山东大学高起专入学考试-数学-模拟题及答案
- 格式:doc
- 大小:1.31 MB
- 文档页数:18
山东大学成人教育专升本入学考试高等数学(二)模拟题 (1)一、 选择题:本大题5个小题,每小题3分,共15分,在每小题给出的四个选项中,只有一项是符合题目要求的,把所选项前的字母填在题后的括号内。
1、函数291)(xx f -=的定义域是( A )A 、(-3,3)B 、[-3,3 ]C 、(3,3-,)D 、(0,3)2、x1sin lim x ∞→=( A ) A. 0 B. 1 C.∞ D. 不存在 3、设4)3)(2)1)-x -(x -(x -x(x f(x)=则)2('f =( D )A 、0B 、1C 、2D 、4 4、设函数x f(x)=,则)1(f '等于 ( C )A.1B.-1C.21D.-21 5、曲线3x y =在点)1,1(M 处的切线方程是 ( C )A. 023=-+x yB. 03231=-+x yC.023=+-x yD. 043=--x y二、填空题:本大题共15个小题,共15个空,每空3分,共45分。
把答案填在题中横线上。
1、设1)1(2--=+x x x f ,则=)(x f231x x -+2、判断函数的奇偶性:cosx )(3x x f = 是 奇函数3、=-+∞→531002lim 33x xx x 23 4、13+=x y 的反函数是()3log 1y x =-5、已知32)tan(lim 0=→xkx x ,则k = 6 6、=++∞→xx x x )12(lim 1 7、设x x x y -=ln ,则y '=8、曲线22xy =在)2,1(处的切线方程是46y x =-+9、设x x y sin =,则''y =2cos sin y x x x =-10、=-=dy x y 则设,)1(4323312(1)x x dx - 11、不定积分⎰=+dx x 121()1ln 212x C ++ 12、不定积分⎰dx x xe = x x xxe e e +-13、定积分dx x⎰-+11211=π 14、定积分=⎰e xdx 1ln 115、⎰-+⋅=x dt t t x 0321)(φ设,)('x φ则= 123(1)x x +三、计算题:本大题共10个小题,每小题6分, 共60分。
成人高考高起专数学模拟试卷及答案(一)一、选择题(每小题2分,共60分)在每小题的四个备选答案中选出一个正确答案,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.1.函数⎪⎭⎫ ⎝⎛+=43sin πx y 的最小正周期是(C ). A.π2;B.3π;C.32π;D.23π.2.函数xy 8=的反函数是(C ). A.)0(log 32>=x x y ;B.xy -=8;C.)0(log 312>=x x y ;D.)0(8>-=x y x .3.设⎪⎩⎪⎨⎧=-,,10,17为偶数当为奇数,当n n nx n 则(D ) A.0lim =∞→n n x ;B.710lim -∞→=n n x ;C.⎩⎨⎧=-∞→.,10,0lim 7为偶数为奇数,n n x nn D.n n x ∞→lim 不存在.4.()=-→x f x x 0lim ()x f x x +→0lim 是()x f x x 0lim →存在的(C )A.充分条件但非必要条件;B.必要条件但非充分条件;C.充分必要条件;D.既不是充分条件也不是必要条件.5.若x 是无穷小,下面说法错误的是(C )A.2x 是无穷小; B.x 2是无穷小; C.000.0-x 是无穷小; D.x -是无穷小.6.下列极限中,值为1的是(C )A.x x x sin .2lim π∞→ B.x xx sin .2lim 0π→ C.xx x sin .2lim2ππ→ D.x x x sin .2lim ππ→7.=⎪⎭⎫⎝⎛-→x x x x x sin 11sin lim 0(A )A.1-B.1C.0D.不存在解:01sin lim 0=→x x x ;1sin .1lim 0=→x x x ,所以.110sin 11sin lim 0-=-=⎪⎭⎫ ⎝⎛-→x x x x x8.设函数()x f 具有2012阶导数,且()()x x f =2010,则()()=x f 2012(C ) A.x 21B.xC.24x x- D.2332x9.设()()x g x f =',则()=x f dx d2sin (D )A.()x x g sin 2()()x f x e e f .B.()x x g 2sinC.()x g 2sinD.()x x g 2sin .sin 2解:()=x f dx d 2sin ()()''x x f 22sin sin ()()⎥⎦⎤⎢⎣⎡''=x x x f sin .sin 2sin 2()[]x x x f cos .sin 2sin 2'=()x x f 2sin sin 2'=()x x g 2sin sin 2=.10.设xx y sin 21-=,则=dy dx (D )A.y cos 21-B.x cos 21-C.y cos 22-D.x cos 22-解:因为xdx dy cos 211-=,所以=dy dx .cos 22cos 21111x x dx dy -=-=11.曲线⎩⎨⎧==,cos ,2sin t x t y ,在4π=t 处的法线方程为(A ) A .22=x B .1=y C .1+=x y D .1-=x y 12.点()1,0是曲线c bx ax y ++=23的拐点,则有(B )A .1,3,1=-==c b aB .1,0,==c b a 为任意值C .1,=c b a 为任意值,D .为任c b a ,0,1==13.函数()22xe x xf -=的极值点的个数是(C )A .1B .2C .3D .414.若()x f 在点a x =的邻域内有定义,且除去点a x =外恒有()()()4>--a x a f x f ,则以下结论正确是(D )A .()x f 在点a 的邻域内单调增加B .()x f 在点a 的邻域内单调减少C .()a f 为函数()x f 的极大值D .()a f 为函数()x f 的极小值15.曲线()4ln 4>+=k k x y 与x x y 4ln 4+=的交点个数为(D )A .1B .2C .3D .4 解:设()k x x x x f --+=ln 4ln 44,()+∞∈,0x .① 则()()1ln 44ln 4433-+=-+='x x x x x x x f .②令()0='x f ,得驻点1=x .因为当()1,0∈x 时,()0<'x f ,故()x f 在(]1,0∈x 单调减少;而当()+∞∈,1x 时,()0>'x f 故()x f 在[)+∞∈,1x 单调增加.所以()k f -=41为最小值.又()()()[]+∞=-+-=++→→k x x x x f x x 44ln ln lim lim 3,()01144ln ln 1lim 1lim 43334=-+⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+∞→+∞→x k xx x x x x x x f x x ,故()()()[]+∞=-+-=+∞→+∞→k x x x x f x x 44ln ln lim lim 3.综合上述分析可画出()x f y =的草图,易知交点个数为2.16.设()t t f cos ln =,则()()='⎰dt t f t f t (A )A .C t t t +-sin cosB .C t t t +-cos sin C .()C t t t ++sin cosD .C t t +sin17.=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+∞→n n n n n n 22212111ln lim (B ) A .⎰212ln xdxB .⎰21ln 2xdxC.()⎰+211ln2dx x D .()⎰+2121ln dx x解:n n n n n n 22212111ln lim ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+∞→ n n n n n n 1.1ln )21ln()11ln(lim 2⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛++++++=∞→=+=∑=∞→n n i ni n 1.)1ln(lim 21()⎰+101ln 2dx x (令x t +=1)⎰=21ln 2tdt ⎰=21ln 2xdx18.已知()312x dt t f x =⎰,则()=⎰dx x f 12(C )A .1B .2 C.3 D .4 19.设dx e a x ⎰=102,()dxe b x ⎰-=112,则(C )A .b a >B .b a <C .b a =D .无法比较20.已知2sin 0π=⎰+∞dx x x ,则=⎰+∞02sin dx x x(B )A .0B .2πC .4πD .π解:========+∞=⎰x t dx x x 22sin 0⎰+∞021.2sin dt t t ==⎰+∞0sin dt t t 22sin 0π=⎰+∞dx x x .21.)ln(3y x e z xy ++=,则()=|2,1dz (B ) A .()()dy dx e ++12B .()()dy e dx e 11222+++ C .dx e 2 D .2e22.设21,y y 为一阶线性非齐次微分方程的()()x Q y x P y =+'的两个特解,若μλ,使21y y μλ+为该方程的解;21y y μλ-为该方程对应齐次方程的解,则通解为(A )A .21,21==μλ B .21,21-=-=μλ C .31,32==μλ D .32,32==μλ解:因为21,y y 为方程()()x Q y x P y =+'①的解,故有()()x Q y x P y =+'11②及()()x Q y x P y =+'22③由于21y y μλ+为①的解,所以将21y y μλ+代入①,得 ()()++'11y x P y λ()()()x Q y x P y =+'22μ④再将②、③代如④立得()()()x Q x Q =+μλ,于是有1=+μλ.⑤又因为21y y μλ-齐次方程()0=+'y x P y 的解,同理可得0=-μλ.⑥⑤、⑥联立可解得21,21==μλ.23.平面0623=+-+z y x 和直线⎪⎩⎪⎨⎧+=-=-=tz t y t x 21,33,1的位置关系是(C )A 平行B .直线在平面内C .垂直D .相交不垂直24.设函数()y x f z ,=的全微分为ydy xdx dz +=则点()0,0(D )A .不是()y x f ,的连续点B .不是()y x f ,的极值点C .是()y x f ,的极大值点D .是()y x f ,的极小值点解:由ydy xdx dz +=.可得yy zx x z =∂∂=∂∂,.令⎪⎪⎩⎪⎪⎨⎧==∂∂==∂∂,0,0y y zx x z可得唯一驻点()0,0.又122=∂∂=x z A ,02=∂∂∂=y x z B ,122=∂∂=y z C .则02>-=∆B AC ,且0>A ,所以()0,0是()y x f ,的极小值点.25.设区域(){}0,0,4|,22≥≥≤+=y x y x y x D ,()x f 为D 上的正值连续函数,b a ,为常数,则()()()()=++⎰⎰dxdy y f x f yf b x f a D(D )A .ab πB .ab π21C .()b a +πD .()b a +π21解:对于题设条件中含有抽象函数或备选项为抽象函数形式结果以及“数值型”结果的选者题,用赋值法求解往往能收到奇效,其思想是:一般情况下正确,那么特殊情况下也必然正确.重积分或曲线积分中含抽象函数时,通常利用对称性、轮换对称性等综合手段加以解决. 本题中,取()1=x f ,立得()()()()=++⎰⎰dxdy y f x f y f b x f a D =+=+⎰⎰π41.22b a dxdy b a D()b a +π2126.二元函数()()224,y x y x y x f ---=,则()2,2-(A )A . 是极大值点B .是极小值点C .是驻点但非极值点D .不是驻点27.设()y x f ,为连续函数,二次积分()dyy x f dx x⎰⎰2020,写成另外一种次序的二次积分是(B )A .()dxy x f dyxx⎰⎰202,B .()dxy x f dy yy ⎰⎰2022, C .()dx y x f dy y⎰⎰20,D .()dx y x f dy yy ⎰⎰0222,28.设(){}y y x y x D 2|,22≤+=,,()y x f ,在D 上连续,则()=⎰⎰dxdyxy f D( D )()()dy y x f dx A xx ⎰⎰----111122,;()()dyy x f dy B yy ⎰⎰-10202,2;()()d r r f d C ⎰⎰πθθθθ0si n202cos sin ;()()d r r rf d D ⎰⎰πθθθθ0si n 202cos sin .29.下列级数条件收敛的是(B )A .∑∞=14sin n n n α(α是常数) B .()∑∞=-1311n n n C .()∑∞=+-1311n n n nD .∑∞=++111n n n30.已知()()()x f y x Q y x P y =+'+''的三个特解:xx e y e y x y 2321,,===,则该方程的通解为().()()()x x e x C e x C A 221-+-;()xx e e C x C B 221++; ()()()x e x C x e C C x x +-+-221;()x x e C e C x D 221++.解:根据二阶常系数线性微分方程解的性质知,x e x -及xe x 2-均是对应的齐次方程的解,故齐次通解为()()x x e x C x e C Y 221-+-=;所以原非齐次方程的通解是()().221x e x C x e C y x x +-+-=选().C二、填空题(每空2分,共20分)31.极限=⎪⎭⎫ ⎝⎛-∞→x x x 1sin 2lim 22.2- 解:=⎪⎭⎫ ⎝⎛-∞→x x x 1sin 2lim 22211sin2lim22-=-∞→x x x .32.()[]40sin sin sin sin lim x x x x x-→=61. 解:()[]40sin sin sin sin lim x x x x x -→()[]40sin sin sin lim x x x x x -=→()30sin sin sin lim x x x x -=→()203cos .sin cos cos lim x x x x x -=→()203sin cos 1.cos lim x x x x -=→()203sin cos 1lim x xx -=→613sin 21lim 220==→x xx . 33.设23232-+-=x x x y ,则()()=18y .231!889⎪⎭⎫ ⎝⎛-解:()()()()1121221212112232323----+=--+=-+-=-+-=x x x x x x x x x x y .()[]()[]'--'+=--11122x x y ()()()()2.1212122-----+-=x x ;()()[]()()[]'---'+-=''--2.1212122x x y ()()()()()()2332.1221221------+--=x x ;归纳可得()()()()()()()()()88982.128212821-------+---=x x y所以()()()()()()()().231!82.8213.821189898⎪⎭⎫ ⎝⎛-=-------=- y34.设()x y y =是由12=-⎰+-dt e x yx t ①所确定的函数,则==|x dxdy1-e .解:①关于x 求导并注意到()x y y =,得()112=⎪⎭⎫ ⎝⎛+-+-dx dy e y x .②当0=x 时,由①式求得1=y .将0=x ,1=y 代入②可算得1|0-==e dx dyx .35.设()x y y =.如果11.-=⎰⎰dx y dx y ①,()10=y ,且当+∞→x 时,0→y ,则=y .x e -解:由①式得⎰⎰-=ydxdx y11②②关于x 求导并注意到()x y y =,得()yydx y.112⎰=即()22y dx y =⎰故y dx y ±=⎰,即dx dy y ±=③③分离变量,且两边积分得x Ce y =或xCe y -=④又根据条件()10=y 及+∞→x 时,0→y ,得.xe y -=36.=+⎰dx x x 811531.27029 解:=+⎰dx x x 8101531()dx x d x x 881083181+⎰(令8x t =)dt t t 318110+=⎰(令t u 31+=,即()1312-=u t )()27029353611361|21352212=⎥⎦⎤⎢⎣⎡-=-=⎰u u du u u .37.设()y x z z ,=是由方程2222=+++z y x zxy ①所确定的隐函数,则()='-|1,0,1y z 2-. 解法一:令().2,,222-+++=z y x zxy z y x F则222z y x xyzF x +++=';222z y x yxz F y +++=';.222z y x zxy F z +++='故222222z y x xy z y x yxz F F z z y y ++++++-=''-='.所以,().2|1,0,1='-y z解法二:①两边全微分,得()().022221222=+++++++zdz ydy xdx zy x xydz xzdy yzdx即()().0222=+++++++zdz ydy xdx xydz xzdy yzdx z y x ②将)1,0,1(-代入②得 ()().02=-+-dz dx dy即.2dy dx dz -=所以()1|1,0,1='-x z ,().2|1,0,1-='-y z38.设L 为从点()0,0O 到点()0,1A 再到点()1,1B 的折线,则()=--⎰ydx y x xdy L 221. 解:()=--⎰ydx y x xdy L22()+--⎰ydx y x xdy OA22()ydx y x xdy AB⎰--22()⎰⎰=+--=11221.10.0dy dx x .39.微分方程0=+'+''y y y 的通解为.23sin 23cos 212⎪⎪⎭⎫⎝⎛+=-x C x C e y x解:(一)0=+'+''y y y 对应的特征方程为:012=++r r ,其特征根为i r 2321±-= (二)通解为:.23sin 23cos 212⎪⎪⎭⎫⎝⎛+=-x C x C e y x40.幂级数()nn n x n 124202-+∑∞=①的收敛域为().2,2- 解:(一)记12-=x t ,则级数①化为nn n t n ∑∞=+0242.②记422+=n a nn , ,2,1=n().224412lim lim 2211=+⨯++==+∞→+∞→n n n nn n n n a a ρ所以,级数②的收敛半径是.211==ρR又当21-=t 时,级数②化为()∑∞=+-0241n nn 收敛;又当21=t 时,级数②化为∑∞=+0241n n 也收敛.所以级数②的收敛域是⎥⎦⎤⎢⎣⎡-∈21,21t . (二)由⎥⎦⎤⎢⎣⎡-∈-21,2112x 解得⎥⎦⎤⎢⎣⎡∈43,41x ,故原级数的收敛域为.43,41⎥⎦⎤⎢⎣⎡ (1)如果()122<=x x ρ,即2||<x 时,则∑∞=-1122n nn x 收敛; (2)(1)如果()122<=x x ρ,即2|>x 时,则∑∞=-1122n nn x 发散,所以,.2=R(3)又在端点2±=x 处∑∞=±⇒1121n 发散.所以,收敛域为()2,2-三、计算题(每小题5分,共45分)41.已知()5132sin 1ln lim 0=-⎪⎭⎫ ⎝⎛+→x x x x f ①,求()20lim x x f x →.解:由①式得()=-⎪⎭⎫ ⎝⎛+=→132sin 1ln lim 50x x x x f ()=-→12sinlim 3ln 0x x e x x f ()3ln 2lim 0x x x f x → ().lim 3ln 2120x x f x →=②由②式即可算得().3ln 10lim 20=→x xf x42.设函数()x y y =由参数方程()⎪⎩⎪⎨⎧+==⎰20)1ln(,t du u y t x x 确定,其中()t x x =是微分方程02=--xte dt dx 在初始条件0|0==t x 下的特解,求22dx y d .解:(一)微分方程02=--x te dt dx为可分离变量型,可转化为tdt dx e x 2=①①两边积分得C t e tdt dx e x x +=⇒=⎰⎰22②又将初始条件|==t x 代入②,得1=C ,因此()()21ln t t x +=③(二)()()22221ln 1122).1ln(tt t t t t dtdx dt dy dx dy ++=++==(三)dt dxdx dy dt d dx dy dx d dx y d 1.22⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛= ()()[]=+++=22211.1ln 1t dtt t d ()[])1ln(1122t t +++.43.设函数()2,sin ,222+-=x x y y x f x z ,其中f 具有二阶连续偏导数,求.;22y zx z ∂∂∂∂解: (一)[]x f x y f f x xf x z 2cos 2.23212'+'+'+=∂∂(二)[]x ff x y z sin 212'+'-=∂∂,所以()[]()[]{}x f f x x f f x y z sin 1sin sin 122211211222''+-''+''+-''-=∂∂44.计算反常积分()()⎰+∞++0321dxx x解:()()111112l n 2323233x d x d x d x d x c x x x x xx x +⎛⎫=-=-=+ ⎪+++++++⎝⎭⎰⎰⎰⎰所以()()002112222l n l i m l n l n l i m l n l n 32333331|x x x x x d x x x x x x +∞+∞→+∞→+∞+++==-=-+++++⎰23l n 1l n l n .32=-=45.求曲线..0,6:222⎩⎨⎧=++=++Γz y x z y x 在点()1,2,1-的切线. 解:方程组两边关于x 求导,得:..01,0222⎪⎪⎩⎪⎪⎨⎧=++=++dx dz dx dy dxdz z dx dy y x ①将点()1,2,1-代入(1),得:..01,0242||||1111⎪⎪⎩⎪⎪⎨⎧=++=+-====x x x x dx dz dx dy dx dz dx dy 解之,有:.1,0||11-====x x dx dz dx dy所以,切线向量为:{}1,0,1-= 故曲线在点()1,2,1-的切线为:.110211--=+=-z y x46.设函数()x f 在正半轴()0>x 上有连续导数()x f '且().21=f 若 在右半平面内沿任意闭合光滑曲线l ,都有()043=+⎰dy x xf ydx x l求函数().x f解:()y x y x P 34,=,()()x xf y x Q=,都是右半平面上的连续函数,由于在右半平面内沿任意闭合光滑曲线l ,都有()043=+⎰dy x xf ydx x l故有x Qy P ∂∂=∂∂即()()x f x x f x '+=34化简,得()()241xx f x x f =+'(1)(1)为一阶线性微分方程,其通解为()⎥⎦⎤⎢⎣⎡+⎰⎰=⎰-c e x ex f dx xdx x1214[]()c dx x x c e x e xx +=+=⎰⎰-3ln 2ln 414 ().1134x c x c x x +=+=(2)代入条件()21=f ,得 .1=c故().13x x x f +=47.求幂级数()11!1-∞=∑+n n x n n的和函数.解:(一)记()!1+=n na n , ,2,1=n ,则21limlim 21=++==∞→+∞→nn n a an nn n ρ,故收敛半径为+∞=R .收敛域为()+∞∞-,. (二)记()(),!111-∞=∑+=n n x n n x s+∞<<∞-x .则()()11!1-∞=∑+=n n x n n x s ()()11!111-∞=∑+-+=n n x n n 11!1-∞=∑=n n x n ()11!11-∞=∑+-n n x nn n x n x ∑∞==1!11()112!111+∞=∑+-n n x n x n n x n x ∑∞==1!11nn x n x∑∞=-22!11⎥⎦⎤⎢⎣⎡-=∑∞=1!110n n x n x ⎥⎦⎤⎢⎣⎡---∑∞=x x n x n n 1!1102[]11-=xe x []()011122≠+-=---x x e xe x e x xx x .又()()2001lim lim 0x e xe x s s xx x x +-==→→212lim 0==→x x e . 所以⎪⎪⎩⎪⎪⎨⎧=≠--=0,210,1)(2x x x x xe x S x解法二:记()(),!111-∞=∑+=n n x n n x s+∞<<∞-x .()()n n xx n dx x s ∑⎰∞=+=10!11()=+=+∞=∑11!111n n x n x ∑∞=2!1n nn x x()x e x x--=11所以()()()2111x x e e x x x e x s xx x ----='⎪⎪⎭⎫ ⎝⎛--=21x e xe x x +-=.48.计算二重积分Ddxdy e I Dx ,2⎰⎰=是第一象限中由直线x y =和曲线3x y =所围成封闭区域.解:因为二重积分的被积函数()2,xe y xf =,它适宜于“先对y ,后对x ” ,故D 可用不等式表示为⎩⎨⎧≤≤≤≤.10,:3x x y x D 于是 ()dx ex x dy e dx dxdy e I xxx xD x23221310⎰⎰⎰⎰⎰-===dx e x x 21⎰=dx e x x 213⎰-()210221x d e x ⎰=()210221x e d x ⎰-()⎥⎦⎤⎢⎣⎡--=⎰21010210222||2121x d e e x e x x x ()()().121212112121121|102-=-+--=⎥⎦⎤⎢⎣⎡---=e e e e e e e x49.求方程0=-''y y ①的积分曲线,使其在点()0,0处与直线x y =相切.解:方程①的特征方程为012=-r ,解之得1,121=-=r r ,故方程①的通解为x x e C e C y 21+=-.② xx e C e C y 21+-='-③由题意知有()()10,00='=y y .将条件()()10,00='=y y 分别代入②、③有⎩⎨⎧=+-=+1,02121C C C C 解得⎪⎪⎩⎪⎪⎨⎧=-=21,2121C C所以2x x e e y --=.四、应用题(每小题8分,共16分)50.设三角形的边长分别为c b a ,,,其面积为S ,试求该三角形内一点到三边距离之乘积的最大值. 解:任取三角形内一点P ,设其距三边的距离分别为z y x ,,,则有.2212121S cz by ax S cz by ax =++⇒=++问题转化成求xyz V =在02=-++S cz by ax 下的最大值.令()()S cz by ax xyz z y x L 2,,,-+++=λλ,令⎪⎪⎩⎪⎪⎨⎧=-++='=+='=+='=+='.02,0,0,0S cz by ax L c xy L b xz L a yz L z y x λλλλ,解之得:.32,32,32c S z b S y a S x === 故.2783max abc S V =另解:[]().27827231..1333abc S abc S cz by ax abc cz by ax abc xyz V ==⎪⎭⎫ ⎝⎛++≤==上述等式成立当且仅当,cz by ax ==又02=-++S cz by ax ,所以,当且仅当.32,32,32c Sz b S y a S x ===时,等式成立.51.平面图形D 由抛物线x y 22=与该曲线在点⎪⎭⎫ ⎝⎛1,21处的法线围成.试求:(1)D 的面积;(2)D 绕x 轴旋转一周所形成的旋转体的体积.解:(1)方程x y 22=两边关于x 求导得 22='y y ①将1,21==y x 代入①式得1|21='=x y 。
山东大学网络高起专高等数学试题及答案高等数学模拟卷 1 一 求下列极限 1 1lim sin n n n→∞=0(有界量乘无穷小量)2 求0lim x x x →=1lim 1lim {00x -=-=-+→→xxx xx3 求1lim xx e →=0lim lim {1010=∞=-+→→xx xx e esin 4limsin5x x x x x→++=31616155sin 5sin lim 55sin 5lim 5sin sin lim sin lim 0000=+=+++=+++→→→→xx x x x xx x x x x x x x x x x x x x x x (第一个重要极限)二a 取什么值,0()0x e x f x a x x ⎧<=⎨+≥⎩连续 答:根据函数在一点处连续的定义,)(lim )(lim 0x f a x f x x -+→→==,而)(lim 0x f x -→=x x e -→0lim =1 所以 a=1三 计算下列各题 1已知2sin ln y x x=⋅ 求,y答:y ’=2(sinx ·lnx)’=2[(sinx)’(lnx)+(sinx)(lnx)’] =2cosxlnx+2xsinx2 (),()x f x y f e e y =⋅已知,求答:由链式法则,()()()()dxdy e e f e e e f dx x f x x f x x +⋅=dy所以()()()()x f x x f x x ee f e e f y -=+1'23x xe dx⎰求答:ce dx e x d e x x x +===⎰⎰2222121222原式四、若202tan()sec x yx x y tdt ---=⎰,求dydx另x-y=m, y=x-m, 对两边求导数,得到dy/dx = 1 - dm/dx 将y = x-m 带回原式,再两边对x 求导。
山东大学网络教育专升本入学考试高等数学(二)模拟题 (1)一、 选择题:本大题5个小题,每小题3分,共15分,在每小题给出的四个选项中,只有一项是符合题目要求的,把所选项前的字母填在题后的括号内。
1、函数291)(xx f -=的定义域是( A )A 、(-3,3)B 、[-3,3 ]C 、(3,3-,)D 、(0,3)2、x1sin lim x ∞→=(A ) A. 0 B. 1 C.∞ D. 不存在 3、设4)3)(2)1)-x -(x -(x -x(x f(x)=则)2('f =(D )A 、0B 、1C 、2D 、4 4、设函数x f(x)=,则)1(f '等于 ( C )A.1B.-1C.21D.-21 5、曲线3x y =在点)1,1(M 处的切线方程是 ( C ) A. 023=-+x y B. 03231=-+x y C.023=+-x y D. 043=--x y二、填空题:本大题共15个小题,共15个空,每空3分,共45分。
把答案填在题中横线上。
1、设1)1(2--=+x x x f ,则=)(x f231x x -+2、判断函数的奇偶性:cosx )(3x x f = 是 偶函数 3、=-+∞→531002lim 33x x x x 234、13+=x y 的反函数是 3y=log (1)(1,)x x -∈+∞5、已知32)tan(lim 0=→xkx x ,则k = 6 6、=++∞→xx x x )12(lime 7、设x x x y -=ln ,则y '= Inx8、曲线22xy =在)2,1(处的切线方程是 y=-4x+69、设x x y sin =,则''y = 2cosx-xsinx10、=-=dy x y 则设,)1(43 ()332121x x dx -11、不定积分⎰=+dx x 121()1212In x c ++ 12、不定积分⎰dxx xe = ()1xx e c -+ 13、定积分dx x⎰-+11211= 2∏ 14、定积分=⎰exdx 1ln 115、⎰-+⋅=x dt t t x 0321)(φ设,)('x φ则=三、计算题:本大题共10个小题,每小题6分, 共60分。
山东大学成人教育专升本入学考试高等数学(二)模拟题 (1)一、 选择题:本大题5个小题,每小题3分,共15分,在每小题给出的四个选项中,只有一项是符合题目要求的,把所选项前的字母填在题后的括号内。
1、函数291)(xx f -=的定义域是( A )A 、(-3,3)B 、[-3,3 ]C 、(3,3-,)D 、(0,3)2、x1sin lim x ∞→=( A ) A. 0 B. 1 C.∞ D. 不存在 3、设4)3)(2)1)-x -(x -(x -x(x f(x)=则)2('f =( D )A 、0B 、1C 、2D 、4 4、设函数x f(x)=,则)1(f '等于 ( C )A.1B.-1C.21 D.-21 5、曲线3x y =在点)1,1(M 处的切线方程是 ( C ) A. 023=-+x y B. 03231=-+x y C.023=+-x y D. 043=--x y二、填空题:本大题共15个小题,共15个空,每空3分,共45分。
把答案填在题中横线上。
1、设1)1(2--=+x x x f ,则=)(x f231x x -+2、判断函数的奇偶性:cosx )(3x x f = 是 奇函数3、=-+∞→531002lim 33x xx x 23 4、13+=x y 的反函数是()3log 1y x =-5、已知32)tan(lim 0=→xkx x ,则k = 6 6、=++∞→xx x x )12(lim 1 7、设x x x y -=ln ,则y '=ln x8、曲线22xy =在)2,1(处的切线方程是46y x =-+9、设x x y sin =,则''y =2cos sin y x x x =-10、=-=dy x y 则设,)1(4323312(1)x x dx - 11、不定积分⎰=+dx x 121()1ln 212x C ++ 12、不定积分⎰dx x xe = x x xxe e e +-13、定积分dx x⎰-+11211=π14、定积分=⎰exdx 1ln 115、⎰-+⋅=x dt t t x 0321)(φ设,)('x φ则= 123(1)x x +三、计算题:本大题共10个小题,每小题6分, 共60分。
专科数学模拟题 卷1一、选择题:本大题共15小题,每小题5分,共75分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.在-3,21,π,0.35中,无理数是( C ) A .3- B .21 C .π D .0.35 2.下列事件中,必然事件是( B ) A .6月14日晚上能看到月亮 B .早晨的太阳从东方升起C .打开电视,正在播放新闻D .任意掷一枚均匀的硬币,正面朝上3.下面的几何体中,俯视图为三角形的是 ( D )A .B .C .D .4.下列根式中,与24是同类根式的是( D )A .2B .3C .5D .65.如果关于x 的一元二次方程042=+-k x x 有两个不相等的实数根,那么k 的取值范围是( A )A .4<kB .4>kC .0<kD .0>k6.分式方程13121-=--x x x 的解为( D ) A .3=x B .3-=x C .4=x D .4-=x7.据报道,中国内地首次采用“全无人驾驶”的燕房线地铁有望年底完工,列车通车后将极大改善房山和燕山居民的出行条件,预计年输送乘客可达7300万人次,将7300用科学记数法表示应为( B )A .21073⨯B .3103.7⨯C .41073.0⨯D .2103.7⨯8.已知一次函数y =kx ﹣1,若y 随x 的增大而增大,则它的图像经过( B )A .第一、二、三象限B .第一、三、四象限C .第一、二、四象限D .第二、三、四象限9.如图,在平行四边形ABCD 中,E 为CD 上一点,连接AE 、BD ,且AE 、BD交于点F ,254::=∆∆ABF DEF S S ,则DE :EC= ( B )A .2:5B .2:3C .3:5D .3:210.一组数据:-1,1,3,4,a ,若它们的平均数为2,则这组数据的众数为( C )A .1B .2C .3D .411.已知在四边形ABCD 中,AB ∥CD ,添加下列一个条件后,一定能判定四边形ABCD 是平行四边形的是( C )A .AD =BCB .AC =BD C .∠A =∠C D .∠A =∠B12.如图,直线l 与反比例函数xk y =在第一象限内的图象交于A 、B 两点,且与x 轴的正半轴交于C 点,若AB=2BC ,OAB ∆的面积为8,则k 的值为( A ) A .6 B .9 C .12 D .1813.若二次根式42-x 有意义,则x 的取值范围是( D )A .2=xB .2≠xC .2≤xD .2≥x14.学校新开设了航模、彩绘、泥塑三个社团,如果征征、舟舟两名同学每人随机选择参加其中一个社团,那么征征和舟舟选到同一社团的概率为( C )A .32 B .21 C .31 D .41 15.打开某洗衣机开关。
全国各类成人高等学校招生考试高起点数学(文史财经类)考前模拟(一)一、选择题(本大题共12小题,每小题7分,共84分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列函数中,为偶函数的是A.y=log2xB.y=x2C.y=π2D.y=x2+x2.已知f(x)是偶函数且满足f(x+3)=f(x),f(1)=-1,则f(5)+f(11)等于A.-2B.2C.-1D.13.如果二次函数y=ax2+bx+1的图像的对称轴是x=1,并且通过点A(-1,7),则a,b的值分别是A.2,4B.2,-4C.-2.4D.-2,-44.设M={x|x≤√10,a=√2+√3那么A.a⊂MB.a⊂MC.{a}⊂MD.{a}⊂M5.函数f(x)=3+2x-12x2的最大值是A.4B.5C.2D.36.已知直线l与直线2x-3y+5=0平行,则l的斜率为A. 327.等差数列{a n }中,a 1+a 2=15,a =-5,则前8项的和等于A.-60B.-140C.-175D.-1258.若sin (π-α)=log 814,且αϵ(-π2,0)则cot (2π-α)的值为 A.-√52B.√52C.±√52D.-√5 9.设F 1、F 2为椭圆注图B193@@的焦点,P 为椭圆上的一点,则ΔPF 1F 2的周长等于A.10+2√34B.18C.14D.1210.已知向量a =(3,1),b =(-2,5),则3a-2b =A.(2,7)B.(13,-7)C.(2,-7)D.(13,13)11.已知双曲线上一点到两焦点(-5,0),(5,0)距离之差的绝对值等于6,则双曲线方程为A.x 29−y 216=1 B.y 29−x 216=1C.x 225−y 216=1D.y 225−x 216=112.某同学每次投篮投中的概率为注图B206@@.该同学投篮2次,只投中1次的概率为D.35二、填空题(本大题共3小题,每小题7分,共21分)13.若平面向量a =(x ,1),b =(1,-2),且a⊂b ,则x =______.14.已知α、β为锐角,cos (α+β)=1213,cos (2α+β)=35,则cosα=______.15.从5位男生和4位女生中选出2人作代表,恰好一男生和一女生的概率是______.三、解答题(本大题共3小题,共45分.解答应写出推理、演算步骤)16.问数列:lg100,lg (100sin45°),lg (100sin 245°),···,lg (100sin n-145°)前几项和最大?并求最大值.(1g2=0.3010)17.已知f (x )=4x 2-mx +5(x⊂R )在(-∞,-2]上是减函数,在[-2,+∞)上是增函数,求f (1)的值,并比较f (-4)与log 128的大小. 18.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),斜率为1的直线l 与C 相交,其中一个交点的坐标为(2,√2),且C 的右焦点到l 的距离为1.(⊂)求a ,b ;(⊂)求C 的离心率.全国各类成人高等学校招生考试高起点数学(文史财经类)考前模拟(一)参考答案及解析一、选择题1.【答案】B【考情点拨】本题主要考查的知识点为偶函数的性质.【应试指导】A项,log2x≠log2(-x),故A项不是偶函数;C项,4x ≠4−x,故C项不是偶函数;D项,x2+x≠(-x)2-x,故D项也不是偶函数;而B项中x2=(-x)2,故B项是偶函数.2.【答案】A【考情点拨】本题主要考查的知识点为偶函数与周期函数的性质.【应试指导】⊂f(x)是偶函数,⊂f(-x)=f(x),又⊂f(x+3)=f(x),⊂函数f(x)的周期T=3,⊂f(1)=-1,⊂f(-1)=f(1)=-1,⊂f(5)+f(11)=f(2+3)+f(2+3×3)=f(2)+f(2)=2f(2)=2f(-1+3)=2f(-1)=2x(-1)=-2.3.【答案】B【考情点拨】本题主要考查的知识点为二次函数的对称性.【应试指导】由于二次函数y=ax2+bx+1的图像的对称轴是x=1,且过点A(-1,7),4.【答案】D【考情点拨】本题主要考查的知识点为元素与集合的关系.5.【答案】B【考情点拨】本题主要考查的知识点为函数的最值.6.【答案】C【考情点拨】本题主要考查的知识点为直线的斜率.【应试指导】已知直线l与直线2x-3y+5=0平行,故k l=23 7.【答案】B【考情点拨】本题主要考查的知识点为等差数列.【应试指导】由已知条件及等差数列的定义得8.【答案】B【考情点拨】本题主要考查的知识点为三角函数的性质及诱导公式.9.【答案】B【考情点拨】本题主要考查的知识点为椭圆的定义.【应试指导】由方程x 225+y29得a=5,b=3,⊂c=4,由椭圆的定义得ΔPF1F2的周长=2a+2c=2×5+2×4=18.[注]此题主要是考查椭圆的定义及a 、b 、c 三者之间的关系,可用图形来帮助理解.|PF 1|+|PF 2|=2a ,|F 1F 2|=2c.10.【答案】B【考情点拨】本题主要考查的知识点为向量的坐标运算.【应试指导】由a =(3,1),b =(-2,5),则3a-2b =3·(3,1)-2·(-2,5)=(13,-7).11.【答案】A【考情点拨】本题主要考查的知识点为双曲线的定义.【应试指导】由已知条件知双曲线焦点在x 轴上属于第一类标准式,又知c =5,2a =6,⊂a =3,⊂b2=c2-a2=25-9=16,所求双曲线的方程为x 29−y 216=112.【答案】A【考情点拨】本题主要考查的知识点为随机事件的概率.【应试指导】只投中1次的概率为:C 21×25×35=1225 二、填空题13.【答案】-12 【考情点拨】本题主要考查的知识点为平行向量的性质.【应试指导】由于a⊂b ,故x 1=1−2,即x =-1214.【答案】5665【考情点拨】本题主要考查的知识点为两角和公式.15.【答案】59【考情点拨】本题主要考查的知识点为随机事件的概率.【应试指导】从5位男生和4位女生中任选2人的选法共有注图B239@@种,恰好一男生和一女生的选法共有C 51∙C 41种,所以恰好选出一男生和一女生的概率是C 51∙C 41C 92 =59 三、解答题17.18.全国各类成人高等学校招生考试高起点数学(文史财经类)全真模拟(二)一、选择题(本大题共12小题,每小题7分,共84分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.等差数列{a n }中,若a 1=2,a 3=6,则a 7=A.10B.12C.14D.82.不等式|2x-3|≤1的解集为A.{x|1≤x≤2}B .{x |x≤-1或x≥2}C.{x|1≤x≤3}D.{x|2≤x≤3}3.函数y =3x 与(13)x 的图像之间的关系是 A.关于原点对称B.关于x 轴对称C .关于直线y =1对称D.关于y 轴对称4.已知函数f (x )=x2+2x +2(x <-1),则f-1(2)的值为A.-2B.10C.0D.25.若直线l 沿x 轴负方向平移3个单位,再沿y 轴正方向平移1个单位后,又回到原来的位置,那么直线l 的斜率是A.−13B.-3C.13D.36.点P (2,5)到直线x +y-9=0的距离是A.2√2929C.√2D.−√227.已知A (-1,0),B (2,2),C (0,y ),若AB⃗⃗⃗⃗⃗ ⊥BC ⃗⃗⃗⃗⃗ ,则y = A.3B.5C.-3D.-58.把6个苹果平均分给3个小孩,不同的分配方法有A .90种B .30种C .60种D ).15种9.已知直线y =3x +1与直线x +my +1=0互相垂直,则m 的值是A.13B.−13C.-3D.310.设等比数列{a n }的公比q =2,且a 2·a 4=8,a 1·a 7=A.8B.16C.32D.6411.已知数列前n 项和S n =12(3n 2−n ),则第5项的值是A.7B.10C.32D.1612.函数注图的最小正周期和最大值分别是A.2π,12B.2π,2D.π2,-12二、填空题(本大题共3小题,每小题7分,共21分)13.设0<α<π2,则√1−sinαsin α2−cos α2=______.14.在ΔABC 中,AB =3,BC =5,AC =7,则cosB =______.15.从某班的一次数学测试卷中任意抽出10份,其得分情况如下:81,98,43,75,60,55,78,84,90,70,则这次测验成绩的样本方差是______.三、解答题(本大题共3小题,共45分.解答应写出推理、演算步骤)16.设椭圆的中心是坐标原点,长轴在x 轴上,离心率e =√32,已知点P (0,32)到椭圆上的点的最远距离是√7,求椭圆的方程.17.在ΔABC 中,AB =2,BC =3,B =60°.求AC 及ΔABC 的面积.18.已知等差数列{a n }前n 项和S n =-2n 2-n .(⊂)求通项a n 的表达式;(⊂)求a 1+a 3+a 5+···+a 25的值.全国各类成人高等学校招生考试高起点数学(文史财经类)考前模拟(二)参考答案及解析一、选择题1.【答案】C【考情点拨】本题主要考查的知识点为等差数列的性质.【应试指导】因为{a n}是等差数列,设公差为d,则a3=a1+2d⇒2+2d=6⇒d=2,所以a7=a1+6d=2+6×2=14. 2.【答案】A【考情点拨】本题主要考查的知识点为不等式的解集.【应试指导】|2x-3|≤1⇒-1≤2x-3≤1⇒2≤2x≤4⇒1≤x≤2,故原不等式的解集为{x|1≤x≤2}.3.【答案】D【考情点拨】本题主要考查的知识点为曲线的对称性.4.【答案】A【考情点拨】本题主要考查的知识点为反函数的性质.5.【答案】A【考情点拨】本题主要考查的知识点为直线的平移.【应试指导】由已知条件知直线经过两次平移后又回到原来的位置,因为直线是满足条件的点集,所以取直线上某一点来考查,若设点P(x,y)为l上的任一点,则经过平移后的对应点也应在这条直线上,这样,可由直线上的两点确定该直线的斜率.方法一:设点P(x,y)为直线l上的任一点,当直线按已知条件平移后,点P随之平移,平移后的对应点为P'(x-3,y+1),点P'仍在直线上,所以直线的斜率k=y+1−yx−3−x =−13方法二:设直线l的方程为y=kx+b,直线向左平移3个单位,方程变为y=k(x+3)+b,再向上平移一个单位,方程变为y=k(x+3)+b+1,即y=kx+3k+b+1,此方程应与原方程相同,对应项系数相等,比较常数项可得,3k+b+1=b,∴k=−136.【答案】C【考情点拨】本题主要考查的知识点为点到直线的距离公式.7.【答案】B【考情点拨】本题主要考查的知识点为垂直向量的性质.【应试指导】此题是已知向量的两端点的向量垂直问题,要根据两向量垂直的条件列出等式,来求出未知数y的值.8.【答案】A【考情点拨】本题主要考查的知识点为分步计数原理.【应试指导】因为把6个苹果平均分给3个小孩与顺序无关属于组合,第一步从6个苹果中任取2个分配给3个小孩中的任一个,分配的方法有注图C62种,第二步在剩余的4个中任取2个分给剩下2个小孩中的任一个有C42种分法,第三步把剩下的2个分给最后一个小孩有C22种分法,由分步计数原理得不同的分配方法有C62∙C42∙C22=6×52×1×4×32×1×1=15×6×1=90(种).9.【答案】D【考情点拨】本题主要考查的知识点为两直线垂直的性质.【应试指导】易知直线y=3x+1的斜率为3,由x+my+1=0中m≠0得y=−1m x−1m,其斜率为−1m,⊂两直线互相垂直,⊂−1m·3=-1,⊂m=310.【答案】C【考情点拨】本题主要考查的知识点为等比数列的性质.【应试指导】⊂{an}是公比为q=2的等比数列且a2·a4=8,由通项公式a n=a1q n-1得a1q·a1q3=8,(a1q2)2=8,⊂a1·a7=a1·a1q6=(a1q2)2·q2=8x4=32.11.【答案】C【考情点拨】本题主要考查的知识点为数列的前n 项和.【应试指导】a n =S n -S n -1=12(3n 2−n )−12[3(n −1)2−(n −1)]=3n-2,当n =5时,a5=3×5-2=13. 12.【答案】C【考情点拨】本题主要考查的知识点为三角函数的最小正周期及最值.二、填空题13.【答案】-1【考情点拨】本题主要考查的知识点为三角函数的变换。
2024高起专数学考试题及答案一、选择题(每题3分,共30分)1. 下列函数中,哪一个是奇函数?A. y = x^2B. y = x^3C. y = sin(x)D. y = cos(x)答案:B2. 已知等差数列{an}的首项a1=2,公差d=3,求第10项的值。
A. 32B. 35C. 38D. 41答案:A3. 计算定积分∫(0到1) x^2 dx的结果。
A. 1/3B. 1/2C. 2/3D. 1答案:B4. 以下哪个选项是复数的共轭?A. z = 3 + 4i 的共轭是 3 - 4iB. z = 3 - 4i 的共轭是 3 + 4iC. z = -3 + 4i 的共轭是 -3 - 4iD. z = -3 - 4i 的共轭是 -3 + 4i答案:A5. 以下哪个选项是二项式定理的应用?A. (x+y)^2 = x^2 + 2xy + y^2B. (x-y)^3 = x^3 - 3x^2y + 3xy^2 - y^3C. (x+y)^3 = x^3 + 3x^2y + 3xy^2 + y^3D. (x-y)^2 = x^2 - 2xy + y^2答案:B6. 以下哪个选项是正确的三角函数恒等式?A. sin(2x) = 2sin(x)cos(x)B. cos(2x) = 1 - 2sin^2(x)C. tan(2x) = 2tan(x)/1 - tan^2(x)D. cot(2x) = 1/tan(2x)答案:A7. 以下哪个选项是正确的极限运算?A. lim(x→0) (sin(x)/x) = 1B. lim(x→0) (1 - cos(x))/x = 0C. lim(x→0) (tan(x)/x) = 1D. lim(x→0) (e^x - 1)/x = 1答案:A8. 以下哪个选项是正确的行列式计算?A. |1 2; 3 4| = 1*4 - 2*3 = -2B. |2 3; 4 5| = 2*5 - 3*4 = -2C. |3 4; 5 6| = 3*6 - 4*5 = -6D. |4 5; 6 7| = 4*7 - 5*6 = -2答案:A9. 以下哪个选项是正确的导数运算?A. (x^2)' = 2xB. (x^3)' = 3x^2C. (sin(x))' = cos(x)D. (e^x)' = e^x答案:D10. 以下哪个选项是正确的不定积分运算?A. ∫x dx = x^2/2 + CB. ∫x^2 dx = x^3/3 + CC. ∫e^x dx = e^x + CD. ∫sin(x) dx = -cos(x) + C答案:B二、填空题(每题4分,共20分)11. 已知函数f(x) = 2x - 3,求f(5)的值。
2024年成人高考高起专《数学(文)》真题及答案(考生回忆版)第I 卷(选择题,共84分)一、选择题(本大题共12小题,每小题7分,共84分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 样本数据10,16,20,30的平均数为( ) A. 19 B.20 C.21 D.222.已知集合{1,2,3},{2,3,4,5}A B ==,则AB =( )A.{1,2,3,4,5}B. {2,4,5}C.{1,2}D. {2,3} 3.已知向量(4,8),(1,1)a b ==-,则a b -=( ) A.(3,7)B. (5,9)C. (5,7)D. (3,9)4.下列函数中,在区间(0,)+∞单调递增的是( ) A 5x y -= B.5y x + C.2(5)y x =- D.15log (1)y x =+5. 双曲线2214y x -=的渐近线方程为( ) A.y x =±B.2y x =±C. 3y x =±D.4y x =±6.如果ln ln 0x y >>,那么( ) A.1y x << B.1x y <<C.1x y <<D.1y x <<7. 函数245y x x =++的图像的对称轴是( ) A. 2x =- B. 1x =-C. 0x =D. 1x =8.抛物线212y x =的焦点坐标为( )A.(0,0)B. (3,0)C.(-3,0)D.(1,0) 9.不等式|1|7x -<的解集为( )A.{|100}x x -<<B. {|86}x x -<<C. {|68}x x -<<D. {|69}x x -<<10.已知0,0x y ≥≥且1x y +=则22x y +的最大值是( ) A.1 B.2C.3D.411.曲线4y x=与ln y x =交点的个数为( ) A.3B.2C.1D. 012. 已知{}n a 为等比数列,若31a a >,则( ) A. 21||||a a >B.42a a >C.41||||a a >D. 53a a >第II 卷(非选择题,共65分)二、填空题(本大题共3小题,每小题7分,共21分)13.sin 60= .14.在等差数列{}n a 中,141,8a a ==,则7a = .15.从甲乙丙3名学生中随机选2人,则甲被选中的概率为 . 三、解答题(本大题共3小题,共45分.解答应写出推理、演算步骤.) 16.(本小题满分12分)记ABC ∆记的角A ,B ,C 的对边分别为a,b,c,4,5,6a b c ===. (1)证明:ABC ∆是锐角三角形 (2)求ABC ∆的面积17.已知椭圆C :22142x y +=. (1)求椭圆C 的离心率。
山东大学网络教育专升本入学考试高等数学(二)模拟题 (1)一、 选择题:本大题5个小题,每小题3分,共15分,在每小题给出的四个选项中,只有一项是符合题目要求的,把所选项前的字母填在题后的括号内。
1、函数291)(x x f -=的定义域是( )A 、(-3,3)B 、[-3,3 ]C 、(3,3-,)D 、(0,3)2、x1sin lim x ∞→=( ) A. 0 B. 1 C.∞ D. 不存在 3、设4)3)(2)1)-x -(x -(x -x(x f(x)=则)2('f =( )A 、0B 、1C 、2D 、4 4、设函数x f(x)=,则)1(f '等于 ( )A.1B.-1C.21D.-21 5、曲线3x y =在点)1,1(M 处的切线方程是 ( )A. 023=-+x yB. 03231=-+x yC.023=+-x yD. 043=--x y二、填空题:本大题共15个小题,共15个空,每空3分,共45分。
把答案填在题中横线上。
1、设1)1(2--=+x x x f ,则=)(x f2、判断函数的奇偶性:cosx )(3x x f = 是 3、=-+∞→531002lim 33x xx x 4、13+=x y 的反函数是 5、已知32)tan(lim 0=→xkx x ,则k = 6、=++∞→xx x x )12(lim7、设x x x y -=ln ,则y '=8、曲线22xy =在)2,1(处的切线方程是9、设x x y sin =,则''y =10、=-=dy x y 则设,)1(43 11、不定积分⎰=+dx x 12112、不定积分⎰dx x xe =13、定积分dx x⎰-+11211= 14、定积分=⎰e xdx 1ln15、⎰-+⋅=x dt t t x 0321)(φ设,)('x φ则=三、计算题:本大题共10个小题,每小题6分, 共60分。
专科数学模拟题 卷Ⅰ一、选择题:本大题共15小题,每小题5分,共75分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)由小于7的质数所组成的集合( B)(A ){}1,2,3,5,7, (B ){}2,3,5,7 (C ){}2,3,5, (D ){}7x x ≤(2)设函数()y f x =的定义域是区间[],a b ,且()()1g x f x =+,则函数()g x 的定义域是区间( C )()[],.A a b ()[]1,1.B a b ++ ()[]1,1.C a b -- ()[]1,1.D a b -+(3( D )(A )x y +, (B )()x y -+, (C )x y +, (D )x y + (4)如果a b <,那么( C )(A )5 5.a b +>+ (B )33.a b >(C )55.a b ->- (D )33a b >. (5)数列1111,,,,12233445--⨯⨯⨯⨯ 的一个通项公式( D ) (A )()1.n n+1 (B )()-1.n n+1(C )()n (-1).n n+1 (D )()n+1(-1).n n+1.(6)过曲线418y x =上一点()2,2P 的切线的斜率是( C ) (A ) 1. (B ) 2. (C ) 4. (D )8.(7)sincostan333πππ++=( C )(A ). (B ) 12+ (C ) . (D )12+(8)已知tan 2α=, 那么2sin cos sin cos αααα+=-( B )(A ) 15. (B )5. (C ) 5-. (D )15-.(9)函数52cos cos 22y x x =+- 的最大值是( 4 )(A ) 5. (B ) -5. (C ) 52. (D )52-.(10)已知ABC ∆中, 如果 16,4,cos 3b c A ===, 那么a 得知满足( B ) (A )a c <. (B )a c =. (C ) c a b <<. (D )a b =.(11)已知(a =, ()1b =- , 则,a b =( D )(A )30 . (B )60 . (C ) 120 . (D )150.(12)直线210ax y --=和直线640x y c -+=平行, 那么( B ) (A )3a =, 2c =-. (B )3a =, 2c ≠-. (C )3a ≠, 2c =-. (D )3a ≠, 2c ≠-.(13)圆2216x y +=与圆22230x y x +--=的位置关系是( A )(A )内含. (B )相交. (C )相离. (D )相切. (14)在一次读书活动中, 一人要从 5本不同的科技书、7本不同的文艺书里任意选取一本书,那么不同的选法有( C )(A )5种. (B )7种. (C )12种. (D )35种.(15)甲、乙两人各进行一次足球射门,甲击中目标的概率是0.5 , 乙击中目标的概率是0.8,那么两人都击中目标的概率是( A )(A )0.4. (B )0.3. (C )0.6. (D )1.二、填空题。
本题考查基本知识和基本运算. 每小题6分,共30分。
把答案填在题中横线上。
(16)抛物线()()13y x x =--顶点的坐标是_______ (2,-1) . (17)函数()f x =的定义域为_______空集 .(18)不等式()()34210x x -+>的解集是_______ {xlx<-1/2或x>4/3} . (19)已知直线210ax y -+=和直线平行230x ay -+=平行,则a =_ -2 . (20)当15x x-+=时, 33x x -+=_______ 110 .三、本大题共4小题,共45分。
解答应写出推理、演算步骤。
(21)(本小题满分10分)已知()()()1,2,2,4,2,3.a b c =--=-=求()(),,ab a b a b +- ()a b + ()a c + 。
(3,2)(1,6)(1,1)6()()15()()1a b a b a c ab a b a b a b a c +=-=-+==-+-=-++=-- (22)(本小题满分10分)用3米长的绳索围一个三角形,怎样围可以使这个三角形的面积最大?(限用导数法) 设三边为a ,b ,c 面积为s22()s 230s s F s 3a b c ma b c m a b c a b c λ++==++-==+++-即求,最大值,即最大值()求得===1.5(23)(本小题满分12分)设等比数列{}n a的各项是正数且满足323212a a a a a +=-=,求该数列的通项公式。
()21a q q +=2+ 2111a q a q a -=122q =+ 1a =1 a n= 11(22n -+ (24)(本小题满分13分)从已知圆()()22111x y ++-=外一点()2,3P -向圆引两条切线,求不垂直于x 轴的圆的切线方程。
解,设y=kx+bb=3+2k1343342R k y x ===-=-+专科数学模拟题 卷Ⅱ一、选择题:本大题共15小题,每小题5分,共75分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合{}1,2,3,4,6,12A = ,{}1,2,3,6,9,18B =,则()A B A =(A ){}1,2,3,4,6,9,12,18, (B ){}1,2,3,6 (C ){}1,3,6, (D ){}1,2,6(2)函数()()34211x y x x+=+-的定义域是( C )(){}1.A x x ≤- (){}1.B x x ≥-(){}1,0.C x x ≥-≠且 (){}1,0.D x x x >-≠且(3)抛物线222x y =-+ ( D )()A 开口向上, 顶点为 ()0,1-. ()B 开口向上, 顶点为()0,1. ()C 开口向下, 顶点为 ()0,1- ()D 开口向下, 顶点为()0,1. (4)如果a b >,0a ≠,0b ≠,那么()D(A )11.a b < (B )11.a b = (C )11.a b > (D )1a 可小于也可大于1b.(5)已知数列()111111,,,,,1,,234n n+--- 那么它的第10项的值等于( C ) (A ) 1.- (B )1. (C )110-. (D )110.(6)过曲线21y x =+ 上一点()2,5P -的切线的斜率是( D )(A ) 8. (B ) 2-. (C ) 3-. (D )4-. (7)sincostan444πππ++=( D )(A ) 1+ (B ) 2+ (C ) (D )1(8)已知4sin 52πααπ⎛⎫=<< ⎪⎝⎭, 那么tan α=( A ) (A ) 43-. (B )34-. (C ) 34. (D )43. (9)函数32cos cos 22y x x =+- 的最小值是( D )(A ) 3. (B ) -3. (C ) 32. (D )32-.(10)已知ABC ∆中, 如果1,2,a b c ==, 那么C =( B )(A )15. (B )30. (C ) 45. (D )60.(11)已知()1a =-, (b = , 则,a b =( D )(A )30 . (B )60 . (C ) 120 . (D )150.(12)直线320x y c -+=和直线620x by ++=平行, 那么( B ) (A )4b =, 1c =. (B )4b =-, 1c ≠. (C )4b =-, 1c =. (D )4b =, 1c ≠.(13)圆2225x y +=与圆22230x y x +--=的位置关系是( A )(A )内含. (B )相交. (C )相离. (D )相切.(14)在一次选举活动中, 要从 7名男同学,5名女同学中任意选取一名主席,那么不同的选法有( C )(A )5种. (B )7种. (C )12种. (D )35种.(15)甲、乙两人各进行一次射击,甲击中目标的概率是0.8, 乙击中目标的概率是0.6,那么两人都击中目标的概率是( C )(A )0.4. (B )1.4. (C )0.48. (D )1.二、填空题。
本题考查基本知识和基本运算. 每小题6分,共30分。
把答案填在题中横线上。
(16)抛物线2376y x x =-+顶点的坐标是_______723(,)612. (17)函数y =_______ (2,2)- .(18)不等式43x ->的解集是_______ (7,)(,1)+∞⋃-∞ .(19)已知直线6430x y +-=和直线平行3260x y +-=平行, 那么这两条平行线间的距离等于26. (20)当2,3x y ==时,32x y -+的值是_______738. 三、本大题共4小题,共45分。
解答应写出推理、演算步骤。
(21)(本小题满分10分)已知()()()2,3,2,4,1,2.a b c ==-=--求()(),,ab a b a b +- (),a b c +()a b+ ()a b +(0,7)(4,1)(3,2)8()()7()0()()49a b a b b c ab a b a b a b c a b a b +=-=-+=-=+-=-+=++=(22)(本小题满分10分)用4米长的绳索围一个矩形,怎样围可以使这个矩形的面积最大?(限用导数法),x 2x 2201s x x =-==2解,设一边为,另一边为-,s=x(2-x)=2x-x 长和宽都为1(23)(本小题满分12分)三个正数成等差数列,和为15,若将这三个数分别加上1,4,19后,得到的三个数成等比数列,求这三个正数.x 解,设这三个正数为,x-a,x+a x-a+x+x+a=15x=581=(6-a)(24+a)a=3这三个数为2 5 8(24)(本小题满分13分)从已知圆()()22111x y -+-=外一点()2,3P 向圆引两条切线,求不垂直于x 轴的圆的切线方程。
231343342y kx k R k y x =-+====+专科数学模拟题 卷Ⅲ一、选择题:本大题共15小题,每小题5分,共75分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合{}1,2,4,12,A = {}1,2,4,8,16B =,则()A B B =(A ){}1,2,4,12,1,2,4,8,16 (B ){}1,2,4(C ){}1,2,4,8,12,16 (D ){}1,2,4,12,4,8,16 (2)()32232693B --⨯+⨯=()()()()1115.7 (3249)A B C D (3)定义域为R ,且3x ≠的函数是( D )()32.x A y -= ()32.x B y -=()131.2xC y -⎛⎫= ⎪⎝⎭()131.2x D y -⎛⎫= ⎪⎝⎭(4)如果a b <,那么()A(A )0.a b -< (B )a b -可小于也可等于0.(C )0.a b -> (D )a b -可为任意实数.(5)已知等差数列{},n a 首项为,a 公差为,d 那么该数列的通项公式为( B )(A ).n a na d =+ (B )()1.n a a n d =+- (C ).n a a nd =+ (D )()1.n a n a d =++ (6)函数32y x x =- 的导数是( B )(A ) 26x . (B )261x -. (C ) 221x -. (D )22x (7)已知R 为圆的半径, 弧长为35R 的圆弧所对的圆心角等于( D ) (A ) 108. (B )135π . (C ) 145. (D )108π(8)已知53cos 22132πααπ⎛⎫=<< ⎪⎝⎭, 则tan α=( C )(A )23. (B ) 32. (C ) 23-. (D )32-. (9)函数23sin 6sin 4y x x =+- 的最小值是( C )(A ) 5. (B ) 5-. (C )7-. (D )7.(10)已知ABC ∆中, ::1:2:3A B C =, 那么::a b c =( C )(A )1:2:3. (B )3:2:1.. (C)2. (D).(11)已知4,3,,150a b a b ===, 则ab =( B )(A )6-. (B)-. (C) (D ) 6.(12)直线20x y n ++=, 与直线20x y m -+=的位置关系是( A )(A ) 垂直. (B ) 平行.(C )相交但不垂直. (D )不能确定,与,m n 的取值有关. (13)圆224640x y x y +-++=的圆心坐标和半径分别是( C )(A )(2,3),3. (B )(-2,3),(C )(2,-3), 3. (D )(-2,3), (14) 从10 名理事中选出3名常务理事,共有可能的人选( A ) (A )120组. (B )240组. (C )600组. (D )720组.(15)任意抛掷三枚均匀硬币,恰有一枚正面朝上的概率是( D )(A )14. (B )13. (C )34. (D )38. 二、 填空题:本大题共5小题,每小题5分,共25分。