气化装置工艺简介
- 格式:ppt
- 大小:8.78 MB
- 文档页数:4
气化装置工艺流程叙述(1)磨煤及干燥单元(1500单元)来自原料煤贮仓(V-1501)的碎煤由称重给料机(X-1501)按给定的量加入到磨煤机(A-1501)内,被轧辊在磨盘上磨成粉末,并由高温惰性气体烘干,高温惰性气体来自惰性气体发生器(F-1501),惰性气体进入磨煤机进口的温度为150-350℃,离开磨煤机的温度为100-120℃,惰性气体将碾磨后的粉煤输送到磨煤机上部的旋转分级筛,筛出的粗颗粒返回到磨盘重新研磨。
出磨煤机的合格粉煤由惰性气体输送如粉煤带式过滤器(S-1503)进行分离后,粉煤经旋转卸料阀(X-1504),纤维分离器(X-1505),及粉煤旋转输送机(X-1503)送至粉煤贮罐(S-1601),分离出的惰性气体小部分(约20%),排放至大气,剩余部分(约80%)经循环风机(K-1502)进入惰性气体发生器加热后循环使用。
惰性气体发生器的燃料气正常情况下由老厂提供,并用燃烧鼓风机(K-1501)提供助燃空气。
在粉煤带式过滤器下游检测惰性气体露点,稀释氮气由稀释风机(K-1505)加入,以保证系统内惰性气体露点在要求的范围内。
磨煤及干燥单元设有两条生产线,每条处理能力满足单台气化炉100%负荷,采用一开一备的操作方式。
磨煤及干燥单元主要控制煤的颗粒尺寸(颗径分布)和粉煤的分布含量(<2%WT)。
粉煤典型粒径分布为:1)颗粒尺寸≤90μm占90﹪(重量)2)颗粒尺寸≤5μm占10﹪(重量)。
(2)煤加压及进煤单元(1600单元)煤加压及进煤单元设有一条生产线,对应一条气化炉及合成气洗涤生产线,该单元采用锁斗来完成粉煤的连续加压及输送。
在一次加料过程中,常压常压粉煤储罐内的粉煤通过重力作用进入粉煤锁斗(V-1602)。
粉煤锁斗(V-1602)内充满粉煤后,即与粉煤储罐及所有低压设备隔离,然后进行加压,当其压力升至与粉煤给料罐(V-1603)压力相同时,且粉煤给料罐(V-1603)内的料位降低到足够接受一批粉煤时,打开V-1602与V-1603之间平衡阀门进行压力平衡,然后依次打开粉煤锁斗和粉煤给料罐之间的两个切断阀,粉煤通过重力作用进入粉煤给料罐。
SCGP(壳牌)煤气化工艺1、SCGP(壳牌)煤气化技术简介。
1.1工艺原理。
SCGP壳牌煤气化过程是在高温、加压条件下进行的,煤粉、氧气及少量蒸汽在加压条件下并流进入气化炉内,在极为短暂的时间内完成升温、挥发分脱除、裂解、燃烧及转化等一系列物理和化学过程。
由于气化炉内温度很高,在有氧存在的条件下,碳、挥发分及部分反应产物(H2和CO等)以发生燃烧反应为主,在氧气消耗殆尽之后发生碳的各种转化反应,即过程进入到气化反应阶段,最终形成以CO和H2为主要成分的煤气离开气化炉。
典型的SCGP煤气成分见表1。
1.2工艺流程。
目前,壳牌煤气化装置采用废锅流程,废锅流程的壳牌煤气化工艺简略流程见图1。
原料煤经破碎由运输设施送至磨煤机,在磨煤机内将原料煤磨成煤粉(90%<100μm)并干燥,煤粉经常压煤粉仓、加压煤粉仓及给料仓,由高压氮气或二氧化碳气将煤粉送至气化炉煤烧嘴。
来自空分的高压氧气经预热后与中压过热蒸汽混合后导入煤烧嘴。
煤粉、氧气及蒸汽在气化炉高温加压条件下发生碳的氧化及各种转化反应。
气化炉顶部约1500℃的高温煤气经除尘冷却后的冷煤气激冷至900℃左右进入合成气冷却器。
经合成气冷却器回收热量后的煤气进入干式除尘及湿法洗涤系统,处理后的煤气中含尘量小于1mg/m3送后续工序。
湿洗系统排出的废水大部分经冷却后循环使用,小部分废水经闪蒸、沉降及汽提处理后送污水处理装置进一步处理。
闪蒸汽及汽提气可作为燃料或送火炬燃烧后放空。
在气化炉内气化产生的高温熔渣,自流进入气化炉下部的渣池进行激冷,高温熔渣经激冷后形成数毫米大小的玻璃体,可作为建筑材料或用于路基。
1.3技术特点。
1.3.1煤种适应性广。
SCGP工艺对煤种适应性强,从褐煤、次烟煤、烟煤到无烟煤、石油焦均可使用,也可将2种煤掺混使用。
对煤的灰熔点适应范围比其他气化工艺更宽,即使是较高灰分、水分、硫含量的煤种也能使用。
1.3.2单系列生产能力大。
煤气化装置单台气化炉投煤量达到2000t/d以上,生产能力更高的的煤气化装置也正在建设中。
一、装置能力产品规模:生产合成气(CO+H2):110,000Nm3/h年操作时间:8000 小时技术来源:科林工业技术有限责任公司二、装置工艺过程(单元)的组成及其名称本项目气化装置:包括褐煤预干燥、干煤粉输送、粉煤制备、气化框、渣水处理、气化机柜室、气化装置变电所、气化装置综合楼、气化装置总图、气化给排水管网、气化装置外线、石油液化气站。
三、工艺流程简述来自界区外的原料褐煤(粒度小于10mm)首先经胶带输送机10L010A/B 输送至干燥机进料缓冲仓。
干燥机进料缓冲仓中的褐煤通过管式干燥机自带的布料器均匀进入管式干燥机的干燥管,在干燥机内被0.4MPa(g)低压饱和蒸汽加热升温至约90℃,使褐煤表面吸附的水分蒸发。
褐煤含水量从进料的35%降低至干燥后的13%左右。
与褐煤一起进入干燥机的空气吸收了水分以后经干燥机排气除尘器与干煤粉分离,达标排入大气。
干燥后的褐煤经下料阀下料至1#刮板输送机,1#刮板输送机上设有采样点,通过人工取样使用便携式水含量分析仪检测出料的水分含量,根据水分含量调整管式干燥机的转速或蒸汽的进入量,保证干燥后褐煤的含水量。
干燥褐煤经2#刮板输送机,1#斗式提升机斗提,3#刮板输送机输送至气化装置磨煤厂房料仓。
自界区外的低压蒸汽送至4 台管式干燥机加热褐煤,产生的冷凝水送至低压冷凝水收集罐,然后经低压冷凝水输送泵送至界区外。
在装置开车时,由于干燥机温度低,产生的冷凝水温度也较低,需要单独通过常压冷凝水收集罐收集,闪蒸出的蒸汽直接从安全地点排入大气。
粒度为10mm 以下的粉煤和粉煤,控制流量连续送入原煤仓,原煤仓的碎煤经煤称量给料机与从石灰石螺旋给料机出来的石灰石粉一起进入磨煤机制粉。
原煤的磨细和干燥是在磨煤机中同时进行的,磨煤系统自循环惰性气是从循环风机出口进入热风炉,并与热风炉燃烧产生的高温气体混合形成合格的惰性干燥气体。
惰性干燥气进入磨煤机后,把一定细度的煤粉带到位于磨煤机上部的分离器进行分离。
3组主要⽓化⼯艺及8种典型⽓化炉图⽂详解! ⼀、⽓化简介 ⽓化是指含碳固体或液体物质向主要成分为H2和CO的⽓体的转换。
所产⽣的⽓体可⽤作燃料或作为⽣产诸如NH3或甲醇类产品的化学原料。
⽓化的限定化学特性是使给料部分氧化;在燃烧中,给料完全氧化,⽽在热解中,给料在缺少O2的情况下经过热降解。
⽓化的氧化剂是O2或空⽓和,⼀般为蒸汽。
蒸汽有助于作为⼀种温度调节剂作⽤;因为蒸汽与给料中的碳的反应是吸热反应(即吸收热)。
空⽓或纯O2的选择依⼏个因素⽽定,如给料的反应性、所产⽣的⽓体⽤途和⽓化炉的类型。
⽓化最初的主要应⽤是将煤转化成燃料⽓,⽤于民⽤照明和供暖。
虽然在中国(及东欧)⽓化仍有上述⽤途,但在⼤多数地区,由于可利⽤天然⽓,这种应⽤已逐渐消亡。
最近⼏⼗年中,⽓化主要⽤于⽯化⼯业,将各种碳氢化合物流转换成'合成⽓',如为制造甲醇,为⽣产NH3提供H2或为⽯油流氢化脱硫或氢化裂解提供H2。
另外,⽓化更为专门的⽤途还包括煤转换为合成汽车燃料(在南⾮应⽤)和⽣产代⽤天然⽓(SNG)(⾄今未有商业化应⽤,但在70年代末和80年代初已受到重视)。
⼆、⽓化⼯艺的种类 有多种不同的⽓化⼯艺。
这些⼯艺在某些⽅⾯差别很⼤,例如,技术设计、规模、参考经验和燃料处理。
最实⽤的分类⽅法是按流动⽅式分,即按燃料和氧化剂经⽓化炉的流动⽅式分类。
正像传统固体燃料锅炉可以划分成三种基本类型(称为粉煤燃烧、流化床和层燃),⽓化炉分为三组:⽓流床、流化床和移动床(有时被误称为固动床)。
流化床⽓化炉完全类似于流化床燃烧器;⽓流床⽓化炉的原理与粉煤燃烧类似,⽽移动床⽓化炉与层燃类似。
每种类型的特性⽐较见表1。
表1 各种⽓化炉⽐较 * 如果在⽓化炉容器内有淬冷段,则温度将较低。
1.⽓流床⽓化炉 在⼀台⽓流床⽓化炉内,粉煤或雾化油流与氧化剂(典型的氧化剂是氧)⼀起汇流。
⽓流床⽓化炉的主要特性是其温度⾮常⾼, 在⼀台⽓流床⽓化炉内,粉煤或雾化油流与氧化剂(典型的氧化剂是氧)⼀起汇流。
液化天然气(LNG)气化站工艺设计介绍1. 前言与CNG相比,LNG是最佳的启动、培育和抢占市场的先期资源。
LNG槽车运输方便,成本低廉;不受上游设施建设进度的制约;LNG供应系统安装方便、施工:期短,并能随着供气规模的逐步扩大而扩大,先期投资也较低。
最后,当管道天然气到来时,LNG站可什为调峰和备用气源继续使用。
2.气化站工艺介绍由LNG槽车或集装箱车运送来的液化天然气,在卸车台通过槽车白带的自增压系统(对于槽车运输方式)或通过卸车台的增压器(对于集装箱年运输方式)增压后送入LNG储罐储存,储罐内的LNG通过储罐区的自增压器增压到0.5~0.6Mpa后,进入空温式气化器。
在空温式气化器中,LNG经过与空气换热,发生相变,出口天然气温度高于环境温度10℃以上,再通过缓冲罐缓冲,之后进入掺混装置,与压缩空气进行等压掺混,掺混后的天然气压力在0.4MPa左右,分为两路,一路调压、计量后送入市区老管网,以中一低压两级管网供气,出站压力为0.1MPa:另一路计量后直接以0.4MPa压力送入新建城市外环,以中压单级供气。
进入管网前的天然气进行加臭,加臭剂采用四氢噻吩。
冬季空浴式气化器出口气体温度达不到5℃时,使用水浴式NG加热器加热,使其出口天然气温度达到5℃~1O℃。
3. 主要设备选型3. 1 LNG储罐3.1.1储罐选型LNG储罐按围护结构的隔热方式分类,大致有以下3种:a)真中粉末隔热隔热方式为夹层抽真空,填充粉末(珠光砂),常见于小型LNG储罐。
真空粉末绝热储罐由于其生产技术与液氧、液氮等储罐基本一样,因而目前国内生产厂家的制造技术也很成熟,由于其运行维护相对方便、灵活,目前使用较多。
国内LNG气化站常用的大多为50m3和100m3圆筒型双金属真空粉末LNG储罐。
目前最大可做到200m3,但由于体积较大,运输比较困难,一般较少采用。
真空粉末隔热储罐也有制成球形的,但球型罐使用范围通常为为200~1500m3,且球形储罐现场安装难度大。
气化装置主要工艺流程
气化装置的主要工艺流程包括原料气化、气体净化和气体利用三个步骤。
首先,原料气化是将固体或液体原料通过高温高压条件下与空气或氧气反应,生成气体产品。
这个过程中,原料经过特定的气化方式,例如采用干煤粉进料,通过加压的N2 (氮气) 或CO2 (二氧化碳)气体进行输送,然后在高温条件下完成气化反应。
接下来,气体净化是将原料气化产生的气体经过除尘、脱硫、脱氮等工艺处理,去除其中的杂质和有害物质。
这一步骤对于保证后续工艺的稳定运行和产品质量至关重要。
最后,气体利用是将经过净化处理的气体用于生产化工产品,如合成氨甲醇、-氧化碳等。
这些化工产品广泛应用于化工、医药、农业等领域,具有重要的经济价值和社会意义。
整个工艺流程中,各个步骤紧密相连,互相配合,共同实现气化装置的高效、稳定运行。
同时,随着技术的不断发展和创新,气化装置的工艺流程也在不断优化和完善。
以适应市场需求和环保要求。
制表:审核:批准:。
第6期 2010年11月中 氮 肥M S ized N itrogenous Fertilizer Pr ogress No 6N ov 2010江苏灵谷化工四喷嘴煤气化装置运行介绍王刚勤,王国平,徐 峰,刘 政,钱林明(江苏灵谷化工有限公司,江苏宜兴 214200)[中图分类号]TQ 546 [文献标识码]B [文章编号]1004-9932(2010)06-0024-02[收稿日期]2010 06 12[作者简介]王刚勤,男,山西临猗人,工程师,车间副主任。
1 装置简介我公司煤气化装置选用具有国际先进水平的四喷嘴水煤浆气化技术,采用激冷流程及三级闪蒸灰水处理工艺。
气化装置由中国天辰工程公司设计,中国化学工程第三建设公司承建。
一期建设了2台气化炉,正常运行时1开1备。
我公司气化炉是国内最大的水煤浆气化炉,壳体内径3880mm ,砌筑耐火砖后炉膛内径2762mm 。
气化炉壳体由南化机制造,耐火材料由中钢集团洛耐院生产。
高压煤浆泵选用德国Feluwa 软管隔膜泵,煤浆制备选用棒磨机,煤浆浓度62%左右。
设计单炉日处理干煤1756,t 有效气(CO +H 2)产量118000m 3/h ,气化炉操作压力4 0M Pa 。
设计煤种为神华煤与晋城无烟粉煤按1 1掺烧,而实际生产中使用煤种较多,现阶段基本以神华煤与大友煤按3 1掺烧。
气化装置生产的合成气用于450kt/a 合成氨(配套800kt/a 尿素)装置。
2 工艺流程原煤破碎后(粒径 10mm )送入煤仓,经煤称量给料机精确计量后与来自滤液受槽的滤液按一定比例一起进入磨煤机,再加入适量添加剂磨成浓度约62%的水煤浆,由磨煤机出料槽泵送至煤浆槽。
煤浆槽内的煤浆经2台煤浆给料泵加压后与空分来的高压氧气一起进入工艺烧嘴,在气化炉内发生部分氧化反应,生成以CO 和H 2为主要成分的粗合成气。
熔渣及未完全反应的炭通过燃烧室下部的渣口与激冷水沿下降管内壁并流而下,进入气化炉洗涤冷却室。
煤的气化工艺煤炭气化技术虽有很多种不同的分类方法,但一般常用按生产装置化学工程特征分类方法进行分类,或称为按照反应器形式分类。
气化工艺在很大程度上影响煤化工产品的成本和效率,采用高效、低耗、无污染的煤气化工艺(技术)是发展煤化工的重要前提,其中反应器便是工艺的核心,可以说气化工艺的发展是随着反应器的发展而发展的,为了提高煤气化的气化率和气化炉气化强度,改善环境,新一代煤气化技术的开发总的方向,气化压力由常压向中高压(8.5 MPa)发展;气化温度向高温(1500~1600℃)发展;气化原料向多样化发展;固态排渣向液态排渣发展。
1、固定床气化固定床气化也称移动床气化。
固定床一般以块煤或焦煤为原料。
煤由气化炉顶加入,气化剂由炉底加入。
流动气体的上升力不致使固体颗粒的相对位置发生变化,即固体颗粒处于相对固定状态,床层高度亦基本保持不变,因而称为固定床气化。
另外,从宏观角度看,由于煤从炉顶加入,含有残炭的炉渣自炉底排出,气化过程中,煤粒在气化炉内逐渐并缓慢往下移动,因而又称为移动床气化。
固定床气化的特性是简单、可靠。
同时由于气化剂于煤逆流接触,气化过程进行得比较完全,且使热量得到合理利用,因而具有较高的热效率。
固定床气化炉常见有间歇式气化(UGI)和连续式气化(鲁奇Lurgi)2种。
前者用于生产合成气时一定要采用白煤(无烟煤)或焦碳为原料,以降低合成气中CH4含量,国内有数千台这类气化炉,弊端颇多;后者国内有20多台炉子,多用于生产城市煤气;该技术所含煤气初步净化系统极为复杂,不是公认的首选技术。
(1)、固定床间歇式气化炉(UGI)以块状无烟煤或焦炭为原料,以空气和水蒸气为气化剂,在常压下生产合成原料气或燃料气。
该技术是30年代开发成功的,投资少,容易操作,目前已属落后的技术,其气化率低、原料单一、能耗高,间歇制气过程中,大量吹风气排空,每吨合成氨吹风气放空多达5 000 m3,放空气体中含CO、CO2、H2、H2S、SO2、NOx及粉灰;煤气冷却洗涤塔排出的污水含有焦油、酚类及氰化物,造成环境污染。
某企业煤炭气化变换装置反应原理及工艺流程描述气化洗涤塔出来的煤气中,CO和硫含量都较高(其中:CO干气含量为45.08%mol、H2S含量为1.765g/Nm³、COS含量为0.35g/Nm³),为将其中的CO部分或全部转化为CO2和H2,变换采用三段耐硫变换技术,即一段宽温耐硫变换串两段低温耐硫变换工艺,在一定的温度下,煤气中的一氧化碳与水蒸气借助催化剂发生变换反应生成氢气和二氧化碳,与此同时约90%的COS亦转化为H2S,其化学反应如下:CO+H2O=CO2+H2+QCOS+H2=CO+H2S +QCOS+H2O=CO2+H2S+Q该工艺具有如下特点:(1)钴-钼耐硫催化剂适用于原料气中硫含量较高的变换气,对原料气中硫只有最低要求,无上限要求。
(2)由于变换原料气中CO含量较高,变换反应温升较大,须采用分段变换工艺移走热量。
(3)CO变换反应余热采用分等级回收方式,高温工艺余热采用过热中压蒸汽和副产中压蒸汽的方式回收;低温工艺余热用于副产低压蒸汽、预热锅炉给水和脱盐水等。
(4)工艺冷凝液根据压力等级,分别进行处理后回收利用。
高温变换冷凝液气体闪蒸后,作为粗煤气的洗涤水回用;低温变换冷凝液,即变换气和水煤气的洗涤水经过汽提后送气化灰水处理的脱气槽处理回用;汽提塔顶气经冷却分离后的冷凝液,连同甲醇精馏排出的部分含醇水及低温甲醇洗废水一起送入煤气化备煤系统用作制浆,分离后的气体送硫回收焚烧炉焚烧,焚烧气再送煤锅炉氨法脱硫,制得副产品硫胺。
由气化装置来的煤气,温度为242℃,压力为6.3MPaA,先经过入口分离器(01S0301)分离掉机械杂质及冷凝液,出分离器的气体分成两股,其中部分粗煤气(工况一下为81.6%,工况二下为71.5%)进入原料气预热器(01E0304)预热到285℃,然后进入蒸汽加热器(01E0303)升温后进入第一变换炉(01R0301),开车时蒸汽加热器用于为变换触媒升温还原提供热量,正常生产时蒸汽加热器用于满足触媒末期的温度要求。
一、德士古(TEXACO)气化法德士古气化法是一种以水煤浆为进料的加压气流床气化工艺。
德士古气化炉由美国德士古石油公司所属的德士古开发公司在1946年研制成功的。
1953年第一台德士古重油气化工业装置投产。
在此基础上,1956年开始开发煤的气化。
本世纪70年代初期发生世界性能源危机,美国能源部制订了煤液化开发计划,于是,德士古公司据此在加利福尼亚州蒙特贝洛(Moutebello)研究所建设了日处理15t的德士古气化装置,用于试烧煤和煤液化残渣。
联邦德国鲁尔化学公司(Ruhrchemie)和鲁尔煤炭公司l(R1flhrkohie)取得德士古气化专利,于1977年在奥伯豪森一霍尔顿(Oberl!fausezi-Hoiten)建成目处理煤150t的示范工厂。
此后,德士古气化技术得到了迅速发展。
目前国外共有一套中试装置,三套示范装置和四套生产装置,见下表。
除这些已建成的装置外,还有一些装置在设计或计划之中。
德士古气化炉是所有第二代气化炉中发展最迅速、开发最成功的一个,并已实现工业化。
(一)德士吉气化的基本原理和德士古气化炉德士古水煤浆加压气化过程属于气流床疏相并流反应。
德士吉气化炉的结构如下图所示。
水煤浆通过喷嘴在高速氧气流的作用下,破碎、雾化喷入气化炉。
氧气和雾状水煤浆在炉内受到耐火衬里的高温辐衬作用,迅速经历预热、水分蒸发、煤的干馏、挥发物的裂解燃烧以及碳的气化等一系列复杂的物理、化学过程,最后生成以一氧化碳、氢气、二氧化碳和水蒸气为主要成分的湿煤气、熔渣和未反应的碳,一起同流向下离开反应区,进入炉子底部激冷室水浴,熔渣经淬冷、固化后被截留在水中,落入渣罐,经排渣系统定时排放。
煤气和饱和蒸气进入煤气冷却净化系统。
气化炉是一直立圆筒形钢制受压容器,炉膛内壁衬以高质量的耐火材料,以防止热渣和热粗煤气的侵蚀。
气化炉近于绝热容器,其热损失非常低。
蒙特贝洛中试用气化炉直径1.5m,高6m,操作压为在2.07~8.27MPa。