虚部是3,不是纯虚数;(2)132i -=132i -+,其实部是-3,虚部是21,不是纯虚数; (3)1-3i 的实部是0,虚部是-31,是纯虚数;(4)2=-22i ,其实部是2-,虚部是-2,不是纯虚数; (5)π是实数,可写成+0i π⋅,其实部为π,虚部为0,不是纯虚数;(6)0是实数,可写出0+0i ⋅,其实部为0,虚部为0,不是纯虚数.【总结升华】准确理解复数的概念,明确实部、虚部的所指是关键.举一反三:【变式1】符合下列条件的复数一定存在吗?若存在,请举出例子;若不存在,请说明理由.(1)实部为-2的虚数;(2)虚部为-2的虚数;(3)虚部为-2的纯虚数;(4)实部为-2的纯虚数.【答案】(1)存在且有无数个,如-2+i 等;(2)存在且不唯一,如1-2i 等;(3)存在且唯一,即-2i ;(4)不存在,因为纯虚数的实部为0.【变式2】以2i 22i +的实部为虚部的新复数是________.【答案】2i -222i +的实部为-2,所以新复数为2-2i .【高清课堂:数系的扩充和复数的概念 401749 例题1】例2.当实数m 取何值时,复数22(34)(56)i,(m )z m m m m =--+--∈R ,表示:(1)实数;(2)虚数;(3)纯虚数.【思路点拨】根据复数z 为实数、虚数及纯虚数的概念,判断实部与虚部取值情况.利用它们的充要条件可分别求出相应的m 值.【解析】(1)当z 为实数时,要求虚部为0,即2560m m --=,6m =,解得或1m =-.(2)当z 表示虚数,要求虚部非0,即2560m m --≠,解得6m ≠且1m ≠-. (3)当z 表示纯虚数,要求实部为0,且虚部非0,即22340560m m m m ⎧--=⎪⎨--≠⎪⎩,解得4m =. 【总结升华】 复数包括实数和虚数,虚数又分为纯虚数和非纯虚数,合理利用复数是实数、虚数以及纯虚数的条件是解决本类题目的关键.举一反三:【变式1】 若复数2(1)(1)z x x i =-+-为纯虚数,则实数x 的值为_________.【答案】1-. 由复数z 为纯虚数,得21010x x ⎧-=⎨-≠⎩,解得1x =-.【变式2】已知复数22276(56)i (R)1a a z a a a a -+=+-+∈-,试求实数a 分别取什么值时,z 为: (1)实数; (2)虚数; (3)纯虚数.【答案】(1)当z 为实数时,则225601a a a ⎧--=⎪⎨≠⎪⎩ ∴161a a a =-=⎧⎨≠±⎩或,故a =6, ∴当a =6时,z 为实数.(2)当z 为虚数时,则有225601a a a ⎧--≠⎪⎨≠⎪⎩,∴161a a a ≠-≠⎧⎨≠±⎩且, ∴a ≠±1且a ≠6,∴当a ∈(-∞,-1)∪(―1,1)∪(1,6)∪(6,+∞)时,z 为虚数.(3)当z 为纯虚数时,则有2225607601a a a a a ⎧--≠⎪⎨-+=⎪-⎩,∴166a a a ≠-≠⎧⎨=⎩且, ∴不存在实数a 使z 为纯虚数.【变式3】设复数22lg(22)(32)i z m m m m =--+++,m ∈R ,当m 为何值时,z 是:(1)实数; (2)z 是纯虚数.【答案】(1)要使z 是实数,则需22320220m m m m ⎧++=⎪⎨-->⎪⎩⇒m =―1或m =―2,所以当m =-1或m =-2时,z 是实数. (2)要使z 是纯虚数,则需222213320m m m m m ⎧--=⎪⇒=⎨++≠⎪⎩,所以m =3时,z 是纯虚数. 类型二:两个复数相等例3. 已知(21)(3)x i y y i -+=--,其中,x y R ∈,求x 与y .【思路点拨】利用复数相等的条件,列方程组,求解x y ,.【解析】根据复数相等的定义,得方程组⎩⎨⎧--==-)3(1,12y y x ,所以52x =,4y = 【总结升华】两个复数相等,首先要分清两复数的实部与虚部,然后利用两个复数相等的充要条件可得到两个方程,从而可以确定两个独立参数.举一反三:【变式1】已知,x y ∈R 且22712+=+x y xyi i -,求以x 为实部、以y 虚部的复数. 【答案】由题意知22712x y xy ⎧-=⎨=⎩,解得44x y =⎧⎨=⎩ 或 43x y =-⎧⎨=-⎩. 所以x+yi 的值为4+3i 或-4-3i .【高清课堂:数系的扩充和复数的概念 401749 例题2】【变式2】,x y ∈R ,复数(32)5x y xi ++与复数(2)18y i -+相等,求x y ,.【答案】(2)1818(2)y i y i -+=--,所以321852x y x y+=⎧⎨=-⎩,解得212x y =-⎧⎨=⎩. 【变式3】已知集合M={(a +3)+(b 2-1)i,8},集合N={3i ,(a 2-1)+(b +2)i }同时满足:N≠⊂M ,M N ≠I Φ,求整数a ,b .【答案】 2(3)(1)3a b i i ++-=依题意得 ①或28(1)(2)a b i =-++ ②或223(1)1(2)a b i a b i ++-=-++ ③由①得a =-3,b =±2,经检验,a =-3,b =-2不合题意,舍去.∴a =-3,b =2由②得a =±3, b =-2.又a =-3,b =-2不合题意,∴a =3,b =-2; 由③得222231401230a a a ab b b b ⎧⎧+=---=⎪⎪⎨⎨-=+--=⎪⎪⎩⎩即,此方程组无整数解. 综合①②③得a =-3,b =2或a =3,b =-2.类型三、复数的几何意义例4. 在复平面内,若复数22(2)(32)=--+-+z m m m m i 对应点(1)在虚轴上;(2)在第二象限;(3)在直线=y x 上,分别求实数m 的取值范围.【思路点拨】复数()+a bi a b ∈R ,在复平面内对应的点为()a b ,: =0a ⇔()a b ,在虚轴上;0,0a b <⎧⇔⎨>⎩()a b ,在第二象限;=a b ⇔()a b ,在=y x 上. 【解析】复数22(2)(32)=--+-+z m m m m i 在复平面内的对应点为()22(2)(32)---+m m m m ,.(1)由题意得22--=0m m ,解得m =2或m =-1.(2)由题意得2220,320.---+m m m m ⎧<⎪⎨>⎪⎩,解得12,2 1.m m m -<<⎧⎨><⎩或 ∴-1<m <1. (3)由已知得22232--=-+m m m m ,解得m =2.【总结升华】按照复数和复平面内所有点所成的集合之间的一一对应关系,每一个复数都对应着一个有序实数对,只要在复平面内找出这个有序实数对所表示的点,就可根据点的位置判断复数实部、虚部的取值.举一反三:【高清课堂:数系的扩充和复数的概念 401749 例题3】【变式1】已知复数22(23)(43)z m m m m i =--+-+(m ∈R )在复平面上对应的点为Z ,求实数m 取什么值时,点Z (1)在实轴上;(2)在虚轴上;(3)在第一象限.【答案】(1)点Z 在实轴上,即复数z 为实数,由2-43031m m m m +=⇒==或∴当31m m ==或时,点Z 在实轴上.(2)点Z 在虚轴上,即复数z 为纯虚数或0,故2230m m --=-13m m ⇒==或∴当-13m m ==或时,点Z 在虚轴上.3)点Z 在第一象限,即复数z 的实部虚部均大于0由22230430m m m m ⎧-->⎪⎨-+>⎪⎩ ,解得m <―1或m >3 ∴当m <―1或m >3时,点Z 在第一象限.【变式2】在复平面内,复数sin 2cos2z i =+对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】∵22ππ<<,∴sin20>,cos20<,故相应的点在第四象限,选D.【变式3】 已知复数(2k 2-3k -2)+(k 2-k)i 在复平面内对应的点在第二象限,则实数k 的取值范围.【答案】∵复数对应的点在第二象限,∴⎪⎩⎪⎨⎧>-<--,0,023222k k k k 即⎪⎩⎪⎨⎧><<<-.10,221k k k 或解得:10122k k -<<<<或 例5. 在复平面内,O 是原点,向量OA u u u r 对应的复数是2+i .(1)如果点A 关于实轴的对称点为点B ,求向量OB uuu r 对应的复数;(2)如果(1)中点B 关于虚轴的对称点为点C ,求点C 对应的复数.【解析】(1)设所求向量OB uuu r 对应的复数z 1=x 1+y 1i (x 1,y 1∈R ),则点B 的坐标为(x 1,y 1).由题意可知点A 的坐标为(2,1),根据对称性可知x 1=2,y 1=-1,故z 1=2-i .(2)设所求点C 对应的复数为z 2=x 2+y 2i (x 2,y 2∈R ),则点C 的坐标为(x 2,y 2).由对称性可知x 2=-2,y 2=-1,故z 2=-2-i .【总结升华】 由复数的几何意义知,复数与复平面上的点建立起一一对应的关系,因而在解决复数的相关问题时,我们可以利用复平面上的点的一些数学关系来解决.举一反三:【变式】在复平面内,复数z 1=1+i 、z 2=2+3i 对应的点分别为A 、B ,O 为坐标原点,OP OA OB λ=+u u u r u u u r u u u r .若点P 在第四象限内,则实数λ的取值范围是________.【答案】(12,13)OP λλ=++u u u r 由题意:120130λλ+>⎧⎨+<⎩,解得:1123λ-<<- 例6. 已知12z i =+,求z .【解析】z ==【总结升华】依据复数的模的定义,即可求得.举一反三:【变式1】若复数21(1)z a a i =-++(a R ∈)是纯虚数,则z = . 【答案】由210110a a a ⎧-=⇒=⎨+≠⎩, 所以z =2. 【变式2】已知z -|z|=-1+i ,求复数z .【答案】方法一:设z=x+yi (x ,y ∈R ),由题意,得i 1i x y +=-+,即(i 1i x y +=-+.根据复数相等的定义,得11x y ⎧-=-⎪⎨=⎪⎩,解得01x y =⎧⎨=⎩,∴z=i .方法二:由已知可得z=(|z|-1)+i ,等式两边取模,得||z =两边平方,得|z|2=|z|2-2|z|+1+1⇒|z|=1.把|z|=1代入原方程,可得z=i .。
数系的扩充与复数的引入1.复数的有关概念 (1)复数的概念:形如a +b i(a ,b ∈R )的数叫做复数,其中a ,b 分别是它的实部和虚部。
若b =0,则a +b i 为实数;若b ≠0,则a +b i 为虚数;若a =0且b ≠0,则a +b i 为纯虚数。
(2)复数相等:a +b i =c +d i ⇔a =c 且b =d (a ,b ,c ,d ∈R )。
(3)共轭复数:a +b i 与c +d i 共轭⇔a =c ,b =-d (a ,b ,c ,d ∈R )。
(4)复平面:建立直角坐标系来表示复数的平面,叫做复平面。
x 轴叫做实轴,y 轴叫做虚轴。
实轴上的点都表示实数;除原点外,虚轴上的点都表示纯虚数;各象限内的点都表示非纯虚数。
(5)复数的模:向量OZ →的模r 叫做复数z =a +b i(a ,b ∈R )的模,记作|z |或|a +b i|,即|z |=|a +b i|=a 2+b 2。
2.复数的几何意义 (1)复数z =a +b i――→一一对应复平面内的点Z (a ,b )(a ,b ∈R )。
(2)复数z =a +b i ――→一一对应平面向量OZ →(a ,b ∈R )。
3.复数的运算(1)复数的加、减、乘、除运算法则设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R )则: ①加法:z 1+z 2=(a +b i)+(c +d i)=(a +c )+(b +d )i 。
②减法:z 1-z 2=(a +b i)-(c +d i)=(a -c )+(b -d )i 。
③乘法:z 1·z 2=(a +b i)·(c +d i)=(ac -bd )+(ad +bc )i 。
④除法:z 1z 2=a +b i c +d i =(ac +bd )+(bc -ad )i c 2+d 2(c +d i ≠0)。
(2)复数加法的运算定律复数的加法满足交换律、结合律,即对任何z 1,z 2,z 3∈C ,有z 1+z 2=z 2+z 1,(z 1+z 2)+z 3=z 1+(z 2+z 3)。
数系的扩充和复数的概念教学目标重点:复数的概念,虚数单位i ,复数的分类(实数、虚数、纯虚数)和复数相等。
复数在现代科学技术中以及在数学学科中的地位和作用.难点:虚数单位i 的引进以及对复数概念的理解.知识点:了解引进复数的必要性;理解并掌握复数的有关概念(复数集、代数形式、实部、虚部、实数、虚数、纯虚数、复数相等);理解虚数单位i 及i 与实数的运算规律能力点:探寻复数的形成过程,体会引入虚数单位i 和复数形式的合理性,以及等价转化思想、方程思想、分类讨论数学思想的运用。
教育点:通过问题情境,体会实际需求与数学内部矛盾在数系扩充过程中的作用,经历由实数系扩充到复数系的研究过程,感受人类理性思维的作用以及数与现实世界的联系.自主探究点:如何运用实数与虚数单位i 的加、乘运算得到复数代数形式及探索复数相等的充要条件. 考试点:用复数的基本概念解决简单的数学问题。
易错易混点:对复数代数形式的认识,及复数分类的把握。
拓展点:如何利用复数代数形式解题,理解复数的几何意义.一、 引入新课求下列方程的解:(1)24x = 2(2)40x -= (3)310x -= 2(4)20x -= 2(5)10x +=.学生分析各题的解:(1)2x =;(2)22x x ==-或;1(3)3x =;(4)22x x ==-或;(5)实数集内无解. 通过以上五题解的探讨,学生会发现方程(5)在实数集中遇到了无解现象.如何使方程(5)有解呢?类比引进2,就可以解决方程220x -=在有理数中无解的问题,就有必要扩充数集,今天我们来与大家一起学习“数系的扩充”。
【设计意图】通过类比,易引发学生的学习兴趣.使学生了解扩充数系要从引入新数开始,引出本课题.二、探究新知1.复习已学过的数系问题1:数,是数学中的基本概念。
到目前为止,我们学习了哪些数集?用符号如何表示?它们之间有怎样的包含关系?用图示法可以如何表示?答:自然数集、整数集、有理数集、实数集,符号分别表示为N ,Z ,Q ,R ; 其中它们之间的关系式:N Z Q R ; 用文氏图表示N ,Z ,Q ,R 的关系【设计意图】数集及其之间关系的回顾,特别是“图示法”的直观表示,旨在帮助学生对“数系的扩充”有个初步感受.我们将一个数集连同相应的运算及结构叫做一个数系。
§7.1.1 数系的扩充和复数的概念一、内容和内容解析内容:从实数系扩充到复数系的过程与方法,复数的概念.内容解析:本节课选自《普通高中课程标准数学教科书必修第二册》(人教A版)第七章第1节的内容.本节内容是数系的扩充和复数的概念,基于之前所学的数系的发展历程,由一元二次方程的根的问题导入,将数学扩充到复数范围,并研究复数的概念,为复数的运算打好基础。
复数的引入是中学阶段数系的又一次扩充,引入复数以后,这不仅可以使学生对于数的概念有一个初步的、完整的认知,也为进一步学习数学打下基础.通过本节课学习,要使学生在问题情境中了解数系扩充的过程以及引入复数的必要性,学习复数的一些基本知识,体会人类理性思维在数系扩充中的作用.二、目标和目标解析目标:(1)了解引进虚数单位i的必要性,了解数集的扩充过程.(2)理解复数的概念、表示法及相关概念.(3)掌握复数的分类及复数相等的充要条件.目标解析:(1)能够通过方程的解,感受引入复数的必要性,体会实际需求与数学内部的矛盾(数的运算规则、方程求根)在数系扩充过程中的作用.(2)学生能够从自然数系逐步扩充到实数系的过程中,归纳出数系扩充的一般“规则",体会扩充的合理性及人类理性思维在数系扩充中的作用.(3)学生能说明虚数i的由来,能够明晰复数代数表示式的基本结构,会对复数进行分类,会用Venn 图表示复数集、实数集、虚数集、纯虚数集之间的关系;知道两个复数相等的含义,能利用复数概念和复数相等的含义解决相关的简单问题.基于上述分析,本节课的教学重点定为:复数的分类及复数相等的充要条件.三、教学问题诊断分析1.教学问题一:因为现实生活中没有任何事物支持虚数,学生可能会怀疑引入复数的必要性,在教学中,如果单纯地讲解或介绍复数的概念会显得枯燥无味,学生不易接受.解决方案:适当介绍数的发展简史,增强学生学习的生动性.2.教学问题二:由于知识储备和认知能力的限制,学生对数系扩充的一般规则并不熟悉,对虚数单位的引入,以及虚数单位和实数进行形式化运算的理解会出现一定困难.解决方案:通过解方程问题引导,借助已有的数系扩充的经验,特别是从有理数系扩充到实数系的经验,从特殊到一般,帮助学生梳理出数系扩充过程中体现的“规则”,进而在“规则”的引导下进行从实数系到复数系的扩充,感受引入复数的必要性和合理性.3.教学问题三:学生以前学习过的数都是单纯的一个数,而复数的代数形式是两项和的形式,学生比较陌生,因此理解上会存在一定困难.解决方案:引导学生按照“规则”自主探究出复数集中可能存在的各种数,并归纳总结出复数的一般表示方法,经历复数形式化的过程.基于上述情况,本节课的教学难点定为:理解复数的概念、表示法及相关概念.四、教学策略分析本节课的教学目标与教学问题为我们选择教学策略提供了启示.为了让学生类比得到复数的概念,应该为学生创造积极探究的平台,可以让学生从被动学习状态转到主动学习状态中来.在教学设计中,采取问题引导方式来组织课堂教学.问题的设置给学生留有充分的思考空间,让学生围绕问题主线,通过自主探究达到突出教学重点,突破教学难点.在教学过程中,重视复数概念的理解和表示,让学生体会数系扩充的基本过程.五、教学过程与设计纯虚数.[课堂练习2]已知M={2,m2-2m +(m2+m-2)i},N={-1,2,4i},若M∪N=N,求实数m的值.课堂小结升华认知[问题10]通过这节课,你学到了什么知识?在解决问题时,用到了哪些数学思想?[课后练习]z=a2-(2-b)i的实部和虚部分别是2和3,则实数a,b的值分别是()A.2,1B.2,5C.±2,5D.±2,12.下列复数中,满足方程x2+2=0的是()A.±1B.±iC.±2iD.±2i2 021=________.4.设i为虚数单位,若关于x的方程x2-(2+i)x+1+m i=0(m∈R)有一实根为n,则m=________.教师14:提出问题10.学生14:学生14:学生课后进行思考,并完成课后练习.师生共同回顾总结.引领学生感悟数学认知的过程,体会数学核心素养.课后练习是对定理巩固,是对本节知识的一个深化认识,同时也为下节内容做好铺垫.。
7.1复数的概念7.1.1数系的扩充和复数的概念考点学习目标核心素养复数的有关概念了解数系的扩充过程,理解复数的概念数学抽象复数的分类理解复数的分类数学抽象复数相等掌握复数相等的充要条件及其应用数学运算问题导学预习教材P68-P70的内容,思考以下问题:1.复数是如何定义的?其表示方法又是什么?2.复数分为哪两大类?3.复数相等的条件是什么?1.复数的有关概念(1)复数的定义形如a+b i(a,b∈R)的数叫做复数,其中i叫做虚数单位,满足i2=-1.(2)复数集全体复数所构成的集合C={a+b i|a,b∈R}叫做复数集.(3)复数的表示方法复数通常用字母z表示,即z=a+b i(a,b∈R),其中a叫做复数z的实部,b叫做复数z的虚部.■名师点拨对复数概念的三点说明(1)复数集是最大的数集,任何一个数都可以写成a+b i(a,b∈R)的形式,其中0=0+0i.(2)复数的虚部是实数b而非b i.(3)复数z =a +b i 只有在a ,b ∈R 时才是复数的代数形式,否则不是代数形式. 2.复数相等的充要条件在复数集C ={a +b i|a ,b ∈R }中任取两个数a +b i ,c +d i(a ,b ,c ,d ∈R ),我们规定:a +b i 与c +d i 相等当且仅当a =c 且b =d .3.复数的分类(1)复数z =a +b i(a ,b ∈R )⎩⎪⎨⎪⎧实数(b =0),虚数(b ≠0)⎩⎪⎨⎪⎧纯虚数a =0,非纯虚数a ≠0W. (2)复数集、实数集、虚数集、纯虚数集之间的关系■名师点拨复数b i(b ∈R )不一定是纯虚数,只有当b ≠0时,复数b i(b ∈R )才是纯虚数.判断(正确的打“√”,错误的打“×”) (1)若a ,b 为实数,则z =a +b i 为虚数.( ) (2)复数z 1=3i ,z 2=2i ,则z 1>z 2.( ) (3)复数z =b i 是纯虚数.( )(4)实数集与复数集的交集是实数集.( ) 答案:(1)× (2)× (3)× (4)√若z =a +(a 2-1)i(a ∈R ,i 为虚数单位)为实数,则a 的值为( ) A .0 B .1 C .-1 D .1或-1 答案:D以3i -2的虚部为实部,以-3+2i 的实部为虚部的复数是( ) A .3-3i B .3+i C .-2+2i D.2+2i 答案:A若(x -2y )i =2x +1+3i ,则实数x ,y 的值分别为________. 答案:-12 -74复数的概念下列命题:①若a∈R,则(a+1)i是纯虚数;②若a,b∈R,且a>b,则a+i>b+i;③若(x2-4)+(x2+3x+2)i是纯虚数,则实数x=±2;④实数集是复数集的真子集.其中正确的命题是()A.①B.②C.③D.④【解析】对于复数a+b i(a,b∈R),当a=0且b≠0时,为纯虚数.对于①,若a=-1,则(a+1)i不是纯虚数,即①错误;两个虚数不能比较大小,则②错误;对于③,若x =-2,则x2-4=0,x2+3x+2=0,此时(x2-4)+(x2+3x+2)i=0不是纯虚数,则③错误;显然,④正确.故选D.【答案】 D判断与复数有关的命题是否正确的方法(1)举反例:判断一个命题为假命题,只要举一个反例即可,所以解答这种类型的题时,可按照“先特殊,后一般,先否定,后肯定”的方法进行解答.(2)化代数形式:对于复数实部、虚部的确定,不但要把复数化为a+b i的形式,更要注意这里a,b均为实数时,才能确定复数的实部、虚部.[提醒]解答复数概念题,一定要紧扣复数的定义,牢记i的性质.对于复数a+b i(a,b∈R),下列说法正确的是()A.若a=0,则a+b i为纯虚数B.若a+(b-1)i=3-2i,则a=3,b=-2C.若b=0,则a+b i为实数D.i的平方等于1解析:选C.对于A,当a=0时,a+b i也可能为实数;对于B,若a+(b-1)i=3-2i,则a=3,b=-1;对于D,i的平方为-1.故选C.复数的分类当实数m 为何值时,复数z =m 2+m -6m+(m 2-2m )i :(1)为实数?(2)为虚数?(3)为纯虚数?【解】 (1)当⎩⎪⎨⎪⎧m 2-2m =0,m ≠0,即m =2时,复数z 是实数.(2)当m 2-2m ≠0且m ≠0,即m ≠0且m ≠2时,复数z 是虚数.(3)当⎩⎨⎧m ≠0,m 2+m -6m=0,m 2-2m ≠0,即m =-3时,复数z 是纯虚数.解决复数分类问题的方法与步骤(1)化标准式:解题时一定要先看复数是否为a +b i(a ,b ∈R )的形式,以确定实部和虚部.(2)定条件:复数的分类问题可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式)即可.(3)下结论:设所给复数为z =a +b i(a ,b ∈R ), ①z 为实数⇔b =0; ②z 为虚数⇔b ≠0;③z 为纯虚数⇔a =0且b ≠0.1.若复数a 2-a -2+(|a -1|-1)i(a ∈R )不是纯虚数,则( ) A .a =-1 B .a ≠-1且a ≠2 C .a ≠-1D .a ≠2解析:选C.复数a 2-a -2+(|a -1|-1)i(a ∈R )不是纯虚数,则有a 2-a -2≠0或|a -1|-1=0,解得a ≠-1.故选C.2.当实数m 为何值时,复数lg(m 2-2m -7)+(m 2+5m +6)i 是: (1)纯虚数;(2)实数.解:(1)复数lg(m 2-2m -7)+(m 2+5m +6)i 是纯虚数,则⎩⎪⎨⎪⎧m 2-2m -7=1m 2+5m +6≠0,解得m =4.(2)复数lg(m 2-2m -7)+(m 2+5m +6)i 是实数,则⎩⎪⎨⎪⎧m 2-2m -7>0,m 2+5m +6=0,解得m =-2或m=-3.复数相等(1)(2019·浙江杭州期末考试)若z 1=-3-4i ,z 2=(n 2-3m -1)+(n 2-m -6)i(m ,n ∈R ),且z 1=z 2,则m +n =( )A .4或0B .-4或0C .2或0D .-2或0(2)若log 2(x 2-3x -2)+ilog 2(x 2+2x +1)>1,则实数x 的值是________.【解析】 (1)由z 1=z 2,得n 2-3m -1=-3且n 2-m -6=-4,解得m =2,n =±2,所以m +n =4或0,故选A.(2)因为log 2(x 2-3x -2)+ilog 2(x 2+2x +1)>1,所以⎩⎪⎨⎪⎧log 2(x 2-3x -2)>1,log 2(x 2+2x +1)=0,即⎩⎪⎨⎪⎧x 2-3x -2>2,x 2+2x +1=1,解得x =-2.【答案】 (1)A (2)-2复数相等的充要条件复数相等的充要条件是“化虚为实”的主要依据,多用来求解参数.解决复数相等问题的步骤是:分别分离出两个复数的实部和虚部,利用实部与实部相等、虚部与虚部相等列方程(组)求解.[注意] 在两个复数相等的充要条件中,注意前提条件是a ,b ,c ,d ∈R ,即当a ,b ,c ,d ∈R 时,a +b i =c +d i ⇔a =c 且b =d .若忽略前提条件,则结论不能成立.已知A ={1,2,a 2-3a -1+(a 2-5a -6)i},B ={-1,3},A ∩B ={3},求实数a 的值.解:由题意知,a 2-3a -1+(a 2-5a -6)i =3(a ∈R ),所以⎩⎪⎨⎪⎧a 2-3a -1=3,a 2-5a -6=0,即⎩⎪⎨⎪⎧a =4或a =-1,a =6或a =-1,所以a =- 1.1.若复数z =a i 2-b i(a ,b ∈R )是纯虚数,则一定有( ) A .b =0 B .a =0且b ≠0 C .a =0或b =0D .ab ≠0解析:选B.z =a i 2-b i =-a -b i ,由纯虚数的定义可得a =0且b ≠0. 2.若复数z =m 2-1+(m 2-m -2)i 为实数,则实数m 的值为( ) A .-1 B .2 C .1D .-1或2解析:选D.因为复数z =m 2-1+(m 2-m -2)i 为实数, 所以m 2-m -2=0,解得m =-1或m =2.3.若复数z =(m +1)+(m 2-9)i <0,则实数m 的值等于____________.解析:因为z <0,所以⎩⎪⎨⎪⎧m 2-9=0,m +1<0,解得m =-3.答案:-34.已知x 2-x -6x +1=(x 2-2x -3)i(x ∈R ),则x =________.解析:因为x ∈R ,所以x 2-x -6x +1∈R ,由复数相等的条件得⎩⎪⎨⎪⎧x 2-x -6x +1=0,x 2-2x -3=0,x +1≠0,解得x =3. 答案:3[A基础达标]1.以-3+i的虚部为实部,以3i+i2的实部为虚部的复数是()A.1-i B.1+iC.-3+3i D.3+3i解析:选A.-3+i的虚部为1,3i+i2=-1+3i的实部为-1,故所求复数为1-i.2.在复平面内,复数z=(a2-2a)+(a2-a-2)i是纯虚数,则()A.a=0或a=2 B.a=0C.a≠1且a≠2 D.a≠1或a≠2解析:选B.因为复数z=(a2-2a)+(a2-a-2)i是纯虚数,所以a2-2a=0且a2-a-2≠0,所以a=0.3.若x i-i2=y+2i,x,y∈R,则复数x+y i=()A.-2+i B.2+iC.1-2i D.1+2i解析:选B.由i2=-1,得x i-i2=1+x i,则由题意得1+x i=y+2i,根据复数相等的充要条件得x=2,y=1,故x+y i=2+i.4.复数z=a2-b2+(a+|a|)i(a,b∈R)为实数的充要条件是()A.|a|=|b| B.a<0且a=-bC.a>0且a≠b D.a≤0解析:选D.复数z为实数的充要条件是a+|a|=0,即|a|=-a,得a≤0,故选D.5.下列命题:①若z=a+b i,则仅当a=0且b≠0时,z为纯虚数;②若z21+z22=0,则z1=z2=0;③若实数a与a i对应,则实数集与纯虚数集可建立一一对应关系.其中正确命题的个数是()A.0 B.1C.2 D.3解析:选A.在①中未对z=a+b i中a,b的取值加以限制,故①错误;在②中将虚数的平方与实数的平方等同,如若z1=1,z2=i,则z21+z22=1-1=0,但z1≠z2≠0,故②错误;在③中忽视0·i=0,故③也是错误的.故选A.6.如果x-1+y i与i-3x为相等复数,x,y为实数,则x=________,y=________.解析:由复数相等可知⎩⎪⎨⎪⎧x -1=-3x ,y =1,所以⎩⎪⎨⎪⎧x =14,y =1.答案:1417.复数z 1=(2m +7)+(m 2-2)i ,z 2=(m 2-8)+(4m +3)i ,m ∈R ,若z 1=z 2,则m =________. 解析:因为m ∈R ,z 1=z 2,所以(2m +7)+(m 2-2)i =(m 2-8)+(4m +3)i.由复数相等的充要条件得⎩⎪⎨⎪⎧2m +7=m 2-8,m 2-2=4m +3,解得m =5. 答案:58.设z =log 2(1+m )+ilog 12(3-m )(m ∈R )是虚数,则m 的取值范围是________.解析:因为z 为虚数,所以log 12(3-m )≠0,故⎩⎪⎨⎪⎧1+m >0,3-m ≠1,3-m >0,解得-1<m <3且m ≠2. 答案:(-1,2)∪(2,3)9.已知复数z =(m 2+5m +6)+(m 2-2m -15)i(m ∈R ). (1)若复数z 是实数,求实数m 的值; (2)若复数z 是虚数,求实数m 的取值范围; (3)若复数z 是纯虚数,求实数m 的值; (4)若复数z 是0,求实数m 的值.解:(1)当m 2-2m -15=0时,复数z 为实数, 所以m =5或-3.(2)当m 2-2m -15≠0时,复数z 为虚数. 所以m ≠5且m ≠-3.所以实数m 的取值范围为{m |m ≠5且m ≠-3}.(3)当⎩⎪⎨⎪⎧m 2-2m -15≠0,m 2+5m +6=0时,复数z 是纯虚数,所以m =-2.(4)当⎩⎪⎨⎪⎧m 2-2m -15=0,m 2+5m +6=0时,复数z 是0,所以m =-3.10.已知关于x ,y 的方程组⎩⎪⎨⎪⎧⎝⎛⎭⎫x +32+2(y +1)i =y +4x i ,(2x +ay )-(4x -y +b )i =9-8i有实数解,求实数a ,b 的值. 解:设(x 0,y 0)是方程组的实数解,由已知及复数相等的条件,得⎩⎪⎨⎪⎧x 0+32=y 0 ①,2(y 0+1)=4x 0②,2x 0+ay 0=9 ③,-(4x 0-y 0+b )=-8④,由①②得⎩⎪⎨⎪⎧x 0=52,y 0=4,代入③④得⎩⎪⎨⎪⎧a =1,b =2.所以实数a ,b 的值分别为1,2.[B 能力提升]11.“复数4-a 2+(1-a +a 2)i(a ∈R )是纯虚数”是“a =-2”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选B.因为1-a +a 2=⎝⎛⎭⎫a -122+34>0,所以若复数4-a 2+(1-a +a 2)i(a ∈R )是纯虚数,则4-a 2=0,即a =±2;当a =-2时,4-a 2+(1-a +a 2)i =7i 为纯虚数,故选B.12.满足方程x 2-2x -3+(9y 2-6y +1)i =0的实数对(x ,y )表示的点的个数为________.解析:由题意知⎩⎪⎨⎪⎧x 2-2x -3=0,9y 2-6y +1=0,解得⎩⎪⎨⎪⎧x =3,y =13或⎩⎪⎨⎪⎧x =-1,y =13.所以实数对(x ,y )表示的点有⎝⎛⎭⎫3,13,⎝⎛⎭⎫-1,13,共有2个. 答案:213.已知复数z =m 2+3m +1+(m 2+5m +6)i<0(m ∈R ),则m 的值为________. 解析:因为z <0,所以z ∈R ,所以m 2+5m +6=0, 解得m =-2或m =-3.当m =-3时,z =1>0,不符合题意,舍去; 当m =-2时,z =-1<0,符合题意. 故m 的值为-2. 答案:-214.已知集合M ={(a +3)+(b 2-1)i ,8},集合N ={3i ,(a 2-1)+(b +2)i},且M ∩N M ,M ∩N ≠∅,求整数a ,b 的值.解:若M ∩N ={3i},则(a +3)+(b 2-1)i =3i ,即a +3=0且b 2-1=3,得a =-3,b =±2.当a =-3,b =-2时,M ={3i ,8},N ={3i ,8},M ∩N =M ,不合题意,舍去; 当a =-3,b =2时,M ={3i ,8},N ={3i ,8+4i}.符合题意. 所以a =-3,b =2.若M ∩N ={8},则8=(a 2-1)+(b +2)i , 即a 2-1=8且b +2=0,得a =±3,b =-2. 当a =-3,b =-2时,不合题意,舍去;当a =3,b =-2时,M ={6+3i ,8},N ={3i ,8},符合题意. 所以a =3,b =-2.若M ∩N ={(a +3)+(b 2-1)i}={(a 2-1)+(b +2)i},则⎩⎪⎨⎪⎧a +3=a 2-1,b 2-1=b +2,即⎩⎪⎨⎪⎧a 2-a -4=0,b 2-b -3=0,此方程组无整数解. 综上可得a =-3,b =2或a =3,b =-2.[C 拓展探究]15.已知复数z 1=-a 2+2a +a i ,z 2=2xy +(x -y )i ,其中a ,x ,y ∈R ,且z 1=z 2,求3x +y 的取值范围.解:由复数相等的充要条件,得⎩⎪⎨⎪⎧-a 2+2a =2xy a =x -y,消去a ,得x 2+y 2-2x +2y =0,即(x -1)2+(y +1)2=2.法一:令t =3x +y ,则y =-3x +t .分析知圆心(1,-1)到直线3x +y -t =0的距离d =|2-t |10≤2, 解得2-25≤t ≤2+25,即3x +y 的取值范围是[2-25,2+25].法二:令⎩⎪⎨⎪⎧x -1=2cos α,y +1=2sin α, 得⎩⎪⎨⎪⎧x =2cos α+1,y =2sin α-1.(α∈R ) 所以3x +y =2sin α+32cos α+2=25sin(α+φ)+2(其中tan φ=3),于是3x +y 的取值范围是[2-25,2+2 5 ].。
3.1数系的扩充和复数的概念3.1.1数系的扩充和复数的概念1.了解数系的扩充过程.2.理解复数的基本概念以及复数相等的充要条件.(重点)3.掌握复数的代数形式、分类等有关概念并能够进行简单应用.(难点、易混点)[基础·初探]教材整理1复数的有关概念及复数相等的充要条件阅读教材P50~P51“思考”以上内容,完成下列问题.1.复数(1)定义:形如a+b i(a,b∈R)的数叫做复数,其中i叫做虚数单位,满足i2=-1,a叫做复数的实部,b叫做复数的虚部.(2)表示方法:复数通常用字母z表示,即z=a+b i(a,b∈R),这一表示形式叫做复数的代数形式.2.复数集(1)定义:全体复数所构成的集合叫做复数集.(2)表示:通常用大写字母C 表示. 3.复数相等的充要条件设a ,b ,c ,d 都是实数,则a +b i =c +d i ⇔a =c 且b =d ,a +b i =0⇔a =b =0.1.若复数2-b i(b ∈R )的实部与虚部互为相反数,则b 的值为( ) A .-2 B.23 C .-23D .2【解析】 2-b i 的实部为2,虚部为-b ,由题意知2=-(-b ),所以b =2.【答案】 D2.已知(2m -5n )+3i =3n -(m +5)i ,m ,n ∈R ,则m +n =________. 【解析】 由复数相等的条件,得⎩⎨⎧ 2m -5n =3n ,3=-(m +5),解得⎩⎨⎧m =-8,n =-2,∴m +n =-10.【答案】 -10 教材整理2 复数的分类阅读教材P 51“思考”以下至“例”题以上内容,完成下列问题. 1.复数z =a +b i(a ,b ∈R ) ⎩⎪⎨⎪⎧实数(b =0),虚数(b ≠0)⎩⎨⎧纯虚数a =0,b ≠0,非纯虚数a ≠0,b ≠0.2.复数集、实数集、虚数集、纯虚数集之间的关系:图3-1-1判断(正确的打“√”,错误的打“×”)(1)若a,b为实数,则z=a+b i为虚数.()(2)若a∈R,则(a+1)i是纯虚数.()(3)两个虚数不能比较大小.()【解析】(1)错误.若b=0,则z=a+b i为实数.(2)错误.当a=-1时,(a+1)i不是纯虚数.(3)正确.【答案】(1)×(2)×(3)√[小组合作型]复数的有关概念(1)①若x,y∈C,则x+y i=1+i的充要条件是x=y=1;②若a,b∈R且a>b,则a+i>b+i;③若x2+y2=0,则x=y=0.A.0 B.1C.2D.3(2)给出下列三个命题:①若z∈C,则z2≥0;②2i-1虚部是2i;③2i的实部是0.其中真命题的个数为()A.0 B.1C.2 D.3【精彩点拨】首先将所给的复数化简为复数的代数形式,然后根据实部与虚部的概念确定实部、虚部.【自主解答】(1)①由于x,y∈C,所以x+y i不一定是复数的代数形式,不符合复数相等的充要条件,所以①是假命题.②由于两个虚数不能比较大小,所以②是假命题.③当x=1,y=i时,x2+y2=0成立,所以③是假命题.(2)对于①,当z∈R时,z2≥0成立,否则不成立,如z=i,z2=-1<0,所以①为假命题;对于②,2i-1=-1+2i,其虚部为2,不是2i,所以②为假命题;对于③,2i=0+2i, 其实部是0,所以③为真命题.【答案】(1)A(2)B正确理解复数的有关概念是解答复数概念题的关键,另外在判断命题的正确性时,需通过逻辑推理加以证明,但否定一个命题的正确性时,只需举一个反例即可,所以在解答这类题型时,可按照“先特殊,后一般”、“先否定,后肯定”的方法进行解答.[再练一题]1.(1)给出下列复数:2+3,0.618,i2,5i+4,2i,其中为实数的是________.(2)给出下列几个命题:①若x是实数,则x可能不是复数;②若z是虚数,则z不是实数;③一个复数为纯虚数的充要条件是这个复数的实部等于零;④-1没有平方根.则其中正确命题的个数为________.【解析】(1)2+3,0.618,i2为实数,5i+4,2i为虚数.(2)因实数是复数,故①错;②正确;因复数为纯虚数要求实部为零,虚部不为零,故③错;因-1的平方根为±i,故④错;故答案为1.【答案】(1)2+3,0.618,i2(2)1复数的分类已知复数z =a 2-7a +6a 2-1+(a 2-5a -6)i(a ∈R ),试求实数a 分别取什么值时,z 分别为:(1)实数;(2)虚数;(3)纯虚数.【精彩点拨】 根据复数z 为实数、虚数及纯虚数的充要条件列方程(不等式)组求解.【自主解答】 (1)当z 为实数时,则⎩⎨⎧a 2-5a -6=0,a 2-1≠0,∴⎩⎨⎧a =-1或a =6,a ≠±1,∴当a =6时,z 为实数. (2)当z 为虚数时, 则⎩⎨⎧a 2-5a -6≠0,a 2-1≠0, ∴⎩⎨⎧a ≠-1且a ≠6,a ≠±1, ∴当a ≠±1且a ≠6时,z 为虚数. (3)当z 为纯虚数时,则⎩⎨⎧ a 2-5a -6≠0,a 2-1≠0,a 2-7a +6=0,∴⎩⎨⎧a ≠-1且a ≠6,a ≠±1,a =6或a =1,∴不存在实数a 使z 为纯虚数.利用复数的代数形式对复数分类时,关键是根据分类标准列出实部、虚部应满足的关系式等式或不等式组,求解参数时,注意考虑问题要全面.[再练一题]2.已知m ∈R ,复数z =m (m +2)m -1+(m 2+2m -3)i ,当m 为何值时,(1)z 为实数?(2)z 为虚数?(3)z 为纯虚数?【解】 (1)要使z 为实数,需满足m 2+2m -3=0,且m (m +2)m -1有意义,即m -1≠0,解得m =-3.(2)要使z 为虚数,需满足m 2+2m -3≠0,且m (m +2)m -1有意义,即m -1≠0,解得m ≠1且m ≠-3.(3)要使z 为纯虚数,需满足m (m +2)m -1=0,且m 2+2m -3≠0,解得m =0或m =-2.复数相等的条件(1)12z 1=z 2,实数x=________,y =________.(2)已知关于x 的方程x 2+(1-2i)x +(3m -i)=0有实数根,则实数m 的值为________,方程的实根x 为________.【精彩点拨】 (1)根据实部与实部相等,虚部与虚部相等,列方程组求解; (2)设出方程的实数解,代入原式整理为a +b i =0(a ,b ∈R )的形式解决. 【自主解答】 (1)由复数相等的充要条件得⎩⎨⎧x -y =3x +2y ,x +3=-y ,解得⎩⎨⎧x =-9,y =6.【答案】 -9 6 (2)设a 是原方程的实根, 则a 2+(1-2i)a +(3m -i)=0, 即(a 2+a +3m )-(2a +1)i =0+0i ,所以a 2+a +3m =0且2a +1=0, 所以a =-12且⎝ ⎛⎭⎪⎫-122+⎝ ⎛⎭⎪⎫-12+3m =0,所以m =112. 【答案】 112 -12应用复数相等的充要条件时,要注意:(1)必须是复数的代数形式才可以根据实部与实部的相等,虚部与虚部相等列方程组.(2)利用这一结论,可以把“复数相等”这一条件转化为两个实数等式,为应用方程思想提供了条件,同时这也是复数问题实数化思想的体现,这一思想在解决复数问题中非常重要.[再练一题]3.(1)适合x -3i =(8x -y )i 的实数x ,y 的值为( ) A .x =0,且y =3 B .x =0,且y =-3 C .x =5,且y =3D .x =3,且y =0(2)关于x 的方程3x 2-a2x -1=(10-x -2x 2)i 有实根,求实数a 的值为________.【解析】 (1)由复数相等的条件,可知⎩⎨⎧ x =0,-3=8x -y ,解得⎩⎨⎧x =0,y =3.(2)设方程的实数根为x =m ,则原方程可变为3m 2-a2m -1=(10-m -2m 2)i ,∴⎩⎪⎨⎪⎧3m 2-a 2m -1=0,10-m -2m 2=0,解得a =11或a =-715.【答案】 (1)A (2)11或-715[探究共研型]复数的不相等关系探究1 若a ,b ∈R 且a >b ,则a +i >b +i 成立吗?【提示】 不成立.如果两个复数不全是实数,那么它们就不能比较大小. 探究2 若(a -2)+b i>0,则实数a ,b 满足什么条件? 【提示】 b =0,a >2.已知复数x 2-1+(y +1)i 大于复数2x +3+(y 2-1)i ,试求实数x ,y的取值范围.【精彩点拨】 两复数若能比较大小,则两复数的虚部都为零.只需满足一复数的实部大于另一复数的实部.【自主解答】 因为x 2-1+(y +1)i>2x +3+(y 2-1)i , 所以⎩⎨⎧y +1=0,y 2-1=0,x 2-1>2x +3,即⎩⎨⎧y =-1,x 2-2x -4>0, 解不等式x 2-2x -4>0,得x >1+5或x <1- 5.所以实数x ,y 的取值范围分别是{x |x <1-5或x >1+5},{y |y =-1}.实数属于复数,但复数不一定是实数,因此实数的有些性质不适用于复数,如实数能比较大小,而复数中只有等与不等的关系,不能比较大小.只有当两个复数都是实数时才能比较大小.换言之,若两个复数能比较大小,则它们必为实数,即若a +b i>c +d i (a ,b ,c ,d ∈R ),则⎩⎨⎧a >c ,b =d =0.[再练一题]4.已知复数z =3x -1-x +(x 2-4x +3)i>0,求实数x 的值. 【解】 ∵z >0,∴z ∈R .∴x 2-4x +3=0,解得x =1或x =3. ∵z >0,∴3x -1-x >0.对于不等式3x -1-x >0,x =1适合,x =3不适合. ∴x =1.1.复数⎝ ⎛⎭⎪⎫2-32i 的虚部为( )A .2B .-32 C .2-32D .0【解析】 由复数定义知C 正确. 【答案】 C2.设集合A ={实数},B ={纯虚数},C ={复数},若全集S =C ,则下列结论正确的是( )A .A ∪B =C B .A =BC .A ∩(∁S B )=∅D .(∁S A )∪(∁S B )=C【解析】 集合A ,B ,C 的关系如图,可知只有(∁S A )∪(∁S B )=C 正确.【答案】 D3.若复数4-3a -a 2i 与复数a 2+4a i 相等,则实数a 的值为( )【导学号:81092036】A .1B .1或-4C .-4D .0或-4【解析】 由复数相等的条件得 ⎩⎨⎧4-3a =a 2,-a 2=4a , ∴a =-4. 【答案】 C4.如果(m 2-1)+(m 2-2m )i >0,求实数m 的值为________. 【解析】 ∵(m 2-1)+(m 2-2m )i >0, ∴(m 2-1)+(m 2-2m )i 是实数,且符号为正, ∴⎩⎨⎧m 2-2m =0,m 2-1>0, 解得m =2. 【答案】 25.若x ∈R ,试确定实数a 的值,使等式3x 2-a2x +(2x 2+x )i =1+10i 成立. 【解】 由复数相等的充要条件,得 ⎩⎪⎨⎪⎧3x 2-a 2x =1, ①2x 2+x =10. ②由②得x =2或x =-52, 分别代入①得a =11或a =-715.学业分层测评(建议用时:45分钟)[学业达标]一、选择题1.复数-2i 的实部与虚部分别是( ) A .0,2 B .0,0 C .0,-2D .-2,0【解析】 -2i 的实部为0,虚部为-2.【答案】 C2.若复数(a 2-3a +2)+(a -1)i 是纯虚数,则实数a 的值为( )A .1B .2C .-1或-2D .1或2【解析】 由⎩⎨⎧a 2-3a +2=0,a -1≠0,得a =2. 【答案】 B3.若a ,b ∈R ,i 是虚数单位,且b +(a -2)i =1+i ,则a +b 的值为( )A .1B .2C .3D .4 【解析】 由b +(a -2)i =1+i ,得b =1,a =3,所以a +b =4.【答案】 D4.在下列命题中,正确命题的个数是( )①两个复数不能比较大小;②若z 1和z 2都是虚数,且它们的虚部相等,则z 1=z 2;③若a ,b 是两个相等的实数,则(a -b )+(a +b )i 必为纯虚数.A .0B .1C .2D .3【解析】 两个复数,当它们都是实数时,是可以比较大小的,故①错误; 设z 1=a +b i(a ,b ∈R ,b ≠0),z 2=c +d i(c ,d ∈R ,且d ≠0),因为b =d ,所以z 2=c +b i.当a =c 时,z 1=z 2,当a ≠c 时,z 1≠z 2,故②错误;③当a =b ≠0时,(a -b )+(a +b )i 是纯虚数,当a =b =0时,(a -b )+(a +b )i =0是实数,故③错误,因此选A.【答案】 A5.已知复数z =(a 2-4)+(a -3)i(a ,b ∈R ),则“a =2”是“z 为纯虚数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件【解析】 因为复数z =(a 2-4)+(a -3)i(a ,b ∈R )为纯虚数⇔⎩⎨⎧ a 2-4=0,a -3≠0⇔a =±2, 所以“a =2”是“z 为纯虚数”的充分不必要条件.【答案】 A二、填空题6.以3i -2的虚部为实部,以3i 2+2i 的实部为虚部的复数是________.【解析】 3i -2的虚部为3,3i 2+2i =-3+2i ,实部为-3,故应填3-3i.【答案】 3-3i7.若x 是实数,y 是纯虚数,且(2x -1)+2i =y ,则x ,y 的值为________.【导学号:81092037】【解析】 由(2x -1)+2i =y ,得⎩⎨⎧2x -1=0,2i =y ,∴x =12,y =2i.【答案】 x =12,y =2i8.给出下列说法:①复数由实数、虚数、纯虚数构成;②满足x 2=-1的数x 只有i ;③形如b i(b ∈R )的数不一定是纯虚数;④复数m +n i 的实部一定是m .其中正确说法的个数为________.【解析】 ③中,b =0时,b i =0不是纯虚数.故③正确;①中,复数分为实数与虚数两大类;②中,平方为-1的数是±i ;④中,m ,n 不一定为实数,故①②④错误.【答案】 1三、解答题9.已知复数z =m (m -1)+(m 2+2m -3)i ,当实数m 取什么值时:(1)复数z 是零;(2)复数z 是纯虚数.【解】 (1)∵z 是零,∴⎩⎨⎧ m (m -1)=0,m 2+2m -3=0,解得m =1.(2)∵z 是纯虚数,∴⎩⎨⎧ m (m -1)=0,m 2+2m -3≠0,解得m =0. 综上,当m =1时,z 是零;当m =0时,z 是纯虚数.10.已知集合M ={1,(m 2-2m )+(m 2+m -2)i},P ={-1,1,4i},若M ∪P =P ,求实数m 的值.【解】 因为M ∪P =P ,所以M ⊆P ,即(m 2-2m )+(m 2+m -2)i =-1或(m 2-2m )+(m 2+m -2)i =4i.由(m 2-2m )+(m 2+m -2)i =-1,得⎩⎨⎧ m 2-2m =-1,m 2+m -2=0,解得m =1; 由(m 2-2m )+(m 2+m -2)i =4i ,得⎩⎨⎧m 2-2m =0,m 2+m -2=4,解得m =2. 综上可知,m =1或m =2.[能力提升]1.已知复数z =a 2+(2a +3)i(a ∈R )的实部大于虚部,则实数a 的取值范围是( )A .-1或3B .{a |a >3或a <-1}C .{a |a >-3或a <1}D .{a |a >3或a =-1} 【解析】 由已知可以得到a 2>2a +3,即a 2-2a -3>0,解得a >3或a <-1,因此,实数a 的取值范围是{a |a >3或a <-1}.【答案】 B2.若复数cos θ+isin θ和sin θ+icos θ相等,则θ值为( )A.π4B.π4或54π C .2k π+π4(k ∈Z ) D .k π+π4(k ∈Z )【解析】 由复数相等定义得⎩⎨⎧ cos θ=sin θ,sin θ=cos θ, ∴tan θ=1,∴θ=k π+π4(k ∈Z ).【答案】 D3.若log 2(x 2-3x -2)+ilog 2(x 2+2x +1)>1,则实数x 的值是________.【解析】 ∵log 2(x 2-3x -2)+ilog 2(x 2+2x +1)>1, ∴⎩⎨⎧ log 2(x 2-3x -2)>1,log 2(x 2+2x +1)=0, ∴⎩⎨⎧ x 2-3x -2>2,x 2+2x +1=1,∴⎩⎨⎧ x >4或x <-1,x =0或x =-2. ∴x =-2.【答案】 -24.已知关于x 的方程x 2+(k +2i)x +2+k i =0有实根x 0,求x 0以及实数k 的值.【导学号:81092038】【解】 x =x 0是方程的实根,代入方程并整理,得 (x 20+kx 0+2)+(2x 0+k )i =0.由复数相等的充要条件,得⎩⎨⎧ x 20+kx 0+2=0,2x 0+k =0,解得⎩⎨⎧ x 0=2,k =-22或⎩⎨⎧ x 0=-2,k =2 2. ∴方程的实根为x 0=2或x 0=-2,相应的k 值为k =-22或k =2 2。
《数系的扩充和复数的概念》教学设计一、教学设计背景1.课题:数系的扩充和复数的概念2.学科:数学3.授课年级:高中二年级4.学时数:1课时二、教材分析《数系的扩充和复数的概念》是高中课程里数的概念的最后一次扩展。
引入复数后,不仅可以使学生对数的概念有一个初步完整的认识,也为进一步学习数学奠定基础。
而本节则是该章的基础课、起始课,具有承上启下的作用。
三、学情分析在之前的学习中学生对数的概念已经扩充到实数,也已清楚各种数集之间的包含关系等内容。
同时学生在本章之前已经学习了《推理与证明》的内容,有了一定的推理与证明能力,有利于本节课运用类比思想对实数集进行扩充。
四、教学目标(1)知识与技能1、了解数系扩充的过程及引入复数的需要。
2、掌握复数的有关概念和代数符号形式、复数的分类方法及复数相等的充要条件。
(2)过程与方法1、通过数系扩充的介绍,让学生体会数系扩充的一般规律。
2、在不断练习中让学生理解和掌握复数的基本概念以及复数相等的充要条件(3)情感态度价值观1、体会数系的扩充过程中蕴含的创新精神与实践精神,感受人类理性思维在数系扩充中的作用。
2、体会类比、分类讨论、等价转化的数学思想方法。
五、教学重难点1、教学重点:引入复数的必要性与复数的相关概念、复数的分类和复数相等的充要条件。
2、教学难点:虚数单位i的引进和复数的概念及其应用。
六、教学过程(一)、情境导入一、问题引入师:请大家看幻灯片上这个方程,动手试试看它的解是多少?问题:解方程 x 2+1=0生(独立完成):x 2=-1是不存在的,这个方程在实数集中无解。
师:事实上在实数范围内这样的x 确实不存在,为什么会这样呢?假设x是存在的,那么就肯定是一些不是实数的数,那么,这些数是什么?我们能不能解决这个问题呢?这就是我们今天要学习的内容《数系的扩充和复数的概念》。
二、回顾数系的扩充历程 师:其实对于这种“数不够用”的情况,我们并不陌生。
大家记得吗?从小学到现在,我们一直在经历着数的不断扩充。
数系的扩充和复数的概念1. 数系的演变说到数,大家可能会想起从小到大学的那些简单的算数题。
其实,数的世界可不止这些啊,随着时间的推移,数学家们可没闲着,他们不断在探索和扩充数的种类,直到把它们搞得五花八门,简直让人眼花缭乱。
首先,我们从最基本的自然数说起,自然数就像我们在数手指头时用到的那些,比如1、2、3……这些都是小朋友们耳熟能详的。
但是,等到你发现了零,这可就是个“翻天覆地”的概念了。
零的加入,瞬间让自然数的大家族扩展成了整数的大家庭,嘿,这可是一种“大门大开”的感觉呀!1.1 整数的引入说到整数,大家知道它们就是自然数加上了负数部分,像1、2、3……这样的存在。
整数让我们的数系更加丰富,原本的“有钱”小朋友们也多了些“欠债”的伙伴,嘿嘿,这样一来,数的对比和运算就变得更加有趣了。
想想,如果没有负数,我们能做多少有趣的数学题呢?而整数的出现,恰如给数系加上了一对翅膀,让它飞得更高,看到更广的世界。
1.2 有理数的诞生紧接着,数学家们又发现了“有理数”。
这可是一群有趣的数,它们可以被写成分数的形式,像是1/2、3/4、甚至5/6这样的,真是让人觉得“哇塞”。
有理数的加入,给我们提供了更多的可能性,特别是在解决实际问题的时候。
想象一下,我们在做蛋糕时,切一块有理数大小的蛋糕,那可真是“酸甜苦辣”的完美结合了!2. 复数的出现不过,数系的扩展可不止于此!随着数学的发展,复数这个家伙也横空出世了,简直是个“黑马”。
复数的形式看上去有点怪异,像是a + bi,其中a是实数,b是虚数,i是一个让人咋舌的数,它的平方竟然是1!这真是让许多人瞠目结舌,脑袋里一片空白。
“这怎么可能呢?”不少人疑惑地问。
但是,复数的引入,真的让我们可以解决许多在实数范围内无法解决的问题,简直是“救命稻草”。
2.1 复数的应用再想想,复数的应用可真广泛,从电工程到量子物理,它们都大展身手。
比如,在电路中,复数可以用来描述交流电的性质。