干气密封结构与原理..
- 格式:ppt
- 大小:1.16 MB
- 文档页数:7
干气密封的特性及主要工作原理摘要介绍了干气密封的特点、结构及工作原理,分析了影响干气密封性能的主要参数。
关键词干气密封;结构及工作原理;主要参数中图分类号TH 文献标识码 A 文章编号1673-9671-(2012)051-0214-011 干气密封概述早在20世纪60年代末期,奠定在气体动压轴承应用的基础上,干气密封发展起来,并成为一种全新的非接触式密封。
该密封利用流体动力学原理,通过在密封端面上开设动压槽而实现密封端面的非接触性运行。
最初,采用干气密封形式,主要为了改善高速离心压缩机的轴封问题。
由于密封采取非接触性的运行方式,因此其密封的摩擦副材料基本不会受到PV值的任何影响,尤其在高压设备、高速设备中应用,具有良好前景。
随着我国密封技术的飞速发展,再加上干气密封的广泛应用,彻底解决了困扰高速离心压缩机运行中的轴封问题,密封使用寿命及性能都得到了很大提高,为机组稳定,长周期运行提供了保证,因此该技术的应用范围进一步扩大,凡使用机械密封的场合均可采用干气密封。
2 干气密封与机械密封性能比较机械密封是一种传统的密封型式,其特点是密封结构简单,技术成熟,加工精度要求不太高。
其缺点是泄漏率高,故障频发。
干气密封是目前最先进的一种非接触密封型式,与传统的机械密封形式相比较,采用干气密封技术,主要具备以下优势:1)采用干气密封技术,可有效提高密封的质量与使用时间,确保设备安全、可靠、稳定运行。
2)采用干气密封技术,能源消耗较小。
3)干气密封技术应用到的辅助系统较为可靠,操作简单,在使用过程中不需要任何维护手段。
4)采用干气密封技术,泄漏量较少,应用效果良好。
3 干气密封工作原理一般来讲,典型的干气密封技术,包含了静环、动环(旋转环)、副密封O 形圈、静密封、弹簧和弹簧座等。
静环位于弹簧座内,用副密封O形圈密封。
弹簧在密封无负荷状态下使静环与固定在轴上动环(旋转环)配合,如图1所示。
这类密封与机械密封的区别在于,它是一种气膜润滑的流体动、静压相结合的非接触式机械密封。
一、基本概念干气密封即“干运转气体密封”(Dry Running gas seals)是将开槽密封技术用于气体密封的一种新型轴端密封,属于非接触密封。
其作用原理:当端面外侧开设有流体动压的动环旋转时,流体动压槽把外径侧(称之为上游侧)的高压隔离气体泵入密封端面之间,由外径至槽径处气膜压力逐渐增加,而自槽径至内径处气膜压力逐渐下降,因端面膜压增加使所形成的开启力大于作用在密封环上的闭合力,在摩擦副之间形成很薄的一层气膜从而使密封工作在非接触状态下。
所形成的气膜完全阻塞了相对低压的密封介质泄漏通道,实现了密封介质的零泄漏或零逸出。
二、干气密封工作原理分析干气密封的一般设计形式是集装式,干气密封和普通平衡型机械密封相似,也由静环和动环组成,其中:静环由弹簧加载,并靠O型圈辅助密封。
端面材料可采用碳化硅、氮化硅、硬质合金或石墨。
干气密封与液体普通平衡型机械密封的区别在于:干气密封动环端面开有气体槽,气体槽深度仅有几微米,端面间必须有洁净的气体,以保证在两个端面之间形成一个稳定的气膜使密封端面完全分离。
气膜厚度一般为几微米,这个稳定的气膜可以使密封端面间保持一定的密封间隙,间隙太大,密封效果变差;而间隙太小会使密封面发生接触,因干气密封的摩擦热不能散失,端面间无润滑接触将很快引起密封端面的变形,从而使密封失效。
气体介质通过密封间隙时靠节流和阻塞的作用而被减压,从而实现气体介质的密封,几微米的密封间隙会使气体的泄漏率保持最小。
动环密封面分为两个功能区(外区域和内区域)。
气体进入密封间隙的外区域有空气动压槽,这些槽压缩进来的气体。
为了获得必要的泵效应,动压槽必须被开在高压侧。
密封间隙内的压力增加将保证即使在轴向载荷较大的情况下也将形成一个不被破坏的稳定气膜。
干气密封无接触无磨损的运行操作是靠稳定的气膜来保证的,稳定的气膜是由密封墙的节流效应和所开动压槽的泵效应得到的。
密封面的内区域(密封墙)是平面,靠它的节流效应限制了泄漏量。
干气密封工作原理一、引言干气密封是一种广泛应用于各种机械设备中的密封方式,它通过利用气体的特性来实现密封效果,具有结构简单、维护方便等优点。
本文将详细介绍干气密封的工作原理及其应用。
二、工作原理干气密封的工作原理基于气体的压力平衡原理和密封面的相对运动。
一般情况下,干气密封由静密封和动密封两部分组成。
1. 静密封部分静密封部分主要由密封面和密封环组成。
密封面通常采用硬质合金、陶瓷等材料制成,具有良好的耐磨性和耐腐蚀性。
密封环则负责与密封面接触,并通过压缩使其与密封面形成密封。
2. 动密封部分动密封部分主要由活塞、活塞环和密封环组成。
活塞和活塞环的运动可产生压力差,从而形成气体的流动。
密封环则负责承受气体的压力,并通过其自身的弹性使气体无法泄漏。
三、工作过程干气密封的工作过程可以分为压缩、密封和润滑三个阶段。
1. 压缩阶段当活塞运动时,活塞环与密封环之间形成一定的压力差,使气体被压缩。
同时,密封环的弹性使其与密封面紧密接触,形成初步的密封效果。
2. 密封阶段在密封阶段,由于活塞环的运动,压缩气体逐渐流向密封面,与密封面接触。
此时,密封面与密封环之间的压力差逐渐增大,从而形成更好的密封效果。
3. 润滑阶段在润滑阶段,密封面和密封环之间的润滑剂起到重要的作用。
润滑剂可减少密封面和密封环之间的摩擦,提高密封的效果。
四、应用领域干气密封广泛应用于各种机械设备中,特别是涉及高速旋转的轴承和密封件。
其主要应用领域包括但不限于以下几个方面:1. 压缩机在压缩机中,干气密封可有效防止压缩气体泄漏,提高压缩机的工作效率。
同时,干气密封还可减少摩擦磨损,延长设备的使用寿命。
2. 泵站在泵站中,干气密封可防止液体泄漏,保证泵站的正常运行。
与传统的液体密封相比,干气密封不会受到液体蒸发和结晶的影响,具有更好的稳定性和可靠性。
3. 机床在机床中,干气密封可防止切削液进入主轴轴承,保护轴承免受污染。
同时,干气密封还可减少主轴轴承的磨损,提高机床的加工精度和效率。
干气密封的原理干气密封是一种常用于旋转机械设备中的密封方式,其原理是利用气体的压力来实现密封作用。
在旋转机械设备中,由于转子的高速旋转和运动部件的摩擦,会产生大量的热量和摩擦力,如果不加以有效的密封,就会导致气体泄漏和能量损失,甚至会影响设备的正常运行。
因此,干气密封的应用就显得尤为重要。
干气密封的原理可以简单地概括为以下几点:1. 气体压力作用,干气密封的核心原理是利用气体的压力来实现密封作用。
在密封装置中,通过控制气体的流动和压力,使气体形成一定的压力差,从而阻止外界空气或液体的渗入,实现密封效果。
2. 动静环结构,干气密封通常由动环和静环两部分组成。
动环是安装在旋转轴上的密封件,静环则是安装在机壳内的密封件。
当旋转轴旋转时,动环和静环之间形成一定的间隙,通过控制气体的流动和压力来实现密封作用。
3. 摩擦降低,干气密封的原理还包括通过减少摩擦力来实现密封。
在密封装置中,通过控制气体的流动和压力,形成一层气膜,从而减少旋转部件和固定部件之间的摩擦力,减少能量损失。
4. 温度控制,干气密封的原理还包括通过控制气体的温度来实现密封。
在高速旋转的机械设备中,由于摩擦产生的热量会导致气体温度升高,影响密封效果。
因此,通过控制气体的温度,可以有效地实现密封作用。
总的来说,干气密封的原理是通过控制气体的流动、压力、温度等参数,利用气体的压力和摩擦降低来实现密封作用。
在实际应用中,干气密封不仅可以有效地阻止气体泄漏和能量损失,还可以减少设备的维护成本,提高设备的运行效率,具有广泛的应用前景。
以上就是干气密封的原理,希望能对大家有所帮助。
离心压缩机干气密封结构原理
离心压缩机是一种重要的工业设备,广泛应用于石油、化工、冶金等行业。
为了保证离心压缩机的高效运行,干气密封结构起着至关重要的作用。
干气密封结构可以防止气体泄漏,提高设备的安全性和可靠性。
干气密封结构的原理主要基于以下几个方面:
1. 压力差效应:干气密封结构利用压力差效应来防止气体泄漏。
在离心压缩机运行过程中,气体从高压区域流向低压区域,干气密封结构通过合理设计,使气体在流动过程中产生压力差,从而防止气体渗漏到外部环境。
2. 环境控制:干气密封结构通过控制环境条件来防止气体泄漏。
离心压缩机通常运行在高温、高压的环境中,干气密封结构采用特殊的材料和密封装置,能够承受高温高压环境的侵蚀和磨损,并保持稳定的密封性能。
3. 摩擦密封:干气密封结构利用摩擦力来防止气体泄漏。
离心压缩机的转子和定子之间存在一定的摩擦力,干气密封结构通过合理设计密封面的形状和材料,使摩擦力产生足够的密封效果,防止气体泄漏。
4. 润滑和冷却:干气密封结构通过润滑和冷却来防止气体泄漏。
离
心压缩机的转子和定子之间存在一定的间隙,干气密封结构通过注入润滑剂和冷却剂,形成一层润滑膜和冷却膜,以减少摩擦和热量的产生,提高密封性能。
干气密封结构的设计需要考虑多个因素,如压力、温度、转速等。
不同工况下,需要采用不同的密封结构和材料。
目前,常用的干气密封结构包括磁力密封、机械密封和迷宫密封等。
离心压缩机干气密封结构的原理是通过压力差效应、环境控制、摩擦密封和润滑冷却等方式来防止气体泄漏。
合理设计和选择适当的干气密封结构,可以提高离心压缩机的安全性和可靠性,确保设备正常运行。
压缩机干气密封原理压缩机干气密封原理是指在压缩机工作过程中,通过适当的措施使压缩机的气缸与气缸盖之间形成密封,以防止气体泄漏和外界杂质进入气缸,保证压缩机正常工作。
干气密封的原理和方法有多种,下面将介绍几种常见的原理。
1.机械密封原理:机械密封是通过设置在活塞杆或曲柄轴上的密封装置,如密封圈、密封环等,来实现干气密封的。
它通过材料的弹性和变形性,将活塞杆或曲轴轴颈与气缸之间形成密封层,防止气体泄漏。
机械密封原理的优点是密封效果好、使用寿命长,但缺点是密封装置需要经常更换和维修,成本较高。
2.润滑油密封原理:润滑油密封是通过在气缸壁上涂覆一层润滑油,并在活塞上设置油环来实现的。
润滑油在活塞上形成一层保护薄膜,起到密封气体的作用。
润滑油密封的优点是结构简单、维护方便,但缺点是密封效果较差,容易出现气体泄漏的情况。
3.渗碳密封原理:渗碳密封是指在气缸和气缸盖的接触面上进行处理,使其表面产生渗碳层,从而提高密封效果。
渗碳层的特点是硬度高、耐磨损性好,能够有效地防止气体泄漏。
渗碳密封的优点是密封效果好、使用寿命长,但缺点是工艺复杂、成本较高。
4.气体密封原理:气体密封是通过在气缸和气缸盖之间设置特殊的密封结构,如O型密封圈、V型密封圈等,来实现干气密封的。
这种密封原理的优点是密封效果好、维护方便,但缺点是密封结构复杂,需要定期更换维修。
综上所述,压缩机干气密封原理主要包括机械密封原理、润滑油密封原理、渗碳密封原理和气体密封原理。
不同的压缩机根据其工作原理和工作条件的不同,选择适合的干气密封原理,以保证其正常运行和高效性能。
干气密封结构与原理今天咱们来唠唠干气密封这个超有趣的东西。
咱先说说干气密封的结构哈。
干气密封啊,就像是一个超级精密的小世界。
它有动环和静环这两个重要的小伙伴呢。
动环就像是个活泼好动的小机灵鬼,它是随着轴一起旋转的。
而静环呢,就比较沉稳啦,它是固定在那里不动的。
这一动一静之间啊,就有着很多奇妙的事情发生。
动环和静环的表面那可是经过超级精细的加工的,光滑得就像小婴儿的脸蛋儿似的。
而且啊,在它们之间还有一些小小的间隙,这个间隙可不能太大也不能太小,就像是 Goldilocks(金发姑娘)找到的那个“刚刚好”的状态。
再来说说干气密封的密封坝,这就像是一道小堤坝一样。
它在密封结构里起着非常重要的作用呢。
它能够控制气体的流动方向,让气体乖乖地按照我们想要的方式在密封结构里跑来跑去。
还有啊,密封槽也是个很有意思的部分。
这些密封槽的形状和大小都是经过精心设计的,就像是给气体设计了一个个小跑道,气体就在这些小跑道里穿梭。
那干气密封的原理是啥呢?这可就更有趣啦。
干气密封主要是靠气体的压力来实现密封的哦。
想象一下,气体就像是一群小小的士兵,它们被输送到密封结构里。
当动环旋转的时候,它会带动气体在动环和静环之间的间隙里形成一种特殊的气膜。
这个气膜啊,就像是一层软软的保护罩一样。
它一方面能够阻止密封介质泄漏出来,另一方面呢,又能让动环和静环不会直接接触,就像两个小伙伴之间隔了一层柔软的气垫,这样就不会互相磨损啦。
而且哦,这个气膜的压力是很有讲究的。
如果气膜的压力太小了,那就像是士兵的力量不够,可能就挡不住密封介质的泄漏啦。
但是如果气膜的压力太大呢,又可能会把动环和静环给撑开,这样整个密封结构就会出问题啦。
所以啊,就需要精确地控制气体的压力,让这个气膜保持在一个完美的状态。
在实际的工作过程中,干气密封就像是一个忠诚的小卫士。
不管设备里面的压力怎么变化,它都在那里坚守岗位。
比如说在一些大型的压缩机里,干气密封就发挥着巨大的作用。
1 干气密封工作原理典型的干气密封结构如图1 所示,由旋转环、静环、弹簧、密封圈、弹簧座和轴套组成。
图 2 为干气密封旋转环示意图,旋转环密封面经过研磨、抛光处理,并在其上面加工出有特殊作用的流体动压槽。
干气密封旋转环旋转时,密封气体被吸入动压槽内,由外径朝向中心,径向分量朝着密封堰流动。
由于密封堰的节流作用,进入密封面的气体被压缩,气体压力升高。
在该压力作用下,密封面被推开,流动的气体在两个密封面间形成一层很薄的气膜,此气膜厚度一般在3μm左右。
气体动力学研究表明,当干气密封两端面间的间隙在2~3μm时,通过间隙的气体流动层最为稳定。
这也就是为什么干气密封气膜厚度设计值选定在2~3μm的主要原因。
当气体静压力、弹簧力形成的闭合力与气膜反力相等时,该气膜厚度十分稳定。
正常条件下,作用在密封面上的闭合力(弹簧力和介质力)等于开启力(气膜反力),密封工作在设计工作间隙。
当受到外部干扰,气膜厚度减小,则气膜反力增加,开启力大于闭合力,迫使密封工作间隙增大,恢复到正常值。
相反,若密封气膜厚度增大,则气膜反力减小,闭合力大于开启力,密封面合拢恢复到正常值。
因此,只要在设计范围内,当外部干扰消失以后,气膜厚度就可以恢复到设计值。
衡量密封稳定性的主要指标就是密封产生气膜刚度的大小,气膜刚度是气膜作用力的变化与气膜厚度的变化之比,气膜刚度越大,表明密封的抗干扰能力越强,密封运行越稳定。
干气密封的设计就是以获得最大的气膜刚度为目标。
干气密封是采用机械密封和气体密封的结合,是一种非接触端部密封,它是在机械密封的动环或静环(一般在动环上)的密封面上开有密封槽(本密封为T形槽),当动静环高速旋转时,在两端面间形成一层气膜,在气体泵送效应产生的推力作用下把动静环推开,使两密封端面不接触,但在压缩机刚开机阶段,由于转速较低,动静密封面形成的动压力也较低,动静环是接触摩擦的,所以采用干气密封的压缩机,低速运行时间不宜过长[1]。
干气密封结构、原理和密封气供给流程及要求1、干气密封结构和工作原理涩北首站压缩机采用的二级串联干气密封,具体结构如图1。
图1干气密封剖面图参照图1干气密封剖面图,对干气密封的结构和气体流向说明如下。
图1中,1——动环,2——静环,3——推环,4——弹簧所在空间(弹簧未画出),A ——密封气进气口,B——一级密封气排气口,C——未使用,D——隔离气排气口(二级密封泄露的少量密封气亦从此通道排除),E——隔离气进气口。
干气密封主要由动环1、静环2、弹簧组件(3和弹簧)等元件构成,静环、动环端面均为环形平面,但在动环端面具有一组“T”型槽,槽的深度大约5微米。
压缩机不运转时,在弹簧力的作用下,动环与静环之间的端面紧贴而无间隙。
但是,压缩机运转时,密封工作,密封气通过A孔进入动环上的“T”型流道,由于气体具有粘性以及两平行平面间具有沟槽,根据雷诺方程在两平行平面之间产生流体动压力,当流体动压力与作用在密封上的气体静压力以及弹簧力平衡时,就在两端面之间形成并维持一层极薄的气膜,气膜厚度大约5微米。
通常,从A孔进入的密封气压力高于压缩机平衡管的压力,该气体一部分进入压缩机内阻挡机内脏的介质气;另一部分从动静环之间的气膜泄漏到下游的腔室内,从而形成对压缩机内工艺气的密封。
由于气膜厚度非常小,泄漏出的气体量也非常小。
该密封包括两级相同的密封,两者为串联布置。
第一级密封即主密封,密封气体是经过过滤的天然气,第二级密封的密封气体是从一级密封中泄漏出来的天然气。
在主密封正常工作时,二级密封作为主密封的安全备用密封,加强密封的安全性,当主密封出现故障而不能正常工作时,二级密封就替代主密封,保证干气密封正常发挥密封功能和压缩机安全停机检修。
在靠近压缩机内侧(图1中的右侧),迷宫密封位于干气密封的前端,作为前置密封。
通过对密封气压力的调节使得从A孔进入的密封气压力高于迷宫密封内侧工艺气体的压力(此压力实际为压缩机平衡管压力),从而保证压缩机内脏的天然气不会向干气密封侧流动,保证干气密封始终在干燥、干净的气氛中运行。
离心压缩机干气密封原理与典型故障分析一、干气密封基本结构及工作原理1. 干气密封基本结构干气密封是一种气膜润滑的流体动、静压结合型非接触式机械密封。
如图1-1所示,包含有静环、动环组件(动环)、副密封O形圈、静密封、弹簧和弹簧座(腔体)等零部件。
干气密封的结构设计特点为在密封端面上开设动压浅槽,其转动形成的气膜厚和流槽槽深均属微米级,并采用润滑槽、径向密封坝和周向密封堰组成密封和承载部分。
可以说是开面密封和开槽轴承的结合。
干气密封动压槽有单旋向和双旋向,一般单旋向为螺旋槽,双旋向常见有T型槽、枞树槽和U型槽。
如图所示,单旋向螺旋槽干气密封不能反转,反转则产生负气膜反力,导致密封端面压紧,致密封损坏失效。
而双旋向枞树槽则无旋向要求,正反转都可以。
单向槽相对于双向槽,具有较大的流体动压能,产生更大的气膜反力和气膜刚度,产生更好的稳定性。
2. 干气密封工作原理如图,对于螺旋槽干气密封,其工作原理是靠流体静压力、弹簧力与流体动压力之间的平衡。
当密封气体注入密封装置时,使动、静环受到流体静压力的作用。
而流体的动压力只是在转动时才产生。
如图1-2所示,当动环随轴转动时,螺旋槽里的气体被剪切从外缘流向中心,产生动压力,而密封堰对气体的流出有抑制作用,使得气体流动受阻,气体压力升高,这一升高的压力将挠性安装的静环与配对动环分开,当气体压力与弹簧力恢复平衡后,维持一最小间隙,形成气膜,膜厚一般为3-5μm,使旋转环和静止环脱离接触,从而端面几乎无磨损,同时密封工艺气体。
3. 干气密封的类型干气密封基本结构类型有单端面密封、串联式密封、带中间迷宫串联式密封和双端面密封。
(1)单端面密封适用于没有危害、允使微量的工艺气泄漏到大气的工况。
如N2压缩机、CO2压缩机、空气压缩机等。
(2)串联式密封适用于允许少量工艺气泄漏到大气的工况。
一般采用两级串联布置方式,一级为主密封,二级为备用密封。
正常工况下,全部或大部分负荷由主密封承担,而二级备用密封不承受或承受小部分的负荷和压力降。
干气密封的结构和工作原理干气密封的结构和工作原理其实蛮有意思的,听起来高大上,其实就像一件很简单的衣服,里面却藏着不少巧妙的设计。
先说说它的结构吧,干气密封基本上是由几个主要部分构成的,像是密封环、固定环和气体供应系统。
你想啊,这就像是一个团队,每个人都有各自的角色,缺了哪个都不行。
密封环呢,负责紧紧地包住核心部分,确保没有气体溜出去,简直就像个守卫,把“敌人”挡在外面。
固定环呢,起着支撑的作用,保持整个结构的稳定,就像是个强壮的小伙伴,给大家撑腰。
气体供应系统则负责提供必要的气体,保持压力平衡,确保密封状态好得不能再好了。
工作原理说起来更有趣了,干气密封利用了气体的压力和流动来实现密封。
想象一下,就像你在游泳池里,水流动时形成的那种涟漪。
而这些气体的流动就像在场上跳舞,轻盈而又充满节奏。
气体在密封环和固定环之间形成了一层保护膜,保持着低摩擦,减少了磨损。
可以说,这一切都像是一场华丽的表演,每个环节都紧密配合,不容有失。
因为干气密封的设计,摩擦系数可以降到最低,就像是给它穿上了滑滑的衣服,让它在工作时毫无压力。
你或许会问,这种密封有什么好处?哦,简直是太多了。
干气密封的耐用性很高,使用寿命长,这样一来就减少了维修和更换的麻烦。
简直就像买了一件高质量的衣服,不用担心洗几次就变形了。
干气密封在极端环境下也能发挥出色,像高温、高压的地方,它都能稳定工作,绝对是个可靠的伙伴。
再加上它的设计还减少了泄漏的可能性,对环境也更友好,真的是一举多得。
此外,干气密封的维护也比较简单,定期检查就能保持它的良好状态。
说白了,就像你给自己的爱车做保养,定期加油、换油,保持它的最佳状态。
这种密封装置也能减少能耗,提高设备的效率,长久以来就像是给企业省了一笔可观的开支,真是聪明之举。
任何事物都有两面性,干气密封也不例外。
虽然它的优点多多,但在安装和调试上,还是需要一些专业的知识。
就像一个新手厨师在尝试做一道复杂的菜,得小心翼翼,不能随便来。