六年级数学平面图形面积的整理
- 格式:ppt
- 大小:525.50 KB
- 文档页数:21
《图形的认识》(10)1、直线、射线和线段:端点个数是否可以延伸长度直线射线线段2、同一平面内两条直线有哪几种位置关系?并画图表示。
3、角:()<锐角<()直角=()()<钝角<()平角=()周角=() 1周角=()平角 =()直角4、三角形:三角形内角和等于()°;任意两边之和()。
等腰三角形的()相等,()相等。
5、四边形:(1)平行四边形内角和是()度。
对边()且相等,对角()。
(2)长方形有()条对称轴;正方形有()条对称轴;等腰三角形有()条对称轴;等边三角形有()条对称轴;等腰梯形有()条对称轴。
6、圆:(1)圆是轴对称图形,有()条对称轴。
(2)在同圆或等圆中,直径=(),半径=()。
(3)()确定圆的位置,圆的大小由()确定。
1、填空:(1)三角形具有()性、四边形具有()性、圆具有()性。
(2)一个三角形三个内角度数之比是1:1:2,这是个()三角形。
(3)一用2根分别长4㎝、6㎝长的小棒,再配一根围成一个三角形,这根小棒最长()㎝,最短( )㎝。
(取整厘米)(4)把一个等边三角形沿一条高分开,分成的直角三角形的两个锐角的度数分别是()度和()度。
(5)如果等腰三角形的顶角比它的一个底角大150,这个等腰三角形的一个底角是()0 ,顶角是()0。
(6)在一个等腰三角形的周长是20cm,其中有两条边之比是1:2,腰长() cm,底边长()cm。
2、判断:(1)线段和射线都是直线的一部分。
()(2)两条直线不相交就一定平行。
()(3)利用一幅三角尺可以画出是15的倍数的角。
()(4)把一个长方形框拉成平行四边形后,周长和面积都没有变。
()(5)长方形、正方形、平行四边形都是轴对称图形。
( ) (6)锐角三角形有三条高,直角三角形和钝角三角形只有一条高。
()(7)钝角大于900。
()(8)平角是一条直线,周角是一条射线。
()(9)角的两条边越长,这个角越大。
()3、解决问题。
青岛版数学六年级下册《平面图形的面积整理复习》课标分析新课程标准要求,在“图形与几何”的教学中,应帮助学生建立空间观念,注重培养学生的几何直观与推理能力。
空间观念主要是指根据物体特征抽象出几何图形,根据几何图形想象出所描述的实际物体;想象出物体的方位和相互之间的位置关系;描述图形的运动和变化;依据语言描述画出图形等。
几何直观主要是指利用图形描述和分析数学问题。
借助几何直观可以把复杂的数学问题变得简明、形象,有助于探索解决问题的思路,预测结果。
几何直观不仅在“图形与几何”的学习中发挥着不可替代的作用,而且贯穿在整个数学学习过程中。
空间观念的培养:⑴强调内容的现实背景,联系学生的生活经验和活动经验,展示丰富多彩的几何世界,注重二维与三维的相互转换,教学内容要有现实的、有意义的、富有挑战性。
⑵灵活运用多元的学习方式,重视实践操作、测量,经历观察、实验、猜想、证明等数学活动,突出探究性活动,使学生亲历“做数学”的过程。
⑶加强几何建模以及探究过程,强调几何直觉,培养空间观念。
(注重学生经历从实际背景中抽象出数学模型、从现实的生活空间中抽象出几何图形的过程,注重探索图形性质及其变化规律的过程。
)⑷突出现代教育技术的作用,有效突破教学难点,丰富学生的直观体验,获得感性认识。
根据以上课程标准的要求特定本节课的学习目标如下:1.通过回顾平面图形面积计算公式的推导过程,体会转化的思想方法,沟通平面图形面积计算公式之间的联系。
2.在对知识、技能、方法的回顾与梳理中,掌握整理的方法,并使所学内容系统化、网络化,形成完整的认知结构。
3.通过回顾整理,加深对数学思想方法的认识,能综合运用所学知识与技能解决实际问题,形成一些解决问题的策略,积累数学活动经验。
六年级数学几何公式大全
小学六年级的数学几何公式主要包括各类平面图形的面积和周长计算公式,以及部分立体图形的表面积和体积计算公式。
平面图形计算公式如下:
三角形:面积=底×高÷2,公式S=a×h÷2;周长=三边之和。
正方形:面积=边长×边长,公式S=a×a;周长=4×边长,公式C=4a。
长方形:面积=长×宽,公式S=a×b;周长=2×(长+宽),公式C=2(a+b)。
平行四边形:面积=底×高,公式S=a×h。
梯形:面积=(上底+下底)×高÷2,公式S=(a+b)h÷2;周长=上底+下底+两个腰长。
立体图形计算公式如下:
圆柱:侧面积=底面的周长×高,公式S=ch=πdh=2πrh;表面积=侧面积+2×底面积,公式S=ch+2s=ch+2πr2;体积=底面积×高,公式V=Sh。
圆锥:体积=1/3×底面积×高,公式V=1/3Sh。
圆:圆的周长=直径×π,公式C=πd=2πr;圆的面积=半径×半径×π,公式S=πr2。
以上公式中的字母含义如下:a、b代表长方形、平行四边形、梯形的相邻两边;h代表高;c代表底面的周长;r代表半径;d代表直径;s代表底面积;V 代表体积。
这些公式是小学六年级数学几何部分的重要内容,需要同学们熟练掌握并灵活运用。
同时,也需要同学们理解这些公式的含义和推导过程,以便更好地掌握数学知识。
数学知识总结小学六年级常见的面积与体积计算在小学六年级的数学学习中,面积与体积计算是一个重要的知识点。
面积是表示平面图形所占的空间大小,而体积则是用来表示立体图形所占的空间大小。
掌握面积与体积计算的方法,不仅可以帮助我们解决生活中的实际问题,还有助于培养我们的逻辑思维能力。
本文将对小学六年级常见的面积与体积计算进行总结。
一、平面图形的面积计算方法1. 矩形的面积计算:矩形是我们学习中最简单的图形之一,计算其面积也非常简单。
矩形的面积等于矩形的长乘以宽,即“面积=长×宽”。
例如,某个矩形的长为6厘米,宽为4厘米,那么它的面积就是6×4=24平方厘米。
2. 三角形的面积计算:三角形是另一个常见的平面图形,计算其面积需要用到三角形的底和高。
三角形的面积等于底乘以高的一半,即“面积=(底×高)÷ 2”。
例如,某个三角形的底为8厘米,高为6厘米,那么它的面积就是(8×6)÷ 2=24平方厘米。
3. 圆的面积计算:圆是一个特殊的平面图形,它的面积计算需要用到圆的半径。
圆的面积等于半径的平方乘以π(π是一个无限不循环小数,约等于3.14),即“面积=半径的平方×π”。
例如,某个圆的半径为5厘米,那么它的面积就是5×5×3.14≈78.5平方厘米。
二、立体图形的体积计算方法1. 直方体的体积计算:直方体是一个常见的立体图形,计算其体积需要用到直方体的长、宽和高。
直方体的体积等于长乘以宽乘以高,即“体积=长×宽×高”。
例如,某个直方体的长为5厘米,宽为3厘米,高为2厘米,那么它的体积就是5×3×2=30立方厘米。
2. 圆柱体的体积计算:圆柱体是另一个常见的立体图形,计算其体积需要用到圆柱体的底面积和高。
圆柱体的体积等于底面积乘以高,即“体积=底面积×高”。
其中,圆柱体的底面积可以通过计算圆的面积得到。
数学中常用的面积公式主要涵盖平面图形和立体图形两个方面。
下面将逐一介绍一些常用的面积公式。
平面图形的面积公式:1.矩形的面积公式:矩形的面积等于长乘以宽,即A=长×宽。
2.正方形的面积公式:正方形的面积等于边长的平方,即A=边长²。
3.三角形的面积公式:三角形的面积等于底边乘以高再除以2,即A=(底边×高)/24.平行四边形的面积公式:平行四边形的面积等于底边乘以高,即A=底边×高。
5.梯形的面积公式:梯形的面积等于上底加下底的和乘以高再除以2,即A=(上底+下底)×高/26.圆的面积公式:圆的面积等于半径的平方乘以π(π取近似值3.14),即A=半径²×π。
立体图形的面积公式:1.立方体的表面积公式:立方体的表面积等于长乘以宽再乘以高的6倍,即A=6×长×宽×高。
2.正方体的表面积公式:正方体的表面积等于边长的平方的6倍,即A=6×边长²。
3. 圆柱的表面积公式:圆柱的表面积等于两个底面的圆面积相加再加上侧面矩形的面积,即A=2πr²+2πrh。
4. 圆锥的表面积公式:圆锥的表面积等于底面圆的面积加上侧面扇形的面积,即A=πr²+πrl。
5.球的表面积公式:球的表面积等于4πr²。
6.圆环的面积公式:圆环的面积等于外圆的面积减去内圆的面积,即A=π(R²-r²),其中R为外圆半径,r为内圆半径。
除了上述常见的面积公式,还有一些特殊的面积公式,例如扇形的面积公式、等边三角形的面积公式、菱形的面积公式等,这些公式根据对应图形的特点可以自行推导得出,不能一一列举。
掌握这些常用的面积公式,对于解决与图形面积相关的数学问题和几何证明有非常重要的作用。
学好这些公式,将帮助我们更好地理解和应用数学知识。
苏教版六年级数学下册《平面图形的面积总复习》教案一. 教材分析苏教版六年级数学下册《平面图形的面积总复习》这一章节,主要是对小学阶段所学的平面图形面积知识进行总结和复习。
通过本节课的学习,使学生能够熟练掌握各种平面图形的面积计算方法,提高学生的数学思维能力和解决问题的能力。
二. 学情分析六年级的学生已经掌握了平面图形面积的基本计算方法,但对一些特殊图形的面积计算可能还存在一定的困难。
因此,在教学过程中,教师要针对学生的实际情况,有的放矢地进行教学,引导学生总结和归纳平面图形面积的计算方法,提高学生的学习兴趣和自信心。
三. 教学目标1.使学生掌握各种平面图形的面积计算方法。
2.提高学生的数学思维能力和解决问题的能力。
3.培养学生的合作意识和团队精神。
四. 教学重难点1.重点:各种平面图形的面积计算方法的掌握。
2.难点:对一些特殊图形的面积计算方法的掌握。
五. 教学方法1.采用问题驱动法,引导学生主动探究平面图形的面积计算方法。
2.采用合作学习法,让学生在小组内讨论和交流,共同解决问题。
3.采用案例分析法,通过分析具体案例,使学生掌握平面图形的面积计算方法。
六. 教学准备1.准备相关平面图形的面积计算案例。
2.准备多媒体教学设备,如投影仪、电脑等。
3.准备练习题和测试题。
七. 教学过程导入(5分钟)教师通过PPT展示一些生活中常见的平面图形,如教室的地面、电视屏幕、报纸等,引导学生思考这些图形的面积是如何计算的。
学生分享各自的想法,教师总结并板书。
呈现(10分钟)教师通过PPT呈现几种特殊的平面图形,如圆环、梯形等,让学生尝试计算它们的面积。
学生独立思考,教师巡回指导。
操练(10分钟)教师分发练习题,让学生在小组内合作完成。
教师选取部分题目进行讲解,强调解题思路和方法。
巩固(10分钟)教师学生进行小组竞赛,看哪个小组能够在规定时间内完成更多的平面图形面积计算题目。
教师对表现优秀的小组给予表扬和奖励。
一、平面图形的面积公式:1.矩形的面积公式:矩形的面积等于长乘以宽,公式为:面积=长×宽。
2.正方形的面积公式:正方形的面积等于边长的平方,公式为:面积=边长×边长。
3.三角形的面积公式:三角形的面积等于底边乘以高除以2,公式为:面积=1/2×底边×高。
4.梯形的面积公式:梯形的面积等于上底加下底乘以高除以2,公式为:面积=1/2×(上底+下底)×高。
5.平行四边形的面积公式:平行四边形的面积等于底边乘以高,公式为:面积=底边×高。
6.菱形的面积公式:菱形的面积等于对角线1乘以对角线2的一半,公式为:面积=1/2×对角线1×对角线27.圆的面积公式:圆的面积等于半径的平方乘以π,公式为:面积=半径×半径×π。
二、立体图形的面积公式:1.立方体的表面积公式:立方体的表面积等于6倍的边长的平方,公式为:表面积=6×边长×边长。
2.正方体的表面积公式:正方体的表面积等于6倍的边长的平方,公式同立方体的表面积公式。
3.长方体的表面积公式:长方体的表面积等于2倍的长乘宽加2倍的长乘高加2倍的宽乘高,公式为:表面积=2×(长×宽+长×高+宽×高)。
4.圆柱体的侧面积公式:圆柱体的侧面积等于圆的周长乘以高,公式为:侧面积=周长×高。
5.圆柱体的表面积公式:圆柱体的表面积等于两个底面积加上侧面积,公式为:表面积=2×圆的面积+侧面积。
6.圆锥的侧面积公式:圆锥的侧面积等于圆的周长乘以斜高,公式为:侧面积=周长×斜高。
7.圆锥的表面积公式:圆锥的表面积等于底面积加上侧面积,公式为:表面积=圆的面积+侧面积。
8.球体的表面积公式:球体的表面积等于4倍的半径的平方乘以π,公式为:表面积=4×半径×半径×π。
第十章 定积分的应用 1 平面图形的面积公式1:连续曲线y=f(x)(≥0),以及直线x=a, x=b(a<b)和x 轴所围曲边梯形面积为:A=⎰b a f(x )dx=⎰ba y dx.若f(x)在[a,b]变号,则所围图形的面积为:A=⎰b a |f(x )|dx=⎰ba |y |dx.公式2:上下两条连续曲线y=f 2(x)与y=f 1(x)以及两条直线x=a 与x=b(a<b)所围的平面图形面积为:A=⎰ba 12(x )]-f (x )[f dx.例1:求由抛物线y 2=x 与直线x-2y-3=0所围图形的面积A. 解法一:A 等同于由抛物线y=x 2与直线y=2x+3所围图形的面积. 解方程组:⎩⎨⎧=+= x y 32x y 2,得⎩⎨⎧==9y 3x , ⎩⎨⎧=-=1y 1x . ∴A=⎰-+312)x -3(2x dx=[32-(-1)2]+3[3-(-1)]-3(-1)-333=332. 解法二:如图,图形被x=1分为左右两部分, A 左=⎰--10)]x (x [dx=3⎰10x dx=34. A 右=⎰⎪⎭⎫ ⎝⎛-9123-x x dx=312-9233-41-922+21)-(93⨯=328. A= A 左+ A 右=34+328=332.公式3:设曲线C 为参数方程x=x(t), y=y(t), t ∈[α,β],在[α,β]上y(t)连续,x(t)连续且可微且x ’(t)≠0(类似地可讨论y(t)连续可微且y ’(t)≠0的情形). 记a=x(α), b=x(β), (a ≠b),则由曲线C 及直线x=a, x=b 和x 轴所围的图形,其面积计算公式为:A=⎰'βα(t)x )t (y dt.例2:求由摆线x=a(t-sint), y=a(1-cost) (a>0)的一拱与x 轴所围平面图形的面积.解:摆线的一拱可取t ∈[0,2π],又x ’=a(1-cost), ∴A=⎰-2π022)t cos 1(a dt=3πa 2.公式4:若参数方程所表示的曲线是封闭的,即有x(α)=x(β), y(α)=y(β), 且在(α,β)内曲线自身不再相交,则由曲线自身所围图形面积为: A=⎰'βα(t)dt x )t (y 或A=⎰'βα(t)dt y )t (x .例3:求椭圆22a x +22by =1所围的面积.解:化为参数方程:x=asint, y=bcost, t ∈[0,2π], 又x ’=acost , ∴A=⎰2π02tdt abcos =πab.公式5:设曲线C 为极坐标方程r=r(θ), θ∈[α,β],且r(θ)在[α,β]上连续, β-α≤2π.由曲线C 与两条射线θ=α, θ=β所围成的平面图形,通常也称为扇形,此扇形的面积为:A=⎰βα2d θ)θ(r 21. 证:如图,对区间[α,β]作任意分割T :α=θ0<θ1<…<θn-1<θn =β, 射线θ=θi (i=1,2,…,n-1)把扇形分成n 个小扇形.∵r(θ)在[α,β]上连续,∴当T 很小时,在每一个△i =[θi-1, θi ]上r(θ)的值变化也很小,任取ξi ∈△i ,便有r(θ)≈r(ξi ), θ∈△i , i=1,2,…,n.这时,第i 个小扇形的面积△A i ≈21r 2(ξi)△θi , ∴A ≈∑=n1i 21r 2(ξi )△θi .当T →0时,两边取极限,就有A=⎰βα2d θ)θ(r 21.例3:求双纽线r 2=a 2cos2θ所围平面图形的面积. 解:如图,∵r 2≥0,∴θ∈[-4π,4π]∪[43π,45π],由图形的对称性可得: A=4·⎰4π02θdθ2cos a 21=a 2 sin2θ|4π0=a 2 .习题1、求由抛物线y=x 2与y=2-x 2所围图形的面积.解:求得两曲线交点为(-1,1), (1,1). ∴所围图形的面积为: A=⎰-1122)x -x -(2dx=38.2、求曲线y=|lnx|与直线x=101, x=10, y=0所围图形的面积. 解:所围图形的面积为: A=⎰10101|lnx |dx=-⎰1101lnx dx+⎰101lnx dx =-(xlnx|1101-⎰1101x dlnx)+ xlnx|101+⎰101x dlnx=-(101ln10-109)+10ln10-9=1099ln10-1081.3、抛物线y 2=2x 把圆x 2+y 2=8分成两部分,求这两部分面积之比. 解:问题等同于抛物线y=21x 2把圆x 2+y 2=8分成两部分,求面积比. 它们的交点为(2,2),(-2,2). 记两部分的面积为A 1,A 2,则A 1=⎰--2222)x 21x -8(dx=8⎰-4π4π2θcos d θ-38=2π+34;A 2=8π-A 1=6π-34.∴21A A =34-6π34+2π=2 -9π2 +3π.4、求内摆线x=acos 3t, y=asin 3t (a>0)所围图形的面积. 解:如图,所围图形面积为: A=4⎰'2π033dt |)t t(asin cos a |=12a2⎰2π024tdttsin cos=12a 2⎰2π024tdt tsin cos =83πa 2.5、求心形线r=a(1+cos θ) (a>0)所围图形的面积. 解法一:根据心形线的对称性,得A=2·⎰+π022d θ)θcos 1(a 21=a 2⎰++π02d θ)θcos θcos 21(=23πa 2.解法二:化为参数方程:x=a(1+cos θ)cos θ, y=a(1+cos θ)sin θ, θ∈[0,2π], A=|⎰'++2π0d θ]θsin )θcos θ[a(1cos )θcos a(1| =a 2|⎰-+2π0234θ)dθθsin cos θcos 2θcos (2|=23πa 2.6、求三叶形曲线r=asin3θ (a>0)所围图形的面积.解:根根三叶形曲线的形态特点,所围图形由相同的三部分组成,即 A=3⎰32π3π223θsin a 21d θ=⎰32π3π223θsin a 21d3θ=4πa 2.7、求曲线a x +by =1 (a,b>0)与坐标轴所围图形的面积. 解:曲线与x 轴的交点为(a,0),∴所围图形的面积为: A=b ⎰⎪⎪⎭⎫ ⎝⎛+-a0a x a x 21dx=6ab.8、求曲线x=t-t 3, y=1-t 4所围图形的面积.解:当t=-1,1时,x=0,y=0,∴曲线在t ∈[-1,1]围成封闭图形,即 A=|⎰'-11-43)t -)(1t t (dt|=4|⎰-11-46)t t (dt|=3516.9、求二曲线r=sin θ与r=3cos θ所围公共部分的面积. 解法一:化为圆的方程:x 2+(y-21)2=41, (x-23)2+y 2=43. 它们的交点为O(0,0)与P(43,43),∴所围公共部分的面积为: A=⎰⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+---⎪⎭⎫ ⎝⎛-4302223y 4321-y 41dy=⎰-6π2π2t cos 41dt+⎰3π02t cos 43dt -833 =323+12π+3233+8π-833=245π-43. 解法二:由sin θ=3cos θ, 得tan θ=3,∴二曲线相交于θ=3π.A=⎰3π02θsin 21d θ+⎰2π3π2θcos 23d θ=-)1(cos2θ413π0-⎰d θ+⎰+2π3π1)(cos2θ43d θ =-163+12π+8π-1633=245π-43.(参考解法)如图:求得P(43,43) S 阴=S P OO 1扇形+S P OO 2扇形-S P OO 1∆ -S P OO 2∆ =3πOO 12+6πOO 22-21·43·OO 1-21·43·OO 2=12π+8π-163-1633=245π-43.10、求两椭圆22a x +22b y =1与22b x +22ay =1(a>b>0)所围公共部分的面积.解:两椭圆在第一象限的交点为:⎪⎪⎭⎫⎝⎛++2222b a abb a ab ,. 根据图形的对称性,可得:A=8⎰+⎪⎪⎭⎫ ⎝⎛--22baab022x a x 1b dx=4abarcsin 22b a b +-2222b a b 4a +.。