化学工艺学学习总结
- 格式:doc
- 大小:514.50 KB
- 文档页数:4
工艺学总结(无机)(推荐五篇)第一篇:工艺学总结(无机)1、N2的固定方法使空气中游离态氮转变成化合态氮的过程称为氮的固定。
2、合成NH3生产的三个主要步骤1造气——即制备含有H2、N2的原料气。
○2净化——即除去H2、N2以外的杂质。
○3合成——将纯净的H2、N2混合气压缩到高压,在铁催化剂与高温条件下,合○成为NH3。
3、根据热量来源不同而有以下三种主要造气方法: 1外部供热的蒸气转化法○在催化剂存在下,含烃气体在耐高温的合金反应管内进行蒸气催化转化反应,管外用直接火加热(一段管式)。
残余的CH4再在二段转化炉内加入空气继续反应(二段管式)。
2内部蓄热的间歇操作法○ 分为吹风和制气两个阶段。
先把空气送入煤气发生炉内使燃料燃烧,为制气积蓄热量。
以焦炭或煤为燃料时的反应:C+O2(+3.76N2)→CO2(+3.76N2)(△H<0)。
接着通入蒸气进行气化反应。
然后转入下一循环的吹风、制气。
因此,生产煤气的操作是间歇进行的。
3自热反应的部分氧化法○ 此法是在高温下利用氧或富氧空气为原料进行连续的不完全氧化反应。
以重油为例其反应式如下:CmHn+O2 → mCO+n/2H2(△H<0)但部分氧化法需要有空气分离装置以供给氧或富氧空气。
4、固体燃料气化固体燃料气化:是指用氧或含氧气化剂对固体燃料(煤、焦炭)进行热加工,使其转化为可燃性气体的过程,简称“造气”。
“煤气”“煤气发生炉”5、间歇式制取半水煤气的工作循环间歇式煤气炉为移动床气固反应设备。
煤、炭从炉顶部加入,经干燥层和干馏层,进入气化层,然后进入底部的灰渣层,再由炉底排出。
间歇气化时,自本次开始送入空气至下一次再送入空气时止,称为一个工作循环,每个工作循环包括以下五个阶段:1吹风阶段:吹入空气,提高燃料层温度,吹风气放空。
为了回收利用吹风气中○CO的反应热量,将吹风气送入燃料室,并加入适量的空气,与一氧化碳燃烧放出热量储于燃料室的储热砖内,吹风气从烟囱放出。
1 化学工业发展的方向是什么?2 化学工艺学的任务是什么?3 催化剂有哪些基本特征,它在化工生产中起到什么作用?4 裂解过程中是如何结焦和生炭的?5试从化学热力学的方法来分析比较在1000K时苯发生如下两反应时哪个反应占优势?1.结焦反应的吉布斯自由能小于零,是不可逆反应,而生成乙烯的吉布斯自由能大于零是可逆反应,不利于反应的进行。
6 裂解气为什么要压缩?又为何要进行多段压缩?裂解气中许多组分在常压下都是气体,其沸点很低,常压下各组分精馏分离,则分离温度很低,需要大量冷量,为了使分离温度不太低,可适当提高分离压力。
采用多段压缩原因:节约压缩功耗,降低出口温度,减少分离净化负荷。
7目前工业上分离对、间二甲苯采用哪几种方法?各利用什么原理。
吸附分离法:是利用固体吸附剂吸附二甲苯各异构体的能力不同进行的一种分离8甲苯加氢制苯反应在工业中有哪些应用?化学过程中主副反应是什么?9试述催化自氧化与络合催化氧化的异同点?1催化自氧化共同点:10 简述氧化过程的特点11裂解时间和裂解温度有何关系,应当如何选用?12用热力学、动力学综合分析,说明裂解反应应在高温、短停留时间下进行是必要的13压力对裂解反应有什么影响?为什么要采用加入稀释剂的办法来实现降压目的?采用水蒸汽为稀释剂有什么优点?由于裂解是在高温下进行的,不宜于用抽真空或者减压的方法降低烃的分压,这是因为高温密封困难,一旦空气负压操作的裂解系统,与烃气体形成爆炸混合物就有爆炸的危险,而且减压操作对以后分离工序的压缩操作呀不利,要增加能量消耗,因此,采用添加稀释剂以降低烃分压是一个较好的办法。
14 裂解气的净化与分离的任务是什么?裂解气中含有的酸性气体、水份、炔烃、CO2等物质对裂解气分离装置以及乙烯丙烯衍生物的加工装置都会有很大的危害,因此,为了保护装置且达到产品所需的要求规格,在裂解气精馏分离之前必须对裂解气进行分离与净化,除去有危害的物质。
15裂解气中酸性气体、水份、炔烃、CO2有何危害?如何脱除?酸性气体:碱洗法脱除酸性气体或者乙醇胺法脱除酸性气体16何为深冷分离法? 何为冷箱?前冷流程和后冷流程是如何来提高乙烯回收率的?深冷分离法:深冷分离法又称低温精馏法,实质就是气体液体化技术。
高中化学工艺流程总结化学工艺是指将原材料通过一系列的物理或化学变化,制成所需的化学产品的过程。
在高中化学课程中,我们学习了许多化学工艺流程,包括溶解、结晶、过滤、蒸馏、萃取等。
这些工艺流程在化工生产中起着至关重要的作用,下面我们来对这些工艺流程进行总结。
首先,溶解是化学工艺中常见的一种操作。
溶解是指将固体物质溶解在液体中,形成溶液的过程。
在实际生产中,溶解通常是将固体原料溶解在适量的溶剂中,以便后续的工艺步骤。
溶解的过程中需要控制温度、搅拌速度等参数,以确保溶解的彻底和均匀。
其次,结晶是通过溶液中物质的浓缩,使其达到饱和状态,然后冷却或者加入沉淀剂使其析出晶体的过程。
结晶是化学工艺中分离纯净化合物的重要方法,通过结晶可以得到高纯度的化合物,适用于制备药品、化工原料等领域。
过滤是将混合物中的固体颗粒从液体中分离出来的过程。
过滤通常使用滤纸、滤膜等材料进行过滤,将固体颗粒截留在滤纸上,而液体则通过滤纸流出。
过滤是化工生产中常见的一种分离技术,广泛应用于废水处理、药品制备等领域。
蒸馏是利用物质的沸点差异将混合物中的不同成分分离的过程。
蒸馏通常包括简单蒸馏、分馏、萃取等方法,通过控制温度和压力,可以将混合物中的不同成分分离出来,得到纯净的单一物质。
萃取是利用溶剂对混合物中的成分进行选择性提取的过程。
萃取是一种重要的分离技术,广泛应用于化工生产中,可以将混合物中的有机物、无机物等分离出来,得到纯净的产物。
总的来说,化学工艺流程是化工生产中不可或缺的一部分,通过这些工艺流程,可以将原材料加工成最终所需的化学产品。
在学习化学工艺流程的过程中,我们不仅要掌握其原理和操作技术,还要了解其在实际生产中的应用,以便将来投身化工行业时能够胜任相关工作。
希望通过本文的总结,能够对化学工艺流程有更深入的理解。
化工工艺学课程总结及复习(精选五篇)第一篇:化工工艺学课程总结及复习,1 1.4 化工工艺学的研究对象与内容1.5化工生产工艺步骤、化工生产工艺过程1.6 化工工艺流程主要单元组合、反应器选择、组织工艺流程遵循的原则2化工原料分类及来源2.1费托合成原理、催化剂、产物、焦化产物及组成2.2 原油脱盐、催化裂化反应器、再生器、石油的一次加工 2.3天然气组成、利用途径2.4化学矿物、磷肥生产方法、硼镁矿制硼砂的的简要工艺2.5生物质作为化工原料基本途径3.1合成氨生产过程、间歇式制气法阶段、蒸汽转化法及催化剂、合成氨各种制气所使用的气化剂、原料气净化、工业甲烷水蒸气转化催化剂、一氧化碳变换催化剂、变换反应器类型、脱硫方法、脱碳方法、氨合成工艺条件选择3.2生产硫酸的原料、接触法生产硫酸工序、二氧化硫炉气净化方法、二氧化硫催化氧化原理、工艺条件、浓硫酸吸收主要因素、硫酸厂废水来源及处理3.3纯碱的生产方法、候氏制碱法原料预处理、联合制碱过程及主要工序、主要设备及要求3.4分解电压、过电压、电流效率、电极反应、食盐水电解制氯气和烧碱方法、隔膜法电解原理、离子交换膜法流程、隔膜法电解食盐水电极产物溶液成分4.4.1裂解气的工业分离法、脱水方法、裂解温度、烃类热裂解反应动力学、裂解工艺过程、降低裂解反应压力方法、裂解气中的乙炔处理4.2非均相催化氧化反应传热,环氧乙烷的生产方法、丙烯腈生产方法原理、精制;工艺条件、转化率;乙烯均相络合催化氧化制乙醛原理、工艺条件、催化剂、乙烯环氧化原理、乙烯环氧化催化剂、致稳气及其作用4.3加氢脱氢一般规律反应、加氢反应原理、液相加氢反应器、烃类脱氢工艺条件、乙苯脱氢原理、工艺条件、反应器、水蒸气作用;苯加氢制环已烷原理及催化剂、一氧化碳加氢合成甲醇催化剂、工艺条件4.4 甲基叔丁基醚的生产方法、催化剂、催化反应精馏塔生成MTBE、乙苯的生产方法4.5醋酸的生产方法、丙烯氢甲酰化热效应、生产方法、丙烯氢甲酰化合成丁醛主副反应及要求、甲醇的羰化反应、一氧化碳加氢合成甲醇的转化率4.6氯化剂、氯乙烯生产方法、乙烯氧氯化法原理和原料配比、环氧氯丙烷生产方法及原理5.1精细化工特点、精细化工发展的方向5.2磺化剂、浓硫酸作磺化剂特点、磺化反应影响因素、苯及其衍生物的磺、萘的磺化、气态三氧化硫磺化法生产十二烷基苯磺酸钠工艺特点,磺化反应的π值及其计算5.3工业硝化剂、硝化方法、硝化产物分离、硝化反应特点及分类、芳烃硝化副反应、传统硝化法生产硝基苯5.4酯的合成方法、主要酯化反应、催化剂、酸酐与醇或酚的反应原理、叔醇及酚类的酯的合成、提高直接酯化法酯的产率6.1聚合物的主链结构、自由基聚合特征、方法、高分子合成反应及成型加工、合成纤维生产6.2聚合原理、自由基共聚合反应机理、自由基聚合的特征、聚合反应方法、聚合物改性方法6.3 PVC树脂的生产方法、聚乙烯聚合工艺、聚丙烯生产方法、PET树脂合成工艺路线、PET改性7.1物料衡算和热量衡算的主要步骤、转化率、总转化率、反应选择性、单程收率、总收率、转化率选择性收相互关系7.2物料质量平衡关系、一般计算方法,具有循环过程的物料衡算方法、计算式 7.3热量衡算式、热量衡算基本步骤三废8.1工业废气、废气处理技术及主要工艺、催化燃烧技术8.2工业废水、常规处理低浓度有机废水的方法、主要新型污水处理技术 8.3工业废渣、工业固体废弃物主要种类及处理方法 8.4绿色化学、原子经济性、原子利用率1.试分析空速对氨合成的影响2.简要说明列管式固定床氧化反应器优势3.绿色化工工艺的绿色体现4.精细化率及其意义5.SO2催化氧化间接换热特点6.简述气相氯化和液相氯化反应的特点7.精细化学品8.常规处理低浓度有机废水的曝气池活性污泥法原理及其主要操作方法 9.试分析压力对氨合成的影响 10.非均相催化氧化反应的特点是什么 11.简述精细化工特点 12.绿色化学13.浓硫酸吸收过程中,从吸收率角度考虑,酸温低好,但实际生产中为什么不能控制过低?14.什么是氧化反应的致稳气?其作用是什么?15.根据SO2氧化成SO3的反应特点,分析反应条件确定的依据和工艺上采取何种形式的反应设备和措施。
【精品】化学工艺知识点总结
一、化学反应物质的状态
1、液体:具有流动性,易混溶,不能通过瓶口流出的物质;
2、气体:形状不定,扩展并向周围扩散的物质;
二、化学反应的能量
1、隐性能量:指反应中起作用的势能、混合能、离子交换能及电势能等能量;
2、可释放的能量:反应物过渡到反应产物时,物质结构发生变化;
3、可释放热量:反应过程中,由于反应物结构变化导致总能量变化而释放出的热量。
三、化学反应类型
1、吸热反应:反应物溶于溶剂中,溶解过程中吸收外加热量,反应物溶液温度会升高;
2、放热反应:反应物溶液温度降低,因其反应产物会释放出热量;
3、真空反应:反应物及其产物都不存在气体的情况下的一种反应;
4、可逆反应:产物可通过能量的补充或减少,会再转化成反应物;
1、光照平衡:指反应物及其反应产物暴露在外界光照照射下,反应物反应出现加速
或减缓的情况;
2、温度的平衡:当外界温度发生变化,反应物及其反应产物间的比例也会随之发生
变化;
3、催化剂的平衡:当添加催化剂或抑制剂时,反应的进行程度会产生改变;
五、实验室常用设备
1、加热装置:玻璃锅炉、加热槽、加热带等;
2、制样装置:滴定架、称重瓶、罐体等;
3、检测装置:pH计、分光光度计、恒温槽等;
4、其他设备:气体分泵、真空虹吸、鼓风机、洗涤器、除尘器、收集器等。
化学工艺学第一章绪论1、化学工业:运用化学工艺、化学工程及设备,通过各种化工单元操作,高效、节能、经济、环保和安全地将原料生产成化工产品的特定生产部门.2、化学工艺即化工生产技术,是指将各种原料主要经过化学反应转变为产品的方法和过程,包括实现这种转变的全部化学的和物理的措施.3、化学工艺学是根据化学、物理和其他科学的成就,研究综合利用各种原料生产化学产品的方法原理、操作条件、流程和设备,以创立技术先进、经济上合理、生产上安全的化工生产工艺的学科.4、21世纪,化学工业的发展趋势答:1产品结构精细化和功能化;2生产装置微型化和柔性化;3生产过程绿色化和高科技化;4市场经营国际化、信息化.5、绿色化工就是用先进的化工技术和方法减少或消除对人类健康、社区安全、生态环境有害的各种物质的一种技术手段.6、化学工业的基础原料指可以用来加工生产化工基本原料或产品的在自然界天然存在的资源.7、化工产品一般是指由原料经化学反应、化工单元操作等加工方法生产出来的新物料品.8.煤化工:以煤为原料,经过化学加工转化为气体、液体和固体燃料及化学品的工业.9.煤的干馏:是指在隔绝空气条件下将煤加热,使其分解生成焦炭、煤焦油、粗苯和焦炉气的过程.10.一次加工方法主要包括一次加工和二次加工,一次加工方法主要包括常压蒸馏和减压蒸馏.11.蒸馏是一种利用液体混合物中各组分挥发度的差别沸点不同进行分离的方法,是一种没有化学反应的传质、传热物理过程,主要设备是蒸馏塔.12.常用的二次加工方法主要有催化重整、催化裂化、催化加氢裂化和烃类热裂解四种.13.催化重整:是在铂催化剂作用下加热汽油馏分石脑油,使其中的烃类分子重新排列形成新分子的工艺过程.14.催化重整的原料是石脑油,以生产高辛烷值汽油为目的时一般采用80~180℃馏分.15.催化加氢裂化是在催化剂及高氢压下加热重质油,使其发生一系列加氢和裂化反应,转变成航空煤油、柴油、汽油和气体等产品的加工过程. 16.化工生产过程一般可概括为原料预处理、化学反应和产品分离与精制三大步骤.17.原料的预处理的主要目的是使初始原料达到反应所需要的状态和规格.18、化学反应是化工生产的核心.实现化学反应过程的设备称为反应器釜或塔.19、产品分离与精制目一是获取符合规格的产品,二是回收、利用副产物.20、组织工艺流程时应遵循的原则有哪些答:1工艺路线技术先进,生产运行安全可靠,经济指标先进合理;2原料和能量利用充分合理;3单元操作适宜,设备选型合理;4工艺流程连续化、自动化;5安全措施得当,“三”治理有效.21、工业催化剂的性能指标是活性、选择性和寿命.22、催化剂的失活原因一般分为中毒、结焦和堵塞、烧结和热失活三大类.22、固体催化剂在使用中应注意事项有哪些答:1要防止已还原或已活化好的催化剂与空气接触;2原料必须经过净化处理,使用过程中要避免毒物与催化剂接触;3要严格控制催化剂使用温度,使其在催化剂活性温度范围内使用,防止催化剂床层温度局部过热,以免烧坏催化剂.4要维持正常操作条件如温度、压力、反应物配比、流量等稳定,尽量减少波动.5开车时要保持缓慢的升温、升压速率,温度、压力的突然变化容易造成催化剂的粉粹,要尽量减少开车、停车的次数.第一章化学工艺基础1.化工原料根据物质来源可分为无机原料和有机原料两大类.2.煤化工包括煤的干馏包括炼焦和低温干馏,气化,液化和合成化学品等.3.原油:从油井中开采出来没有经过加工处理的石油叫原油,它是一种有气味的棕黑色或黄褐色粘稠液体.4.一次加工:一次加工方法主要包括常压蒸馏和减压蒸馏.5.二次加工:常用的二次加工方法主要有催化重整,催化裂化,催化加氢裂化和烃类热裂解.6.化工生产过程:一般可概括为原料预处理,化学反应和产品分离与精制三大步骤.7.选择性:是指体系中转化成目的产物的某反应物量与参加所有反应而转化的该反应物总量之比,用符号S表示.表达式为:转化为目的产物的某反应物的量该反应物的转化总量8.催化剂失活原因一般分为中毒,结焦和堵塞,烧结和热失活三大类.9.催化剂使用注意事项:(1)要防止已还原或已活化好的催化剂与空气接触;(2)原料必须经过净化处理,使用过程中要避免毒物与催化剂接触;(3)要严格控制操作温度,使其在催化剂活性温度范围内使用,防止催化剂床层温度局部过热,以免烧坏催化剂;(4)要维持正常操作条件的稳定,尽量减少波动;(5)开车时要保持缓慢的升温,升压速率,温度,压力的突然变化容易造成催化剂的粉碎,要尽量减少开,停车的次数.第四章烃类热裂解1.烃类热裂解:是指以石油系烃类为原料,利用石油烃在高温下的不稳定、易分解的性质,在隔绝空气和高温条件下使大分子的烃类发生断链和脱氢等反应,以制取低级烯烃的过程.2.烃类热裂解制乙烯的生产工艺主要由原料烃的热裂解和裂解产物的分离精制两部分组成.3.一般将复杂的裂解反应归纳为一次反应和二次反应.4.一次反应:是指原料烃主要是烃类和环烷烃经热裂解生成乙烯和丙烯等低级烯烃的反应.5. 二次反应:是指一次反应的产物乙烯、丙烯等低级分子烯烃进一步发生反应生成多种产物,直至最后生焦或炭.6.乙烷裂解的自由基反应包括链引发、链增长反应和链终止反应3个阶段.7.各类烃热裂解的难易顺序可归纳为:异构烷烃>正构烷烃>环烷烃C 6>C 5>芳烃8.从热力学角度分析,裂解是吸热反应,理论上烃类裂解制乙烯的最适宜温度一般在750~900℃.裂解的深度取决于裂解温度和停留时间.管式炉裂解技术的反应设备是裂解炉,它既是乙烯装置的核心,又是挖掘节能潜力的关键设备.9.石油烃类裂解的操作条件宜采用高温、短停留时间、低烃分压,产生的裂解气要迅速离开反应区.10.烃类的热裂解过程的特点:1烃类热裂解是吸热反应;2烃类热解需在高温下进行,反应温度一般在750℃以上;3为了避免烃类热裂解过程中二次反应,反应停留时间很短,一般在~1s ; 4热裂解反应是分子数增加的反应,烃分压低有利于原料分子向反应产物分子的反应平衡方向移动;5裂解反应产物是复杂的混合物,除了裂解气和液体烃之外,尚有固体产物焦生成.11.裂解气中含有少量的H2S 、CO 2、H 2O 、C 2H 2、CO 等气体杂质.分析其来源主要有三个方面:一是由原料带入;二是裂解反应过程生成;三是裂解气处理过程引入.12.热泵:是通过做功将低温热源的热量传送给高温热源的供热系统. 2.烃类热裂解的主要目的是生产乙烯,同时可得丙烯、丁二烯以及苯、甲苯、二甲苯等产品.3.乙烯装置生产能力的大小实际反映了一个国家有机化学工业的发展水平.4.烃类热裂解过程非常复杂,具体体现在一下几个方面:1原料复杂2反应复杂3产物复杂7.同碳原子数的烷烃,C-H键能大于C-C键能,故断键反应比脱氢反应容易发生.8.带支链烃的C-C键或C-H键的键能较直链烷烃的C-C键或C-H键的键能小,易断裂,所以,带支链的烃容易裂解或脱氢.9.带侧链的环烷烃首先经行脱烷基反应,脱烷基反应一般在长侧链的中部开始断裂,一直进行到侧链为甲基或乙基,然后再一步发生环烷烃脱氢生成芳烃的反应,环烷烃脱氢比开环生成烯烃容易.10.在较高的温度下,低分子的烷烃、烯烃有可能分解为碳和氢.11.正构烷烃在各族烃中最有利于生成乙烯、丙烯.12.异构烷烃的烯烃总收率低于同碳原子数的正构烷烃.13.烃类热裂解过程的特点:1吸热反应高温2体积增大低压3易发生二次反应14.裂解深度:指裂解反应进行的程度.15.裂解炉设计开发的根本思路是提高裂解过程的选择性和设备的生产能力.16.提高裂解过程选择性的主要途径:1提高反应温度2缩短停留时间3降低烃分压17.工业上一般采用蒸汽作为稀释剂,其优点有如下几点:1裂解反应后通过急冷即可实现稀释剂与裂解气的分离,不会增加裂解气的分离负荷和困难.2水蒸汽热容量大,使系统有较大的热惯性,当操作供热不平稳时可以起到稳定温度的作用,保护炉管防止过热.3抑制裂解原料所含硫对镍络合金炉管的腐蚀.4脱除结碳.18.裂解供热方式有直接供热和间接供热.19.急冷的方法有两种:一种是直接急冷,一种是间接急冷.20.裂解气的净化与分离目的是除去裂解气中的有害杂质.21.工业生产上采用的裂解气分离方法主要有:油吸收精馏分离法、深冷分离法、吸附分离法、络合物分离法.22.工业上脱水的方法有多种,如冷冻法、吸收法、吸附法.补充:第5章芳烃转化过程石油芳烃主要来源于石脑油重整生成的油及烃裂解生成乙烯副产的裂解汽油.工业上广泛应用的芳烃转化反应主要有:C8芳烃的异构化、甲苯的歧化和C9芳烃烷基的转移、芳烃的烷基化、烷基芳烃的脱烷基化等.芳烃歧化:是指两个相同的芳烃分子在酸性催化剂作用下一个芳烃分子上的侧链烷基转移到另一个芳烃分子上的反应.烷基转移是指两个不同的芳烃分子之间发生烷基转移的反应.芳烃的烷基化是芳烃分子中苯环上的一个或几个氢被烷基取代生成烷基芳烃的反应.第6章催化加氢与脱氢1、催化加氢:是指有机化合物中一个或几个不饱和官能团在催化剂作用下与氢气的加成反应.2.催化加氢反应在化学工业中一是用于合成有机产品,二是用于许多化工产品的加氢精制.3.骨架催化剂:将具有催化活性的金属和载体铝或硅制成合金,再用氢氧化钠溶液浸渍合金,溶解其中的铝或硅,得到活性金属构成的骨架状物质4.加氢催化剂按其形态主要可分为金属催化剂、骨架催化剂、金属氧化物催化剂、金属硫化物催化剂、金属络合物催化剂五大类.5.下列芳烃加氢的顺序正确的是CA C 6H 5CH 3>C 6H 6>C 6H 4CH 32>C 6H 3CH 33B C 6H 4CH 32>C 6H 6>C 6H 5CH 3>C 6H 3CH 33C C 6H 6>C 6H 5CH 3>C 6H 4CH 32>C 6H 3CH 33D C 6H 6>C 6H 5CH 3>C 6H 3CH 33 >C 6H 4CH 326炔烃、二烯烃、单烯烃、芳烃混合在一起加氢时,其反应速率顺序为DA. 二烯烃>炔烃>单烯烃>芳烃B. 炔烃>单烯烃>二烯烃>芳烃C. 二烯烃>单烯烃>芳烃>炔烃D. 炔烃>二烯烃>单烯烃>芳烃7.绝热式反应器乙苯脱氢工艺中,水蒸气和乙苯的摩尔比为AA. 14:1B. 13:1C. 12:1D. 10:18.金属催化剂:就是把活性组分如Ni 、Pd 、Pt 等金属分散于载体上,以提高催化剂活性组分的分散性和均匀性,增强催化剂的强度和耐热性.9.目前工业生产上采用的催化剂大致可分为锌铬系和铜锌或铝系即铜基催化剂两大类.10.低压法合成甲醇工艺流程主要由造气、压缩、合成和精制四大部分组成.第7章烃类选择性氧化1.烃类选择性氧化过程的特点答:1反应放热量大;2反应不可逆;3反应过程易燃易爆;4反应途径复杂多样.2.如何提高烃类选择性氧化安全性答:1原料配比一定要控制在爆炸极限之外;2在设计氧化反应器时,除考虑设计足够的传热面积及时移走热量外,还要在氧化设备上设上加设防爆口,装上安全阀或防爆膜;3反应温度最好采用自动控制,至少要有自动报警系统.4还可以采用惰性气体的办法稀释作用物,以减少反应的激烈程度,防止发生爆炸.3.非均相催化氧化主要是指气态有机原料在固体催化剂存在下以气态氧作为氧化剂氧化为有机产品的过程.4.气固相催化氧化反应都是强放热反应,工业上常用的反应器有两种:列管式固定床反应器和流化床反应器.5.流化床反应器是一种利用气体或液体通过固体层而使固体颗粒处于悬浮运动状态,并进行气固相反应过程或液固相反应过程的反应器.6.流化床反应器从其结构来看自下而上大致分为锥形体、反应段和扩大段三部分.7.简述液相均相催化氧化技术优缺点.主要优点:(1)反应物与催化剂同相,不存在固体表面上活性中心性质及分布不均匀的问题,作为活性中心的过渡金属活性高,选择性好;(2)反应条件不太苛刻,反应比较平稳,易于控制;(3)反应设备简单,容积小,生产能力高;不足之处:(1)反应温度通常不太高,因此反应热利用率较低;(2)在腐蚀性较强的体系中要采用特殊材质;(3)配位催化氧化反应体系需用贵金属盐作为催化剂,因此必须分离回收.8.工业上常用的非均相反应器有两种:列管式固定床反应器和流化床反应器.9.热点:列管式反应器轴向的温度分布主要取决于沿轴向各点的放热速率和管外载热体的除热速率,一般反应器内沿轴向温度分布都有一个最高温度.10.简述丙烯腈生产过程中加入水蒸汽的作用答:1水蒸汽可促使产物从催化剂表面解析出来,从而避免丙烯腈深度氧化;2加入水蒸气后可起到降低反应物浓度作用,从而对保证安全生产防范爆炸深度氧化;3水蒸汽的比热容较大,加入水蒸气可以带走大量的反应生成热,使反应温度易于控制;4加入水蒸气对催化剂表面的积炭有清楚作用.第8章羰基合成1.羰基化反应:在过渡金属配位化合物催化剂存在下一氧化碳参与有机合成、分子中引入羰基的反应.2.甲醇低压羰基化反应主反应方程式:COOH CH CO OH CH 33→+,使用催化剂:铑—碘催化体系,反应温度:130~180℃.第9章 氯化1.氯化是指在化合物分子中引入氯原子以生产氯的衍生物的反应过程.氯化过程的主要产物是氯代烃,氯代烃的主要应用领域有两个:一是作溶剂,二是用作合成大量有机产品及精细化工产品的中间体和聚合物的单体.2、取代氯化、加成氯化和氧氯化是氯代烃的主要生产方法.3.目前, 与其他方法相比,原料来源广且价格较低,生产工艺合理,生产成本较低,产量约占吕乙烯总产量的90%以上.A.平衡氧氯化法 B.乙炔法 C.乙烯法 D.烯炔法。
化学工艺学基础知识点总结化学工艺学是指利用化学原理和技术,对原材料进行加工、转化和制造成所需的制品的学科。
它是化学工程学的基础,通过研究和应用化学反应、传质、传热等原理,探索和发展各种化学工艺过程,实现化学产品的制备和加工。
下面将对化学工艺学的基础知识点进行总结。
1. 化学反应在化学工艺学中,化学反应是一个非常重要的基础知识点。
化学反应是指原料物质在特定条件下相互作用,形成新的化合物的过程。
根据反应的进行方式,可以分为均相反应和异相反应。
均相反应是指反应物和产物处于相同的物理状态,而异相反应则是反应物和产物处于不同的物理状态。
在化学工艺学中,我们需要了解不同化学反应的条件、速率、热效应等基本知识,以便合理设计和控制化学工艺过程。
2. 传质传质是指物质在不同相之间的质量传递过程,是化学工艺中的重要环节之一。
常见的传质方式包括扩散、对流和传热等。
扩散是指物质在不同浓度间的自发性传递,对流是指通过流体介质的物质传递过程,传热则是指物质内部能量的传递。
在化学工艺过程中,我们需要合理设计传质装置和控制传质速率,以实现化学反应和产物分离等目的。
3. 传热传热是指热能在物质之间传递的过程,也是化学工艺学的基础知识点之一。
传热方式包括传导、对流和辐射等。
传导是指通过物质内部分子间的热能传递,对流是指通过流体介质的热能传递,而辐射则是指通过电磁波的热能传递。
在化学工艺中,我们需要根据不同的传热方式选择合适的传热设备,并进行传热效率的控制和优化。
4. 化学工艺流程化学工艺流程是指一系列化学反应和物质传递过程组成的整体,它是化学工艺学的核心内容。
化学工艺流程的设计和控制能否很好地实现原料转化和产品分离,直接影响到产品的质量和产量。
在化学工艺学中,我们需要了解不同化学工艺流程的基本原理和特点,以便选择合适的工艺路线、设备和操作条件。
5. 反应器设计反应器是化学工艺中用于进行化学反应的装置,反应器的设计质量直接影响到工艺的效率和产品的质量。
化工工艺总结化工工艺总结化工工艺总结一.化学工艺名词概念 1.化学工艺有机化学工业精细化学工业高分子化学工业2.催化剂的有关概念催化剂:催化剂的活化:将制备好的催化剂的活性和选择性提高到正常使用水平的操作。
催化剂的活性:指催化剂改变反应速率的能力,即加快反应速率的程度,它是反映催化剂在一定工艺条件下催化性能的主要指标。
催化剂的选择性:指催化剂使反应向着所需方向进行生成目的产物的能力。
催化剂的活性温度:催化剂保持活性稳定的温度,是确定反应温度的依据。
催化剂的空隙率:催化剂床层空隙体积与催化剂床层总体积之比。
催化剂的比表面积:指每克催化剂的表面积。
3.转化率:某一反应物参加反应的量占其加入量的百分数。
平衡转化率:某一化学反应达到化学平衡状态时,转化为目的产物的某种原料量占该种原料起始量的百分数。
单程转化率:表示反应物一次通过反应器,参加反应的某种原料量站通入反应器的反应物总量的百分数。
全程转化率(总转化率):以包括循环系统在内的反应器、分离设备的反应体系为研究对象,参加反应的物料量占进入反应体系总原料量的百分数。
产率:实际所得目的产物量占按反应了原料计算应得产物理论量的百分数。
收率:生成某产物的实际产量占按加入的某一反应物计算生成该产物的理论产量的百分数。
质量收率:实际获得产品质量占其加入反应器原料质量的百分数。
消耗定额:生产单位产品所消耗的原料量,即每生产一吨100%的产品所消耗的原料量。
4.空间速度:单位时间、体积催化剂上通过的标准状态下反应器气体的体积。
空时产率:空时产量:在一定反应条件下,单位时间单位体积催化剂上生成目的产物得数量。
接触时间:(停留时间)反应物在反应状态下与催化剂的接触时间。
5.物料中间体:爆炸极限:可燃气体、蒸汽、粉尘与空气混合在一定浓度范围内与明火发生爆炸,这个浓度范围就称为爆炸极限。
6.单元反应焙烧反应:在底于熔点下,原料中的主要成分与空气中的氧气反应生成氧化物炉气的过程。
化学工艺学知识点总结以下是化学工艺学的一些重要知识点的总结:1.化学反应:了解常见的化学反应类型,包括氧化、还原、酸碱中和、酯化等。
理解反应速率和平衡的概念,以及如何通过催化剂和温度控制反应。
2.质量平衡:学习如何在化学反应和过程中应用质量平衡,以确保原材料和产品的质量。
了解反应前后物质的质量变化和摩尔比的计算方法。
3.能量平衡:了解如何在化学工艺中应用能量平衡,以确保过程的能量效率和节能。
学习如何计算能量变化、传热和传质,以及如何使用能量平衡方程解决问题。
4.反应器设计:学习不同类型的反应器,如批量反应器、连续流动反应器和搅拌罐反应器等。
了解反应器的设计参数,如体积、温度、压力和物质的混合方法。
5.分离技术:了解常见的分离技术,如蒸馏、萃取、结晶、吸附和膜分离等。
学习如何选择适当的分离技术,以提高产品的纯度和回收率。
6.传递过程:了解质量传递和能量传递的原理和方法。
掌握物质在液相、气相和固相中传递的速率和方法,以实现产品的提纯和分离。
7.化学工艺流程图:学习如何绘制和解读化学工艺流程图,以描述化学反应和操作的步骤和条件。
了解流程图中常用的符号和标记,以及如何优化工艺流程。
8.安全和环境:了解化学工艺中存在的安全和环境风险,以及如何采取措施保护工人和环境。
学习如何进行风险评估和事故预防,以确保工艺的可持续发展。
9.经济分析:了解如何进行化学工艺的经济分析,包括成本估算、投资回报和财务评估。
学习如何考虑原材料成本、能源消耗和产品需求等因素,以优化工艺的经济效益。
10.实验技术:学习常见的化学工艺实验技术,如反应器操作、分离技术和分析方法等。
掌握实验室技巧和安全操作,以进行工艺开发和优化。
第2章化学工艺基础1.石油的一次加工方法:常压蒸馏和减压蒸馏2.馏分油的化学加工方法(二次加工方法):催化重整、催化裂化、催化加氢裂化、烃类热裂解(主要包括各种加工方法的原料,加工的产物)催化重整: 原料:加热汽油馏分(石脑油)目的:生产高辛烷值汽油或生产芳烃催化裂化:原料:加热重质馏分油目的:增加汽油产量烃类热裂解:原料:较优者是乙烷、丙烷和石脑油目的:为了制取乙烯和丙烯,同时副产丁烯、丁二烯、苯、甲苯、丁二烯、二甲苯、乙苯等芳烃及其他化工原料3.化工生产过程一般可概括为:原料预处理、化学反应、产品分离和精制4.循环流程及其特点:特点:反应物进入反应器后未反应的反应物从产物中分离出来,再返回反应器的工艺流程称为循环式工艺流程。
优点:能显著地提高原料的利用率,减少系统排放量,降低了原料消耗,也减少了环境污染。
第3章烃类热裂解1.各族烃的裂解反应规律。
烷烃、烯烃、芳烃的裂解规律烷烃:正构烷烃在各族烃中最利于乙烯、丙烯的生成。
烷烃的相对分子质量愈小,其总产率愈高。
异构烷烃的烯烃总产率低于同碳原子数的正构烷烃,但随着相对分子质量的增大,这种差别减小。
烯烃:大分子烯烃裂解为乙烯和丙烯;烯烃能脱氢生成炔烃、二烯烃,进而生成芳烃。
芳烃:无烷基的芳烃基本上不裂解为烯烃,有烷基的芳烃,主要是烷基发生断碳键和脱氢反应,而芳环保持不变,易脱氢缩合为多换芳烃你,从而有结焦倾向。
各族烃的裂解难易程度:正烷烃>异烷烃>环烷烃(六碳环>五碳环)>芳烃随着分子中碳原子数的增多,各族烃分子结构上的差别反映到裂解速度上的差异就逐渐减弱。
2.裂解过程中结焦生碳反应的一些规律①在不同温度条件下,生碳结焦反应经历着不同的途径;在900-1100℃以上主要是通过生成乙炔的中间阶段,而在500-900℃主要是通过生成芳烃的中间阶段。
②生焦结碳反应是典型的连串反应,随着温度的提高和反应时间的延长,不断释放出氢,残物(焦油)的氢含量逐渐降低,碳氢比、相对分子质量和密度逐渐增大。
化学工艺学第一章绪论1、化学工业:运用化学工艺、化学工程及设备,通过各种化工单元操作,高效、节能、经济、环保与安全地将原料生产成化工产品得特定生产部门。
2、化学工艺即化工生产技术,就是指将各种原料主要经过化学反应转变为产品得方法与过程,包括实现这种转变得全部化学得与物理得措施。
3、化学工艺学就是根据化学、物理与其她科学得成就,研究综合利用各种原料生产化学产品得方法原理、操作条件、流程与设备,以创立技术先进、经济上合理、生产上安全得化工生产工艺得学科。
4、21世纪,化学工业得发展趋势?答:(1)产品结构精细化与功能化;(2)生产装置微型化与柔性化;(3)生产过程绿色化与高科技化;(4)市场经营国际化、信息化.5、绿色化工就就是用先进得化工技术与方法减少或消除对人类健康、社区安全、生态环境有害得各种物质得一种技术手段。
6、化学工业得基础原料指可以用来加工生产化工基本原料或产品得在自然界天然存在得资源。
7、化工产品一般就是指由原料经化学反应、化工单元操作等加工方法生产出来得新物料(品).8、煤化工:以煤为原料,经过化学加工转化为气体、液体与固体燃料及化学品得工业。
9、煤得干馏:就是指在隔绝空气条件下将煤加热,使其分解生成焦炭、煤焦油、粗苯与焦炉气得过程。
10.一次加工方法主要包括一次加工与二次加工,一次加工方法主要包括常压蒸馏与减压蒸馏.11、蒸馏就是一种利用液体混合物中各组分挥发度得差别(沸点不同)进行分离得方法,就是一种没有化学反应得传质、传热物理过程,主要设备就是蒸馏塔。
12、常用得二次加工方法主要有催化重整、催化裂化、催化加氢裂化与烃类热裂解四种.13、催化重整:就是在铂催化剂作用下加热汽油馏分(石脑油),使其中得烃类分子重新排列形成新分子得工艺过程。
14、催化重整得原料就是石脑油,以生产高辛烷值汽油为目得时一般采用80~180℃馏分。
15。
催化加氢裂化就是在催化剂及高氢压下加热重质油,使其发生一系列加氢与裂化反应,转变成航空煤油、柴油、汽油与气体等产品得加工过程.16、化工生产过程一般可概括为原料预处理、化学反应与产品分离与精制三大步骤。
化工工艺总结第一篇:化工工艺总结化学工艺学:是研究由化工原料加工成化工产品的化学生产过程的一门科学,内容包括生产方法的评估,过程原理的阐述,工艺流程的组织和设备的选用和设计。
焙烧:是将矿石,精矿在空气,氯气,氢气,甲烷,一氧化碳和二氧化碳等气流中,不加或配加一定的物料,加热至低于炉料的熔点,发生氧化,还原或其他化学变化的单元过程煅烧:是在低于熔点的适当温度下加热物料使其分解,并除去所含结晶水二氧化碳或三氧化硫等挥发性物质的过程平衡转化率:可逆化学反应达到化学平衡状态时,转化为目的产物的某种原料量占该种原料起始量的百分数浸取:应用溶剂将固体原料中可溶组分提取出来的单元过程烷基化:指利用取代反应或加成反应,在有机化合物分子中的N、O、S、C等原子上引入烷基(R--)或芳香基的反应。
羰基合成:指由烯烃,CO和H2在催化作用下合成比原料烯烃多一个碳原子醛的反应。
煤干馏:煤在隔绝空气条件下受强热而发生的复杂系列物化反应过程。
水煤气:以水蒸气为气化剂制得的煤气(CO+H2)精细化学品:对基本化学工业生产的初级或次级化学品进行深加工而制取的具有特定功能,特定用途,小批量生产的高附加值系列产品。
高分子化合物:指相对分子质量高达104~106 的化合物原子经济性:指化学品合成过程中,合成方法和工艺应被设计成能把反应过程中所用到的所有原料尽可能多的转化到产物中。
=目的产物分子量/所有产物分子量环境因子:=废物质量/目标产物质量1.化学工业的主要原料:化学矿,煤,石油,天然气2.化工生产过程一般可概括为原料预处理,化学反应,产品分离及精制。
3.三烯:乙烯,丙烯,丁二烯。
三苯:苯,甲苯,二甲苯。
4.石油一次加工方法为:预处理,常减压蒸馏。
二次加工方法:催化裂化,加氢裂化,催化重整,焦化等。
石油中的化合物可分为:烷烃,环烷烃,芳香烃。
5.天然气制合成气的方法:蒸汽转化法,部分氧化法。
主要反应为:CH4+H2O-----▶CO+3H2 和CH4+0.5O2-----▶CO+2H2 CH4+CO2----▶2CO+2H2 6.硫酸生产的原料有:硫磺,硫铁矿,有色金属冶炼炉气,石膏。
化工工艺学习总结篇一:化工工艺学总结化工工艺总结化工工艺学课程简介:《化工工艺学》是化工及相关专业一门重要技术基础课。
《化工工艺学》课程适应高等教育发展需要,以培养高等工程技术应用性人才为目标,以化工工艺为主线,突出“宽、精、新、用”思想,即强调口径宽阔、简明精练、新技术新工艺、应用型实用化,使课程体系更加科学化,教学内容更加合理化,便于我们熟悉和掌握生产第一线生产技术岗位所必需的基本理论和专业知识。
有机化工、无机化工、精细化工、高分子化工、煤化工、石油加工、生物化工等各方面理论和知识有机统一,形成完整的大化工系统知识体系,体现一定的科学性、先进性、完整性、充实性,奠定现代化工工艺技术基础,满足企业生产第一线必需的基本理论和专业知识。
课程教学的基本要求:重点放在分析和讨论生产工艺中反应、分离部分的工艺原理、影响因素、确定工艺条件的依据、反应设备的结构特点、流程的组织等。
同时,对工艺路线、流程的经济技术指标、能量回收利用、副产物的回收利用以及废物处理作一定的论述。
通过加强基础、面向实际、引导思维、启发创新,使我们掌握广博的化学工艺知识,培养理论联系实际的能力,为其将来从事化工过程的开发、设计、建设和科学管理打下牢固的化学工艺基础。
课程的教学内容、重点和难点:课程的教学内容主要集中在无机化工与有机化工典型工艺的分析讲解,我们通过掌握化学反应的基本原理,学会如何去安排化工生产过程。
重点讲解化工产品生产过程中的反应特性以及由此引发的生产方法、流程安排、工艺条件;难点在于如何引导我们开拓思维,通盘考虑能量综合利用、三废治理及后续产品生产。
课程各教学环节要求通过老师的课堂讲授,了解各产品生产的基本原理和方法,各生产工艺的流程安排、技术指标,设备的结构类型,能量的综合利用;掌握各产品生产的典型工艺流程,生产过程中的物料衡算、有关相图,化工生产中常用的三废治理方法。
化工工艺课程内容大纲:第一章合成氨原料气的制备(91班课程作业)一、本章的教学目的和要求:掌握固体燃料气化、烃类水蒸气转化、重油部分氧化等不同原料制气过程的基本原理,原料和工艺路线,主要设备和工艺条件的选择,消耗定额的计算和催化剂的使用条件。
化学工艺学试题一、填空题1.化工生产过程一般可概括为原料预处理、化学反应和产品分离及精制三大步骤2.化工中常见的三烯指乙烯、丙烯、丁二烯;三苯指苯、甲苯、二甲苯。
3.催化裂化汽油的辛烷值高于常压直馏汽油4.烯烃断裂反应断键位置5.为了充分利用宝贵的石油资源,要对石油进行一次加工和二次加工.一次加工方法为常压蒸馏和减压蒸馏;二次加工主要方法有: 催化重整、催化裂化、加氢裂化和烃类热裂解等.6.辛烷值是衡量汽油抗爆震性能的指标,十六烷值是衡量柴油自燃性能的指标。
7.能为烃的烷基化提供烷基的物质称为烷基化剂,可采用的有多种,工业上常用的有烯烃和卤代烷烃8.烃类裂解反应机理研究表明裂解时发生的基元反应大部分为自由基反应.大部分烃类裂解过程包括链引发反应、链增长反应和链终止反应三个阶段。
链引发反应是自由基的产生过程;链增长反应是自由基的转变过程,9.PONA10.裂解气含有的杂质气体11.急冷的目的12.裂解气分离装置组成13.最有利于生成乙烯的烃类是正构烷烃14.乙苯脱氢生产苯乙烯工艺采用稀释剂水蒸气的目的是降低苯乙烯的分压15.石油芳烃主要来源于石脑油重整生成油和烃裂解生产乙烯副产的裂解石油16.为了满足对芳烃纯度的要求,目前工业上实际应用的主要是溶剂萃取和萃取蒸馏来分离芳烃的馏分17.指芳烃分子中苯环上的一个或几个氢被烷基取代生成烷基的反应称为芳烃的烷基化反应18.在C8芳烃的分离过程中,邻二甲苯和对二甲苯主要采用精馏的方法进行分离19.芳烃转化反应所采用的催化剂主要有酸性卤化物和固体酸两大类20.目前生产苯乙烯的方法主要是乙苯脱氢法21.烷基芳烃分子中与苯环直接相连的烷基,在一定的条件下可以被脱去,此类反应称为芳烃的脱烷化22.芳烃主要有如下三方面来源:1.煤高温干馏;2.石脑油重整;3.裂解气油23. 芳烃的转化反应主要有异构化反应,歧化与烷基转移,烷基化反应和脱烷基化反应。
24. 工业上的C8芳烃的异构化是以不含或少含对二甲苯的C8芳烃为原料,通过催化剂的作用,转化成浓度接近平衡浓度的C8芳烃,从而达到增产对二甲苯的目的25. 两个相同芳烃分子在酸性催化剂的作用和下,一个芳烃分子上的侧链烷基转移到另一个芳烃分子上去的反应称为芳烃的歧化26. C8芳烃中的乙苯沸点最低,与关键组分对二甲苯的沸点仅差2。
化学工程与工艺技能总结范文示例1:化学工程与工艺技能总结范文在化学工程与工艺领域,我收获了许多宝贵的技能和经验。
在这篇文章中,我将总结这些技能,并分享我在学习和实践中所获得的见解。
首先,我学会了如何进行化学工程实验。
通过实验,我学会了使用各种实验设备和仪器,如滴定管、分光光度计和反应釜等。
我也学会了准确测量和记录实验数据,并根据实验结果进行分析和解读。
这些实验技能对于在化学工程中进行研究和开发工作至关重要。
其次,我熟悉了化学工程中常用的计算和仿真软件。
这些软件包括化工流程模拟软件、热力学计算软件和分子模拟软件等。
通过使用这些软件,我能够进行流程优化、设备设计和反应动力学模拟等工作。
这些软件使我能够更好地理解和预测化学过程中的各种现象和行为。
此外,我还掌握了化学工程设计和安全方面的知识。
在化学工程中,设计一个有效和稳定的工艺过程至关重要。
通过学习化学反应动力学、传热传质理论和工艺流程分析等知识,我能够设计出优化的工艺流程,并确保其符合工艺安全要求。
我也学会了如何评估和控制工艺过程中的风险,并制定相应的安全措施。
在实践中,我意识到了化学工程与环境保护、可持续发展之间的密切关系。
我学会了如何设计和操作绿色化学工艺,以减少对环境的影响。
我也了解了可持续发展的原则和方法,并在自己的工作中应用它们。
这使我更加意识到在化学工程与工艺中的可持续性问题,并寻求解决方案。
总的来说,化学工程与工艺技能的学习为我今后在化学工程领域的发展奠定了坚实的基础。
通过实验技能、计算和仿真软件的应用,化学工程设计和安全方面的知识以及对环境保护和可持续发展的关注,我相信我能够在该领域中做出积极的贡献。
我会继续不断学习和提升我的技能,以应对化学工程与工艺领域不断变化的需求和挑战。
示例2:化学工程与工艺技能总结范文化学工程与工艺技能是现代工程领域中非常重要的一个专业技能。
在这篇文章中,我将总结我在化学工程与工艺技能方面所学到的知识和经验,并展望未来的发展方向。
化学工艺学学习总结第一篇:化学工艺学学习总结化学工艺学学习总结摘要本文主要是关于芳烃转化过程的综述还有学习心得。
主要从芳烃的来源与生产方法,芳烃的转化,C8芳烃的分离三个方面进行总结。
了解这个课程的研究目的,研究范畴还有研究作用。
了解到关于化工生产原料资源的加工开发,生产工艺流程,反应条件的影响等化学工艺基础。
关键词芳烃转化芳烃生产芳烃分离芳烃的主要来源于焦煤和石油。
由于各国的资源不同,裂解汽油生产的芳烃在石油芳烃中比重也不同。
芳烃裂解的主要目的是为了得到三苯(苯、甲苯、二甲苯),乙苯、异丙苯、十二烷基苯和萘。
这些产品广泛应用于合成树脂、合成纤维、合成橡胶、合成洗涤剂、增塑剂、染料、医药、农药、炸药、香料、专用化学品工业。
化工行业会根据市场需求的变化,选择生产不同的产物,来适应市场需求。
芳烃的生产可分为焦化芳烃生产和石脑油芳烃生产。
前者是在高温作用下,煤在焦炉碳化室内进行干流是,煤质发生一系列的物理化学变化,生成大量焦炭外,还副产粗煤气,粗苯,煤焦油。
粗煤气经初冷、脱氨、脱萘、终冷后,进行初苯回收,再对初苯进行分馏,从而获得有用的芳烃。
石脑油芳烃生产可分为三种方法,催化重整生产芳烃、裂解汽油生产芳烃、轻烃芳构化和重芳烃轻质化。
催化重整芳烃包括环烷脱氢、五元环异构脱氢、烷烃异构加氢裂解等反应需要用热稳性好的贵金属元素做成的催化剂,在425℃~525℃进行。
裂解汽油生产芳烃需要对裂解油进行预处理除去C5馏分,再对其进行加氢。
一段加氢将使易生胶的二烯烃加氢转化为单烯烃以及烯基芳烃转化为芳烃。
二段加氢在较高温条件使单烯烃饱和,并脱除硫氧氮等有机化合物。
轻烃芳构化是利用世界过剩的低价液化石油气(丙烷、丁烷)为原料,经催化脱氢、齐聚、环化和芳构化生产芳烃。
重芳烃轻质化主要利用重整生成油、裂解汽油和焦化器由中的C9重芳烃来生成增塑剂、树脂等产品。
由催化重整和加氢精制的裂解汽油得到的都是芳烃与非芳烃的混合物,由于他们的碳数相近,容易形成共沸物,一般的蒸馏方法难以将其分离。
中职国培化学工艺专业课学习总结为了使中职骨干教师在化学工艺专业教学理论水平和教育科研能力等方面有明显提高,发挥其在中等职业学校教育科研中的骨干带头和示范作用,推动中等职业学校教育质量的全面提高,从4月1日起山西大学培训基地为我们安排了为期一个月的“化学工艺专业知识与技能训练”培训。
本部分培训以中等职业学校专业骨干教师国家级培训实施方案为依据,把专业基础教育课程培训列为核心内容,充分体现科学性、合理性、前瞻性和完整性特点,以达到专业教育质量的标准化和规范化要求,培训内容共包括个十四个讲座和十四项实验实训。
其中十四个讲座分别是:超重力化工过程与技术、化学工程与技术学科发展与我国的化学工业、浅谈药物化学中合成工艺及相关研究进展、混凝土外加剂合成及其应用、工业催化概述、山西三维集团生产工艺、新型煤化工技术在中国的发展、煤制甲醇工艺、绿色化工、甲醇、苯下游高附加值精细化工、表面活性剂应用进展、压力容器基础及应用实例、染料敏化太阳能电池、化学化工与环境。
十四项实验实训项目为:高效液相色谱法测定饮料中的咖啡因、荧光分光光度法测定诺氟沙星片的含量、混合物的气相色谱定性定量分析、综合热分析法测草酸的脱水分解曲线以及用非等温方法计算各步反应的活化能、流体流动阻力的测定、筛板精馏塔实验装置、蒸汽-空气给热系数测定、流体流动阻力的测定、离心泵特性曲线测定、红外光谱法鉴定有机化合物结构、雷诺演示实验、恒压过滤验、连续流动的微型催化反应器评价催化剂活性、检验水当中重金属含量。
山西大学化工学院针对化工工艺专业特点为我们精心安排各门课程,山西大学化工学院在煤化工及催化化学发展研究上,在全国具有领先的地位。
煤化工在青海是一个新兴产业,在柴达木,德令哈经济开发区像青海庆华集团焦化厂等许多煤化工企业在哪里建厂,他们急需这方面的技术工人。
为了适应区域经济的发展,省上要求我们中职学校要开设这方面的课程。
这学期刚开学,青海省马省长来我校参观考察,我亲耳听到省长询问我们学校有没有开设煤化工专业。
化学工程与工艺课程总结模板有机化学课程总结模板【化学工程与工艺课程总结模板】一、引言化学工程与工艺课程是一门涉及化学原理、工艺设计、设备操作等方面知识的学科,通过本学期的学习,我对化学工程与工艺有了更深入的了解。
本文将对我在化学工程与工艺课程中所学到的知识进行总结,并提出自己的收获和感悟。
二、知识概述在本学期的化学工程与工艺课程中,我系统学习了有机化学的基本知识和工艺设计的基本原理。
这些知识点包括:1. 有机化学基础:有机化学的概念、有机物的命名与结构、有机反应类型与机理等;2. 化学反应工程:反应动力学、热力学原理、反应器设计与操作等;3. 质量传递与喷雾:质量传递的基本概念、传递机理、气液传递与气固传递;4. 分离工程:蒸馏、萃取、结晶、干燥等常见的分离技术与设备;5. 化工过程控制:传统控制方法、先进控制方法、过程模拟与优化等。
三、学习收获通过本学期的学习,我获得了以下几个方面的收获:1. 知识掌握:通过课上的学习和课后的复习,我对有机化学的基础知识有了更深入的理解。
我能够准确地命名和解析有机物的结构,理解有机反应的类型与机理,并能够运用这些知识解决实际问题。
2. 实践应用:在实验课程中,我学会了使用实验设备操作有机反应过程,掌握了一些有机合成的基本技术。
这些实验经历让我对课堂知识的理解更加深入,并培养了我在化学实验中的操作技能。
3. 解决问题的能力:在课程的作业和考试中,我遇到了一些难题。
通过学习和思考,我学会了独立思考问题、分析问题的能力,并能够寻找合理的解决方法。
这提高了我解决实际工程问题的能力。
四、感悟与展望在学习化学工程与工艺课程的过程中,我深刻感受到了化学工程与工艺的重要性和广泛应用。
我了解到化学工程与工艺在诸多领域发挥着重要作用,如石油化工、药物制造和日用品生产等。
同时,我也认识到该学科对于环境保护和工业安全的意义重大,需要我们工程师在实践中不断探索和创新。
未来,我将继续深入学习化学工程与工艺相关知识,提高自身的综合素质和能力。
化学工程与工艺实习总结化学工程与工艺实习总结2篇化学工程与工艺实习总结1一、实习的目的和意义“化学工程与工艺专业”是工科专业,是与实际生产联系紧密的一个专业。
所以我们在本科的四年的学习中,不仅要掌握化工相关的理论知识,跟要理论联系实践,逐渐接触实际的工业生产过程,为将来毕业参加工作打下坚实的基础。
这次的认识实习课正是我们面向实践的一地步,让我们实地参观常见机械,了解电工知识和技能,了解工件生产的基本流程。
大二的时候我们已经学习了《化工导论》和《画法几何与工程制图》这两门课,对常见的机械零件(如内外螺纹紧固件、轴、齿轮等)有了一定的了解,但仅仅是停留在书本图片上的认知。
此次去材料所的认识实习,让我们对机械设备、机械零件有了立体的、感性的认识。
认识实习的目的是理论联系实际,使课堂的理论教学与生产实践中的机械设备密切结合,使学生加深理解已学过的机械设计方面的基本理论知识;在实习中初步培养学生对机件和机械的感性认识;增强学生读懂复杂图纸的能力;为提高学生的工程设计能力,为下一步专业课程的全面学习打下良好基础。
二、实习的收获虽然我们再之前的课上了解过相关知识,但毕竟是纸上谈兵。
这次认识实习课程,让我了解了常用机床类型,金属切削加工的过程,对车刀的结构和形状、车刀的磨制有课一定的认识;了解了钳工操作的特点和作用,认识了锯、丝攻和攻丝等基本钳工操作工具。
通过这次认识实习,我亲眼看到了机械设备,亲眼看到了机械零件的加工过程,使我对机械设备、机械零件有了立体的、感性的认识,加深了对《画法几何与工程制图》课程内容的理解和掌握,有利于我今后读懂复杂图纸,有利于提高我的工程设计的能力。
四、实习所得到的感想短短不到两个小时的认识实习,让我感觉意犹未尽。
这次的认识实习,让我对我是一名工科学生有了实感,让我懂得了作为一名工科学生,仅仅是学好课本知识是远远不够的。
工科是一门实践性很强的,面向生产面向实际应用的一门学科,我们不仅要掌握理论知识,更要理论联系实践,真实地了解实际的工业生产过程,才能学以致用,成为一名合格的工科学生。
化学工艺学学习总结
摘要本文主要是关于芳烃转化过程的综述还有学习心得。
主要从芳烃的来源
与生产方法,芳烃的转化,C8芳烃的分离三个方面进行总结。
了解这个课程的研究目的,研究范畴还有研究作用。
了解到关于化工生产原料资源的加工开发,生产工艺流程,反应条件的影响等化学工艺基础。
关键词芳烃转化芳烃生产芳烃分离
芳烃的主要来源于焦煤和石油。
由于各国的资源不同,裂解汽油生产的芳烃在石油芳烃中比重也不同。
芳烃裂解的主要目的是为了得到三苯(苯、甲苯、二甲苯),乙苯、异丙苯、十二烷基苯和萘。
这些产品广泛应用于合成树脂、合成纤维、合成橡胶、合成洗涤剂、增塑剂、染料、医药、农药、炸药、香料、专用化学品工业。
化工行业会根据市场需求的变化,选择生产不同的产物,来适应市场需求。
芳烃的生产可分为焦化芳烃生产和石脑油芳烃生产。
前者是在高温作用下,煤在焦炉碳化室内进行干流是,煤质发生一系列的物理化学变化,生成大量焦炭外,还副产粗煤气,粗苯,煤焦油。
粗煤气经初冷、脱氨、脱萘、终冷后,进行初苯回收,再对初苯进行分馏,从而获得有用的芳烃。
石脑油芳烃生产可分为三种方法,催化重整生产芳烃、裂解汽油生产芳烃、轻烃芳构化和重芳烃轻质化。
催化重整芳烃包括环烷脱氢、五元环异构脱氢、烷烃异构加氢裂解等反应需要用热稳性好的贵金属元素做成的催化剂,在425℃~525℃进行。
裂解汽油生产芳烃需要对裂解油进行预处理除去C5馏分,再对其进行加氢。
一段加氢将使易生胶的二烯烃加氢转化为单烯烃以及烯基芳烃转化为芳烃。
二段加氢在较高温条件使单烯烃饱和,并脱除硫氧氮等有机化合物。
轻烃芳构化是利用世界过剩的低价液化石油气(丙烷、丁烷)为原料,经催化脱氢、齐聚、环化和芳构化生产芳烃。
重芳烃轻质化主要利用重整生成油、裂解汽油和焦化器由中的C9重芳烃来生成增塑剂、树脂等产品。
由催化重整和加氢精制的裂解汽油得到的都是芳烃与非芳烃的混合物,由于他们的碳数相近,容易形成共沸物,一般的蒸馏方法难以将其分离。
在工业上主
要运用溶剂萃取法从宽馏分中分离苯、甲苯、二甲苯;用萃取蒸馏法从芳烃含量高的窄馏分中分离纯度高的单一芳烃。
芳烃转化是为了解决生产中原料供需不平衡的状况,通过异构化、歧化与烷基转移、烷基化合脱烷基化等反应,获得生产需要的原材料。
使用的催化剂主要为酸性卤化物和固体酸。
芳烃的脱烷基化反应将烷基芳烃分子中与苯环直接相连的烷基在一定条件下脱去。
在热力学上分析可以知道,当温度不太高,氢分压较高时可以进行得比较完全。
但是时间足够长,会深度加氢裂解成甲烷,所以无法在热力学上抑制副反应。
从动力学上,温度不宜太低不宜太高,氢分压和氢气对甲苯的摩尔比较大,能防止结焦、对加氢脱烷基反应都比较有利,但对抑制加氢副反应的发生是不利的。
脱烷基化在工业上生产有两种方法,分别是催化脱烷基制苯和甲苯热脱烷基制苯。
工业上采用较多的是hydeal法催化脱氢制苯。
新鲜原料、循环物料、新鲜氢气和循环氢气经加热炉加热到所需温度后进入反应器反应,气体产物经冷却器冷却后对液气混合物进行闪蒸分离,部分氢气直接返回反应器。
一部分作原料,其余送到纯化装置除去轻质烃。
液体芳烃经稳定塔除轻质烃和白土塔除去烯烃后送至苯精馏塔,塔顶分的产品苯,重馏分送再循环塔循环使用。
另外pyrotol法催化脱氢制苯的特点是能将裂解汽油中的芳烃全部转化为苯。
甲苯热脱烷基制苯主要有HAD法,这种方法与催化加氢脱甲基流程相似,但是他在柱塞流式反应期的六个不同位置加入分馏塔闪蒸出来的氢,从而控制反应温度,因此副产物较少,重芳烃产率较低。
不过反应温度较高,需要合理利用热量。
芳烃歧化是指两个相同芳烃分子在酸性催化剂作用下,一个芳烃分子上的侧链烷基转移到另一个芳烃分子上去的反应。
烷基转移反应是指两个不同芳烃分子之间发生烷基转移的过程。
副反应主要是二甲苯二次歧化,产物与原料或副产物的烷基转移,甲苯的脱烷基和生成稠环芳烃。
生产中必须借助催化剂,原料的杂质含量、C9芳烃的含量,氢烃比、液体空速对反应也有较大影响。
工业上主要有二甲苯增产法(Xylene-Plus法)、Tatoray法,既可用于歧化,又可用于烷基转移;低温歧化法(LTD法)专门用于歧化。
C8芳烃的异构化是以不含或少含对二甲苯的C8芳烃为原料,通过催化剂的
作用,转化成浓度接近平衡浓度的C8芳烃,从而达到增产对二甲苯的目的。
C8芳烃异构化反应的热效应很小,因此温度对平衡常数的影响不大。
动力学上,曾
在SiO
2- Al
2
O
3
催化剂上对异构化过程的动力学进行研究,与连串式异构反应历
程相符,即邻二甲苯可逆生成间二甲苯可逆生成对二甲苯。
乙苯异构化反应中以
Pt/Al
2O
3
为催化剂,研究乙苯的气相临氢异构化,得知其异构化速度比二甲苯慢,
而且温度影响显著。
整个异构化过程包括加氢、异构和脱氢等反应。
低温有利于加氢,高温有利于异构和脱氢,故只有协调好各种关系才能使乙苯异构化取得较好的效果。
二甲苯异构化的工业方法分为临氢和非临氢两种。
临氢异构广泛采用贵金属作催化剂,因为能使乙苯转化成二甲苯,对原料适应性强,原料不需进行
乙苯分离。
非临氢异构采用的催化剂一般为无定性的SiO
2- Al
2
O
3
,但选择性较差,
高温反应下积碳快,不能使乙苯转化为二甲苯。
C8芳烃异构化的新技术(MHAI 工艺)据称是当今最经济的二甲苯异构工艺。
特点是产物中对二甲苯浓度超过热力学平衡值,减少了二甲苯回路的循环量。
芳烃的烷基化是芳烃分子中苯环上的一个或几个氢被烷基所取代而生成烷基芳烃的反应。
工业上主要用于生产乙苯、异丙苯和十二烷基苯等。
较宽的温度范围中苯烷基化反应在热力学上都是有利的。
当温度过高才有明显的逆反应。
工业上,最佳操作点是乙苯收率尽量大,苯的循环量和多乙苯的生成量尽可能少,而且要用酸性催化剂进行催化。
乙苯的生产可用液相烷基化法和气相烷基化法不论工艺流程上有何差异,反应机理基本是一致的。
苯和乙烯在催化剂存在下反应生成乙苯。
异丙苯生产工艺有固体磷酸法、非均相三氯化铝法、均相三氯化铝法。
C8芳烃(主要为三种二甲苯和乙苯的混合物)的分离技术难点在于间二甲苯和对二甲苯的分离。
邻二甲苯沸点最高,可用精馏法分离。
乙苯沸点最低,但与关键组分对二甲苯的沸点仅差2.2℃,精馏分离较困难,但也可选用络合萃取法或者吸附法。
对二甲苯和间二甲苯沸点只差0.75℃,难于用精馏方法分离。
工业上可用深冷结晶分离法、络合分离法和模拟移动床吸附分离法。
深冷结晶法需要深冷至-60~-75℃,熔点最高的对二甲苯首先被结晶出来,但是不可避免包含一部分C8芳烃混合物所以工业上多采用二段结晶。
络合萃取法利用一些化合物与二甲苯异构体形成配位化合物的特性达到分离效果。
其中最成功的是日本的MGCC法,用BF
3
作为配位剂,溶液上层为烃层,下层为HF层,是分离过程大为简化,是有效分离间二甲苯的唯一工业化方法。
但缺点是HF有毒,且有强腐蚀性。
吸附分离法利用固体吸附剂吸附二甲苯异构体的能力不同而进行分离。
吸附剂要求价格低廉易得,性质稳定,与C8芳烃沸点有较大差别。
模拟移动床法的工作原理是模拟移动床中固体吸附剂不动,液体对其做相对运动,并反复进行吸附和脱附的传质过程,要求被分离物质对吸附剂的吸附能力要有一定差异。
主要有Parex法,Aromax法和MX-Sorbex工艺。
芳烃在化工原料中占有重要地位,其生产技术发展受到广泛重视。
芳烃生产技术主要发展趋势为扩大芳烃原料来源,工艺革新提高技术水平,就适用性和新用途对产品进行结构调整,对新技术发挥更大作用,开发新技术和改进老技术。
关于工艺学的学习,不仅仅是在于课堂上老师所教授的,还有与组员共同合作制作学习内容的PPT,加深了对书本知识的印象与理解,将上课所忽略掉的细微知识也在制作PPT的过程中通过网络,相关书本了解到了。
这次这个关于学习内容的总结,又重新再回忆查找书本,补全了在做PPT时没有认真细看的而忽略的课本知识。
此时,我能深刻体会到,知识不是看一遍就可以牢记的东西,需要反复看,反复记忆,还要归纳总结,才能真正变成自己的。
参考文献
[1]米镇涛,化学工艺学(第二版),化学工业出版社,2004
[2]孙宗海,瞿国华,张溱芳.石油芳烃生产工艺与技术.北京:化学工业出版社,1986
[3]高荣增,顾兴章.化工百科全书.第四卷,135~149,北京:化学工业出版社,1993
[4]周立芝,王杰.化工百科全书.第三卷,881~899,北京:化学工业出版社,1993
[5]柴国梁.中国化工信息.1998.45:6
[6]库咸熙等.炼焦化工产品回收与加工.北京:冶金工业出版社,1985
[7]王兆熊等.炼焦产品的精制和利用.北京:化学工业出版社,1989
[8]华东化工学院等.基本有机化工工艺学(修订版).北京:化学工业出版社,1990。