电路中的三个基本物理量
- 格式:docx
- 大小:3.65 KB
- 文档页数:3
电路中的常见物理量电路就是电流的通过途径。
最基本的电路由电源、负载、连接导线和开关等组成。
电路分为外电路和内电路。
从电源一端经负载回到另一端的电路称为外电路。
电源内部的通路称为内电路。
1、电流导体中的自由电子在电场力的作用下,做有规章的定向运动,就形成了电流。
习惯上规定正电荷的移动的方向为电流的方向。
每秒中内通过导体截面的电量多少,称为电流强度。
用表示,即:式中:—电流强度,简称电流,单位为安培,A;—电量,单位为库仑,C;—时间,单位为秒,s。
2、电流密度通过导线单位截面积的电流。
3、电压、电位电位在数值上等于单位正电荷沿任意路径从该点移至无限远处的过程中电场力所做的功。
其单位为伏特,简称伏(V)。
电压就是电场中两点之间的电位差。
其表达式为:式中:—电场力所做的功,单位为焦耳,J;—电荷量,单位为库仑,C;—两点之间的电位差,即电压,单位为伏特,V。
4、电动势在电场中将单位正电荷由低电位移向高电位时外力所做的功称为电动势,其表达式为:式中:—外力所做的功,J;—电荷量,C;—电动势,V。
电动势的方向规定为由负极指向正极,由低电位指向高电位,且仅存于电源内部。
5、电阻电流在导体中流淌时所受到的阻力,称为电阻。
用R或r 示。
单位为欧姆或兆欧。
导体电阻的大小与导体的长度L成正比,与导体的截面积成反比,并与其材料的电阻率成正比,即式中:—导体的电阻率,Ω·m;—导体长度,m;—导体截面积,m2;—导体的电阻,Ω。
第5讲 电路中的三个基本物理量一、基础知识复习检测1、电流(I):⑴导体中产生电流的条件是:___________________________________________________。
⑵电流强度定义式:I= ,微观表达式I= 。
⑶电流是 量,它的方向规定为______________方向。
2、电动势(E):⑴电动势是一个表征电源将_____ __能转化为______ ____的物理量。
电源的电动势数值上等于______________ ___,用符号 表示,单位是 。
⑵公式:E= 。
⑶电动势本质上和电压一样吗?3、电阻(R):⑴定义:导体对电流 。
导体的电阻由 决定。
⑵电阻定义式:① R= 。
导体电阻的大小与所加电压和通过的电流 关。
②电阻定律公式:R= ;⑶电阻率:它直接反映了材料导电性的好坏,在数值上与 和 有关。
各种材料的电阻率一般随温度的变化而变化;对金属,温度升高,ρ ,对半导体,温度升高,ρ 。
⑷半导体材料的导电性能介于 和 之间,而且电阻随温度的增加 。
⑸超导体:大多数金属在温度降到某一数值时,都会出现 的现象,我们把这个现象称为超导现象。
二、典例分析1、电流(I):例1:金属导体内电流强度增强,是因为A .导体内单位体积的自由电子数增多B .导体内自由电子定向移动的速率增人C .导体内电场的传播速率增大D .导体内自由电子的热运动速率增大例2:电子绕核运动可等效为一环形电流,设氢原子中核外电子在半径为r ,的轨道上运动,其电量为q ,质量为m .求此时电子所形成的等效电流强度.2、电动势(E):例3:关于电动势下列说法中正确的是:A .电源电动势等于电源正负极之间的电势差B .在电源内部只有其他形式的能量转化为电能C .电源电动势总等于内、外电路上的电压之和,所以它的数值与外电路的组成有关D .电源电动势总等于电路中通过一库仑的正电荷时,电源提供的能量例4:铅蓄电池的电动势为2V ,这表示A 电路通过1C 电量,电源把2J 的化学能转变为电能B 电源两极间的电压为2VC 电源内电压为2VD 把化学能转化为电能的本领比一节干电池大3、电阻(R):例5:两电阻R 1和R 2的电流I 电压U 的关系图线如图所示,可知两电阻的大小之比R 1∶R 2等于:A .1∶3B .3∶1C .1∶3D .1∶4例6:如图所示,厚度均匀的矩形金属薄片边长ab =10 cm ,bc =5 cm.当将A 与B 接入电压为U 的电路中时,电流为1 A ;若将C 与D 接入同一电路中,则电流为A .4 AB .2 A C.12 A D.14 A例7:小灯泡通电后其电流I 随所加电压U 变化的图线如图21所示,P 为图线上一点,PN 为图线的切线,PQ 为U 轴的垂线,PM 为I 轴的垂线,下列说法中正确的是A .随着所加电压的增大,小灯泡的电阻增大B .对应P 点,小灯泡的电阻为R =U 1I 2C .对应P 点,小灯泡的电阻为R =U 1I 2-I 1D .对应P 点,小灯泡的功率为图中矩形PQOM 所围的“面积”例8:如图所示,电源内阻不可忽略,已知R 1为半导体热敏电阻,R 2为锰铜合金制成的可变电阻,若发现灯泡L 的亮度变暗,可能的原因是A .R 1断路B .R 1受到可见光的照射C .R 2的阻值逐渐增大D .R 2的阻值逐渐减小三、课后巩固练习1、以下说法中正确的是:A .根据t Q I =,可知电流强度与电量成正比B .根据IU R =可知导体的电阻与它两端的电压成正比C .1伏/安=1欧姆 D .在I -U 图线上,图线斜率等于导体的电阻2、 关于电动势,下列说法正确的是A 当外电路断开时,电源两端电压在数值上等于电动势B 在测量电源内、外电压时,内电路电压增大时,外电路电压也一定增大C 路端电压就是电源的两极间电压D 电动势与路端电压没有关系,仅决定于电源本身性质3、关于电压、电阻,下面说法错误的是A .跟据U=IR 可知电流通过导体形成的电势降落等于IRB .不考虑温度的影响,导体的电阻与两端的电压及电流强度无关C .对导线来说(远距离输电除外),因为电阻极小,所以电流通过导线的电势降落可以忽略D .电压是形成电流的唯一条件4、两个定值电阻Rl 、R 2串联后接在输出电压U 稳定于12V 的直流电源上。
电路基本物理量电路基本物理量是指在电路中常用的一些物理量,包括电压、电流、电阻和功率等。
这些物理量在电路中起着重要的作用,它们相互之间有着紧密的联系和相互影响。
首先是电压,它是电路中最基本的物理量之一。
电压是指电荷在电路中移动时所具有的能量状态,也可以理解为电荷在电路中的“推动力”。
电压的单位是伏特(V),它可以通过电压表或示波器来测量。
在电路中,电压的作用是提供能量,推动电荷在电路中流动。
不同的元件对电压的要求不同,比如电阻器对电压的要求较小,而电容器和电感对电压的要求较高。
其次是电流,它是电荷在电路中流动的物理量。
电流是指单位时间内通过某一截面的电荷量,通常用安培(A)来表示。
电流是电路中能量传递和信号传输的载体,它的大小和方向直接影响着电路的工作状态。
在电路中,电流的流动是由电压的作用推动的。
不同的元件对电流的要求也不同,比如电阻器对电流的要求较小,而电容器和电感对电流的要求较高。
接下来是电阻,它是电路中存在的一种阻碍电流流动的物理量。
电阻的大小决定了电流通过的难易程度,它的单位是欧姆(Ω)。
电阻是电路中的一个重要参数,它能够限制电流的大小,保护电路中的其他元件不受过大的电流损害。
不同的元件对电阻的要求也不同,比如电阻器就是专门用来提供电阻的元件。
最后是功率,它是电路中的能量转换和能量传输的物理量。
功率是指单位时间内能量转化或传输的速率,通常用瓦特(W)来表示。
功率可以通过电压和电流的乘积来计算,即功率等于电压乘以电流。
在电路中,功率的大小和方向决定了电路中的能量转换和传输情况。
不同的元件对功率的要求也不同,比如电阻器会将电能转化为热能,而发电机则会将机械能转化为电能。
总结起来,电压、电流、电阻和功率是电路中的基本物理量,它们相互之间密切相关,共同构成了电路的工作原理和基本特性。
了解和掌握这些物理量的特性和相互关系,对于电路的设计、分析和故障排除都具有重要的意义。
在实际应用中,我们需要根据电路的需要,合理选择和控制这些物理量,以确保电路的正常工作和性能的达到要求。
列举五个电路的基本物理量
电路是指由电源、电线、电器件等元件组成的电气线路,它是实
现电子设备功能的基础。
在电路设计和应用中,我们需要了解一些电
路的基本物理量。
下面,就让我们来一步步阐述一下这五个基本物理量。
第一步:电压
电压是指在两个不同点之间的电位差,通常用“V”表示。
电压
是电子在电路中移动的动力,也是电气设备中判断工作状态的重要参
考值。
在电路分析中,可以通过欧姆定律来计算电压。
第二步:电流
电流是指在电路中的带电粒子所携带的电荷量的大小,通常用“A”表示。
电流的方向由正向电流的流向决定,电路中电流的大小可
以由安培计(电流表)来测量。
第三步:电阻
电阻是指电路中抑制电流流动的程度,通常用“Ω”来表示。
电
路中电阻的大小决定了电路的电流大小,同时也可以通过欧姆定律来
计算。
第四步:电功率
电功率是指电路元件上消耗的功率,通常用“W”来表示。
电路
中电功率的大小可以由电流和电压来计算,对于一些大功率设备,需
要特别注意其功率大小。
第五步:电容
电容是指电路中存储电荷的能力,通常用“F”表示。
电容是电
子设备中重要的元器件之一,被广泛应用于滤波、调谐、定时等方面。
综上所述,电路中的基本物理量有电压、电流、电阻、电功率和
电容。
这些物理量的相互关系非常重要,它们的大小和方向不仅决定
了电路的工作状态,还可以让我们更好地理解电路的工作原理,从而
更好地进行电路设计和应用。
因此,在学习和应用电子设备时,需要充分掌握这些基本物理量的概念和计算方法。
电路的基本物理量包括电路是由电子元器件组成的系统,用于控制和处理电信号。
电路中的基本物理量包括电流、电压和电阻。
这些物理量在电路中起着重要的作用,决定了电路的行为和性能。
首先是电流,电流是电荷在单位时间内通过某一截面的量。
在电路中,电流是由自由电子在导体中的移动形成的。
电流的大小和方向决定了电路中电子的流动情况。
电流的单位是安培(A)。
其次是电压,电压是电场在电路中的作用力。
电压可以理解为电荷在电路中的势能差,是电流流动的驱动力。
在电路中,电压是指两点之间的电势差,也可以理解为电子在电路中的压力差。
电压的单位是伏特(V)。
最后是电阻,电阻是电路中抵抗电流流动的程度。
电阻可以理解为电流通过的困难程度,是电压和电流之间的比值。
电阻的大小决定了电路中的功率消耗和电流的流动情况。
电阻的单位是欧姆(Ω)。
在电路中,电流、电压和电阻之间存在着一定的关系。
根据欧姆定律,电压与电流之间的关系可以用以下公式表示:电压= 电流× 电阻。
这个公式表明了电压、电流和电阻之间的相互关系。
当电流通过电阻时,会产生一定的电压。
而电压的大小又会影响电流的流动情况。
在电路中,电流、电压和电阻的变化会导致电路中能量的转换和传输。
例如,电源提供电压,电流通过电路中的元器件,而电阻会消耗电能并转化为其他形式的能量,如热能。
电路中的元器件根据其特性可以分为两类:有源元器件和无源元器件。
有源元器件如电源和放大器可以提供电能和放大电信号,而无源元器件如电阻和电容则不能提供电能,只能消耗或储存电能。
除了电流、电压和电阻,电路中还有其他一些重要的物理量。
例如功率是电路中的能量转换率,表示单位时间内消耗或提供的能量。
功率的单位是瓦特(W)。
另外,电路中还有电感和电容等元器件,它们分别用于储存和释放电能。
电流、电压和电阻是电路中的基本物理量,它们决定了电路的行为和性能。
通过对这些物理量的理解和控制,我们可以设计和优化各种电路,实现各种功能和应用。
描述电路基本物理量电路基本物理量是指在电路中用来描述电流、电压、电阻等物理现象的量。
电路基本物理量的了解对于理解电路的工作原理和性能具有重要意义。
本文将从电流、电压和电阻三个方面来介绍电路的基本物理量。
一、电流是电荷在单位时间内通过导体横截面的量度,通常用字母I表示,单位是安培(A)。
在电路中,电流是指正电荷(即正电子)的流动方向,与电子的流动方向相反。
电流大小与电荷数目和流动速度有关,当电荷数目或流动速度增加时,电流也随之增大。
电流可以通过电流表进行测量,电流表的连接方式有串联和并联两种。
二、电压是电势差的量度,通常用字母U表示,单位是伏特(V)。
电压可以理解为电荷在电路中移动时所具有的能量,也可以理解为电流在电路中流动时所受到的驱动力。
电压的大小取决于电源的电动势和电路中的电阻。
在电路中,电压可以通过电压表进行测量,电压表的连接方式有串联和并联两种。
三、电阻是物质对电流流动的阻碍程度,通常用字母R表示,单位是欧姆(Ω)。
电阻是电路中的重要组成部分,它会消耗电能,产生热量。
电阻的大小取决于物质的导电性能和物体的几何形状。
在电路中,电阻可以通过电阻表进行测量,电阻表的连接方式有串联和并联两种。
在电路中,电流、电压和电阻之间存在着重要的关系。
根据欧姆定律,电流与电压成正比,与电阻成反比。
即I=U/R,其中I表示电流,U表示电压,R表示电阻。
当电压一定时,电阻越大,电流越小;当电阻一定时,电压越大,电流越大。
这个关系在电路分析和设计中具有重要的应用。
除了电流、电压和电阻外,电路中还存在其他重要的物理量,如功率、电能和电荷等。
功率是电路中能量转换的速率,通常用字母P 表示,单位是瓦特(W)。
功率可以表示为P=UI,其中P表示功率,U表示电压,I表示电流。
电能是电路中的能量,通常用字母E表示,单位是焦耳(J)。
电能的大小取决于电压和电流的大小及其作用时间。
电荷是电子的基本单位,通常用字母Q表示,单位是库仑(C)。
电路的基本原理电路是由电子元件(如电阻、电容、电感、二极管、晶体管等)组成的,用于传输和控制电流的系统。
了解电路的基本原理对于理解电子设备和电子技术至关重要。
本文将介绍电路的基本原理,包括电流、电压、电阻、电路的分类和基本电路。
首先,我们来了解电流、电压和电阻这三个最基本的电路概念。
电流是电荷在单位时间内通过导体的数量,通常用符号I表示,单位是安培(A)。
电压是电荷由于位置而具有的能量,通常用符号U表示,单位是伏特(V)。
电阻是电路对电流的阻碍程度,通常用符号R表示,单位是欧姆(Ω)。
这三个概念是电路中最基本的物理量,它们之间的关系由欧姆定律给出,U=IR,即电压等于电流乘以电阻。
接下来,我们来了解电路的分类。
根据电流的方向,电路可以分为直流电路和交流电路。
直流电路中电流的方向是固定不变的,而交流电路中电流的方向是周期性变化的。
根据电路中元件的连接方式,电路可以分为串联电路、并联电路和混联电路。
串联电路中元件依次连接在一起,电流只有一条路径可以流通;并联电路中元件平行连接,电流有多条路径可以流通;混联电路是串联电路和并联电路的混合形式。
最后,我们来了解一些基本电路。
电路中最简单的电路是电阻电路,它由电源和电阻组成。
当电流通过电阻时,会产生电压降,根据欧姆定律,电压等于电流乘以电阻。
另一个基本电路是电容电路,它由电源和电容组成。
电容可以储存电荷,当电压变化时,电容器会充放电。
还有一个基本电路是电感电路,它由电源和电感组成。
电感可以储存磁场能量,当电流变化时,电感器会产生感应电动势。
总之,电路的基本原理包括电流、电压、电阻、电路的分类和基本电路。
了解这些基本原理可以帮助我们更好地理解电子设备和电子技术,有助于我们在实际应用中更好地设计和使用电路。
希望本文对您有所帮助,谢谢阅读!。
电路原理讲解
电路原理是指描述电流在电路中的流动规律的理论基础。
在电路中,电流是指电子在导体中的流动,而电子的流动又是由电压驱动的。
电路原理主要包括三个基本元素:电压源、电阻和导线。
电压源是电路中的能量提供者,它可以提供电流的驱动力。
常见的电压源有电池和整流器。
电压源通常用符号"V"表示,其单位是伏特(V)。
电阻是电路中的阻碍电流流动的元件。
电阻可以根据其阻力大小分为不同的类型,如固定电阻、可变电阻和短路等。
电阻通常用符号"R"表示,其单位是欧姆(Ω)。
导线是用来连接不同电路元件的材料,它具有低电阻的特性,可以让电流流通。
导线通常用直线表示。
在电路中,电压、电流和电阻之间存在一定的关系,可以用欧姆定律来描述。
欧姆定律表示为:"电流等于电压与电阻的比值",即I = V/R。
其中,I代表电流,V代表电压,R代表电阻。
此外,电路中还存在着串联和并联的概念。
串联是指将多个电阻依次连接在一起,形成一个路径,电流从一个电阻流过后再流向下一个电阻。
并联是指将多个电阻的一端连接在一起,另一端连接在一起,形成一个节点,电流在节点处分流。
通过对电路原理的理解,我们可以分析电路中的电流、电压和电阻之间的关系,从而设计出符合实际需求的电路。
为了确保电路的正常工作以及安全,我们需要合理选择电压源、电阻的大小和导线的质量,以及合理进行电路的连接。
电路中的三个基本物理量
电路中的三个基本物理量:电流、电压和电阻
一、电流
电流是电荷在导体中流动的物理现象,是电子或其他电荷的移动。
电流的单位是安培(A),表示每秒通过导体横截面的电荷量。
电流的大小和方向可以通过安培表或电流表测量。
在电路中,电流的大小取决于电源的电压和电路中的电阻。
根据欧姆定律,电流和电压之间的关系为I=V/R,其中I代表电流,V代表电压,R代表电阻。
当电压增大或电阻减小时,电流也会增大;当电压减小时,电流也会减小。
电流的方向是由正电荷流动方向确定的,即从正电荷的高电势一侧流向低电势一侧。
在电路中,电流通常从电源的正极流向负极,称为正向电流。
反向电流则指从负极流向正极的情况,一般在特定的电子器件中才会出现。
二、电压
电压是电势差的度量,用来表示电流在电路中传输能量的能力。
电压的单位是伏特(V),表示每库仑电荷所具有的能量。
电压可以理解为电流在电路中的驱动力,它使电荷在导体中流动。
在电路中,电压是由电源提供的。
电源可以是电池、发电机或其他形式的能量转换装置。
电压的大小取决于电源的电势差。
例如,一个9伏特的电池提供的电压就是9伏特。
电压可以通过电压表来测量。
电压的方向可以根据电路的连接方式确定。
在直流电路中,电压的方向始终保持不变;而在交流电路中,电压的方向会周期性地变化,通常用正弦波表示。
三、电阻
电阻是材料对电流流动的阻碍程度,是电流通过导体时产生的阻力。
电阻的单位是欧姆(Ω),表示电路中通过1安培电流时的电势差。
电阻可以理解为电流流动时遇到的“摩擦力”,它使电流受到限制。
在电路中,电阻是由导体的物理性质决定的。
不同材料具有不同的电阻特性,例如金属通常具有较低的电阻,而半导体则具有较高的电阻。
电阻的大小可以通过欧姆表来测量。
电阻对电流的影响可以通过欧姆定律来描述。
根据欧姆定律,电流和电压之间的关系为I=V/R,其中I代表电流,V代表电压,R代表电阻。
当电压不变时,电阻的增加会导致电流的减小;反之,电阻的减小会导致电流的增大。
总结:电流、电压和电阻是电路中的三个基本物理量。
电流是电荷
在导体中流动的物理现象,可以由电压和电阻决定;电压是电流在电路中传输能量的能力,由电源提供;电阻是电流流动时受到的阻碍,取决于导体的物理性质。
它们之间的关系可以由欧姆定律描述。
在电路设计和分析中,深入理解和掌握这三个基本物理量的特性和相互关系是非常重要的。