涌水量预测计算方法
- 格式:doc
- 大小:30.00 KB
- 文档页数:6
涌水量预测计算方法一、前言在隧道建设施工中,涌水灾害是隧道建设中备受关注的问题之一。
它不仅影响隧道建设的正常施工,且会波及到隧道建成后的安全运营。
因此,如何较为准确地预测隧道涌水量的大小,为隧道施工制定合理的防排水措施提供依据,成为众多岩土工程学者日益关注的课题之一。
隧道涌水的预测首先是从定性研究开始的,最早的预测只是通过查明隧道含水围岩中地下水的分布及赋存规律,分析隧道开挖的水文地质及工程地质条件,依据物探、钻探、水化学及同位素分析、水温测定等手段,确定地下水的富集带或富集区以及断裂构造带、裂隙密集带等可能的地下水涌水通道,并且用均衡法估计隧道涌水量的大小。
随着技术水平和施工要求的提高,基于定性分析的隧道涌水预测研究,发展成为隧道涌水的定量评价和计算,主要体现在隧道涌水位置的确定与涌水量预测两个方面。
在隧道涌水位置的确定方面,人们通过隧道围岩水文地质及工程地质条件的定性分析,发展了随机数学方法和模糊数学方法。
在涌水量预测方面,人们根据隧道环境地下水所处地质体的不同性质、水文地质条件的复杂程度、施工的方式及生产的要求等因素,提出了隧道涌水量计算的确定性数学模型和随机性数学模型两大类方法。
岩溶区隧道涌水研究必须要注重水文地质条件的研究, 因为每一种方法、公式的提出都是基于地质条件的研究基础之上的。
岩溶区地质条件一向比较复杂, 从隧道施工期发生的比较严重的涌水事件来看,岩溶区易发生涌水地质条件可以分以下四类:⑴向斜盆地形成的储水构造;⑵断层破碎带、不整合面和侵入岩接触面;⑶岩溶管道、地下河;⑷其他含水构造、含水体。
以上只从宏观上列举了一些可能发生严重涌水的地质条件, 这是远远不够的, 对隧道涌水条件应进行详细研究, 这是其他隧道涌水研究工作的基础,必须予以重视。
[1]二、岩溶区隧道涌水量预测方法目前涌水量预测计算方法很多, 主要有以下几种:1.进似方法这种方法主要包括涌水量曲线方程(一般称Q-S曲线)外推法和水文地质比拟法2 种。
矿坑涌水量预测计算规程矿井的涌水问题是矿业生产中重要的安全生产问题,涌水量的预测是矿井开发的必要工作之一。
为了保证矿井生产活动的安全和稳定,必须对矿井的涌水量进行准确的预测和控制。
矿坑涌水量预测计算规程是依据岩层、水文、水文地质和矿坑开采等多种因素进行分析,预测矿井涌水量的工作规程。
下面,我们将对矿坑涌水量预测计算规程进行详细的解析。
1.矿井地质条件分析在矿坑涌水量预测计算中,首先要对矿井地质条件进行分析。
具体方法是通过矿井的工作面进尺变化情况及勘查资料、地质钻孔数据和地下水位等资料进行综合分析,了解矿坑的岩性、构造、放矿厚度、断层构造等地质条件。
通过对矿井地质条件的分析,可以初步判断矿坑内部会涌水的位置和可能发生涌水的规模。
2.矿坑水文地质条件分析在矿坑涌水量预测计算中,水文地质条件分析是非常重要的。
具体方法是通过分析矿坑水文地质条件,了解矿坑的地下水流动规律、水位、水压变化规律等信息。
此外,还需要排查可能对矿井地下水情况产生影响的因素,比如降雨、相邻井下采掘工作、井下矿山排水系统运行情况等。
通过对矿坑水文地质条件的综合分析,可以更加准确地预测矿井的涌水量。
3.矿坑开采影响分析在矿坑涌水量预测计算中,矿坑的开采影响分析也是必不可少的。
具体方法是通过分析矿坑的采掘方法、采煤面的进退情况、采空区的变化情况等信息,了解矿坑的开采情况对矿井涌水量的影响。
对于正在开采的矿坑,还需要对开采过程中引起的变形、破坏等进行监测,避免因矿坑开采导致的意外事故发生。
4.涌水预测计算与分析在矿坑涌水量预测计算中,通过以上分析,可以对矿井的涌水量进行预测计算。
具体方法是根据矿井的地质、水文地质和开采情况,综合使用数学统计方法和经验公式,预测矿井的涌水量。
预测涌水量时要考虑到不同时间段内的降雨情况、上一阶段矿井涌水的情况,矿井开采的进展情况等因素,提高预测结果的准确性。
5.涌水量控制方案制定通过对矿坑涌水量的预测计算,可以制定出涌水量控制方案,包括采取何种措施阻止涌水、如何进行矿井排水等。
相关分析法(一)原理与应用条件相关分析是根据涌水量与主要影响因素之间相关关系的密切程度建立回归方程,利用抽水试验或开采初期的疏干资料,预测矿坑涌水量或外推开采后期下水平的涌水量。
其原理已在供水中介绍。
根据实际资料的统计,多元复相关预测远比单相关效果好,其回归方程表达的内容丰富,可反映除降深外的各种影响因素。
它的应用条件与Q —s 关系方程类同,但对原始数据的采集有严格要求:1代表性:(规范)要求不少于一个水文年(包括丰、平、枯季节)的动态观测数据,同时数据(择本)量不少于30个;2一致性:指应与预测对象上条件相一致;3独立性与相关性:即多自变量有独立的变化规律,相互间关系不大;而与涌水量之间均存在密切的相关关系,(规范)要求相关系数不低于0.7。
(二)实例与计算方法1. 利用勘探阶段抽水试验资料预测矿坑涌水量如广东沙洋矿通过在勘探阶段设计相距6m 的两个抽水孔和十余个不同距离的观测孔组成的群孔抽水试验,取得了复相关计算所需的涌水量Q 与井径r (是将距抽水孔不同距离观测孔的位置概化为疏干状态下的坑道系统不同面积的作用半径)、水位降S (即不同作用半径的水位降,以模拟疏干水位降)有关资料,(见表1)通过求参建立了复相关幂函数预测方程:536.11843.3189.11Sr Q其复相系数达0.9468,复相关机误仅0.0721,完全可用于未来矿山各设计水平与面积的矿坑涌水量预测。
经实际排水资料检验,预测误差偏小38~56%,主要与开采导函大量地面岩溶坍陷有关。
2. 利用矿山观测资料外推预测可充分考虑矿坑涌水量的增长和各项生产因素间的关系,并根据它们之间的密切程度来建设涌水量方程。
在原苏联顿巴斯煤矿的某些涌水量预测中,首先,在30个矿井中建立了320个观测点,获得了涌水量(Q 2)与各生产因素(包括矿产量P 0、开采深度H 0、开采面积F 0、生产时间T 0等)之间的相关关系,以及其密切程度,见表2。
第三节、隧道洞室涌水量预测一、水文地质参数计算为取得计算洞室涌水量的水文地质参数,进行钻孔提(抽)水试验,利用提水试验和抽水试验结果,采用地下水动力学方法及相关计算公式,大部分按潜水非完整井计算出提水的渗透系数K 抽水,另外根据提水后的恢复水位与时间的关系,即s~t 关系计算出恢复的渗透系数K恢复,并参照当地岩性的渗透系数K ,将该三种方法求得的渗透系数K 值并结合钻探过程中冲洗液的消耗量,岩体的破碎性、岩性的矿物组成及充填胶结情况,给定一个建议的渗透系数K 值。
求得水文地质参数,其提水时K 值计算公式如下:K=22)lg (lg 733.0hH r R Q --ω 其中:K ——渗透系数(m/d )。
Q ——出水量(m 3/d )。
R ——影响半径(此值根据《工程地质手册》第二版表9-3-12查得) r ω——钻孔半径(m )。
H ——自然情况下潜水含水层的厚度(m )。
h ——抽水稳定时含水层的厚度(m )。
恢复水位计算渗透系数K 值公式如下:()212ln 25.3S St r H r K ωω+=(完整井)其中:K ——渗透系数(m/d )。
r ω——钻孔半径(m )。
H ——自然情况下潜水含水层的厚度(m )。
S 1——抽水稳定时的水位降深(m )。
S 2——地下水恢复时间t 后水位距离静止水位的深度(m )。
t ——水位从S 1恢复到S 2的时间(d )。
具体计算过程及计算结果见附表5:钻孔提(抽)水试验渗透系数(恢复水位)计算成果表。
二、洞室涌水量的估算方法 (一)、洞室涌水量的补给来源为了更准确预测隧道洞室涌水量,通过野外水文地质调绘,并分析洞室地下水的补给来源,含水岩性的空间分布、富水性,结合钻孔对地下深处地质情况的揭露,参考物探测井成果,我们认为隧道洞室涌水量的补给来源由以下几部分组成:a .洞室影响范围内汇集的大气降水渗漏补给量;b .洞室附近地下水的补给量(包含隧道上行线、下行线间含水层的静储量及洞室两侧地下水的侧向补给量);c .地表水流过洞室上方时的渗入补给量;d .地表水通过节理裂隙、断层破碎带给洞室的侧向补给量;e .断层破碎带导入洞室的地下水量。
解析法(一)解析法的应用条件解析法是根据解析解的建模要求,通过对实际问题的合理概化,构造理想化模式的解析公式,用于矿坑涌水量预测。
具有对井巷类型适应能力强、快速、简便、经济等优点,是最常用的基本方法。
解析法预测矿坑涌水量时,以井流理论和用等效原则构造的“大井”为主,后者指将各种形态的井巷与坑道系统,以具有等效性的“大井”表示,称“大井”法.因此说:矿坑涌水量计算的最大特点是“大井法”与等效原则的应用,而供水则以干扰井的计算为主。
稳定井流解析法:应用于矿坑疏干流场处于相对稳定状态的流量预测。
包括①在已知某开采水平最大水位降条件下的矿坑总涌水量;②在给定某开采水平疏干排水能力的前提下,计算地下水位降深(或压力疏降)值。
非稳定解析法:用于矿床疏干过程中地下水位不断下降,疏干漏斗持续不断扩展,非稳定状态下的涌水量预测.包括:①已知开采水平水位降(s)、疏干时间(t),求涌水量(Q);②已知Q、s,求疏干某水平或漏斗扩展到某处的时间(t);③已知Q、t,求s,以确定漏斗发展的速度和漏斗范围内各点水头函数隨时间的变化规律,用于规划各项开采措施。
在勘探阶段,以选择疏干量和计算量最大涌水量为主。
(二)计算方法如上所述,应用解析法预测矿坑涌水量时,关键问题是如何在查清水文地质条件的前提下,将复杂的实际问题概化。
它可概括为如下三个重要方面:分析疏干流场的水力特征,合理概化边界条件,正确确定各项参数.1。
分析疏干流场的水力特征矿区的疏干流场是在天然背景条件下,迭加开采因素演变而成。
分析时,应以天然状态为基础,结合开采条件作出合理概化。
(1)区分稳定流与非稳定流矿山基建阶段,疏干流场的内外边界有受开拓井巷的扩展所控制,以消耗含水层储量为主,属非稳定流;进入回采阶段后,井巷输廊大体已定,疏干流场主要受外边界的补给条件控制,当存在定水头(侧向或越流)补给条件时,矿坑水量被侧向补给量或越流量所平衡,流场特征除受气候的季节变化影响外,呈现对稳定状态.基本符合稳定的“建模”条件,或可以认为两者具等效性;反之,均属非稳定流范畴。
隧道涌水量的预测摘要:通过对隧道工程地质勘察,以不同方法计算的隧道涌水量,经分析对比,确定隧道最大涌水量,对隧道的设计、施工起到超前预防作用。
关键词:隧道涌水量,水文地质试验,渗透系数,汇水面积,降水入渗系数1前言隧道涌水量的计算,是工程地质勘察过程中非常重要的一环,尤其对于长-特长隧道,其数值的大小,直接关系到设计、施工所采取的涌、排水措施。
本文通过工程地质勘察过程中不同隧道涌水量计算的实例,讨论了隧道涌水量预测过程中需要注意的几个问题。
2水文地质试验水文地质试验是隧道涌水量计算的关键一环,应根据水文地质条件和场地条件,选用抽水、压水、注水及提水试验等方法。
下面仅就各种试验时应注意的问题介绍如下:2.1抽水试验1、稳定流抽水试验的水位降深次数,一般进行3次,当勘探孔的出水量较小或试验时出水量已达到极限时,水位降深可适当减少,但不得少于2次。
2、当出水量和动水位与时间关系曲线只在一定范围内波动,且没有持续上升或下降趋势时,判断为抽水试验稳定。
2.2压水试验1、压水试验宜采用自上而下的分段压水方法,同一工程中试验段长度应保持一致。
2、试验段长度一般为5m,最长不得超过10m。
3、压水试验宜采用3个压力阶段,一般采用0.3Mpa、0.6 Mpa、1.0 Mpa。
4、压水试验中,每10min宜观测一次压水流量,每一压力阶段在流量达到稳定后延续1.5-2.0h即可结束。
2.3注水试验注水试验一般采用钻孔常水头注水法。
1、采用清水向孔内注水,当水位升高到设计的高度后,控制水头、水量保持稳定。
2、注水试验应进行3次水位升高,每次水位升高宜采用2、4、6m,间距不宜小于1m。
2.4提水试验提水试验采用定水位降深法。
1、单位时间内提水次数应均匀,提出的水量大致相等,并达到水位水量相对稳定。
2、水位水量每隔30min测定一次,计算出出水量,出水量波动值为±10%,水位波动范围10-20cm,即为稳定。
3、提水试验延续时间,应在水位、水量相对稳定后在进行4h即可结束。
二、涌水量的预测拟采用大气降水渗入量法对隧道进行涌水量计算1.大气降水渗入法(DK291+028-DK292+150段)Q = 2.74*α*W*AQ—采用大气降水渗入法计算的隧道涌水量(m3/d)α—入渗系数W—年降雨量(mm)A—集水面积(km2)参数的选用:α—入渗系数选用0.16;W—隧址多年平均降雨量为508.7m,最大年降雨量为1496.88mm(月平均最大降雨量×12)。
A—集水面积:根据1:10000地形平面图,含水岩组分布面积圈定为0.33km2最大涌水量为:Q= 2.74*α*W*A = 2.74*0.16*1496.88*0.33= 216.56(m3/d),平均每延米每天涌水量为:0.19(m3/m.d)。
正常涌水量为:Q= 2.74*α*W*A= 2.74*0.16*508.7*0.33=73.59(m3/d),平均每延米每天涌水量为:0.07(m3/m.d)。
2. 大气降水渗入法(DK292+150-DK293+440段)Q = 2.74*α*W*AQ—采用大气降水渗入法计算的隧道涌水量(m3/d)α—入渗系数W—年降雨量(mm)A—集水面积(km2)参数的选用:α—入渗系数选用0.18;W—隧址多年平均降雨量为508.7m,最大年降雨量为1496.88mm(月平均最大降雨量×12)。
A—集水面积:根据1:10000地形平面图,含水岩组分布面积圈定为0.79km2最大涌水量为:Q= 2.74*α*W*A = 2.74*0.18*1496.88*0.79= 583.23(m3/d),平均每延米每天涌水量为:0.45(m3/m.d)。
正常涌水量为:Q= 2.74*α*W*A = 2.74*0.18*508.7*0.79= 198.2(m3/d),平均每延米每天涌水量为:0.15(m3/m.d)。
3.大气降水渗入法(DK293+440- DK293+870段)Q = 2.74*α*W*AQ—采用大气降水渗入法计算的隧道涌水量(m3/d)α—入渗系数W—年降雨量(mm)A—集水面积(km2)参数的选用:α—入渗系数选用0.12;W—隧址多年平均降雨量为508.7mm,最大年降雨量为1496.88mm(月平均最大降雨量×12)。
涌水量计算(1)解析法根据井田水文地质条件和矿井主要充水因素,利用解析法进行矿坑涌水量预测时,直接充水含水层太原组灰岩岩溶水。
1)太原组灰岩岩溶水预测2(2S?M)M?h0 Q ?BK (5-1)R R ?10SK (5-2)式中:Q——预测矿坑涌水量,m3/h;B(m) 3200 K(m/d) 0.4427 M(m) 9.5 S(m) 169 R(m) 1124.45 Q(m3/h) 163.82 S——水位降低值,m; K——渗透系数,m/d;M——含水层厚度,m; B——进水廊道长度,m; R——影响半径,m;K取抽水实验资料0.4427K2、10+11号煤层矿井涌水量预算(大井法)开采10+11号煤层布置一个工作面,工作面宽180 m,推进长度1200m,因此,将矩形工作面(长a=1200m,宽b=180m)看做一个大井,使用大井法预算矿井涌水量:(2H?M)M计算公式为:Q?1.366KLgR?Lgr式中:Q%~矿井涌水量(m3/d) K%~渗透系数(m/d) H%~水头高度(m) M%~含水层厚度(m) r%~大井半径(m),r=ηa?b4R0%~引用半径(m),R0=10SK(S=H) R%~影响半径(m),R=R0+ r0根据ZK504号孔资料,太原组含水层水位标高1120.58m,渗透系数(K)0.4427m/d,含水层厚度(M)约9.5m,先期开采地段10+11号煤层底板标高最低为884m,由此确定水头高度:(H=S)=1120.58-884=236.58(m) r=ηa?b4=379.5mR0=10SK=1574.1m R= R0+ r0=1953.6m将上述参数代入上述公式得开采10+11号煤层矿井正常涌水量Q=3743m3/d (156m3/h)最大涌水量Qmax=δQ正,δ: 季节影响比值系数开采2号煤层时,季节影响比值系数δ=1.2故最大涌水量Qmax=3743×1.2=4492 m3/d(187.2m3/h) 2号煤层与10+11号煤层联合开采,矿井正常涌水量为上述涌水量之和,即矿井正常涌水量:Q正=355+3743=4098 m3/d(170.75 m3/h)最大涌水量Qmax=425+4492 =4917 m3/d(204.88m3/h)3 狭长水平坑道法采用承压——无压公式:Q?BK(2S-M)M (5-5)L式中:Q——为预测的矿坑涌水量(m3/d);K——为渗透系数(m/d); S——为最大水位降深(m); M——为含水层厚度(m);L——为水平坑道影响宽度(m),采用奚哈尔德公式R?10SK;B——进水廊道长度,主采煤层工作面年推进度,即B=2500m。
涌水量预测计算方法
一、前言
在隧道建设施工中,涌水灾害是隧道建设中备受关注的问题之一。
它不仅影响隧道建设的正常施工,且会波及到隧道建成后的安全运营。
因此,如何较为准确地预测隧道涌水量的大小,为隧道施工制定合理的防排水措施提供依据,成为众多岩土工程学者日益关注的课题之一。
隧道涌水的预测首先是从定性研究开始的,最早的预测只是通过查明隧道含水围岩中地下水的分布及赋存规律,分析隧道开挖的水文地质及工程地质条件,依据物探、钻探、水化学及同位素分析、水温测定等手段,确定地下水的富集带或富集区以及断裂构造带、裂隙密集带等可能的地下水涌水通道,并且用均衡法估计隧道涌水量的大小。
随着技术水平和施工要求的提高,基于定性分析的隧道涌水预测研究,发展成为隧道涌水的定量评价和计算,主要体现在隧道涌水位置的确定与涌水量预测两个方面。
在隧道涌水位置的确定方面,人们通过隧道围岩水文地质及工程地质条件的定性分析,发展了随机数学方法和模糊数学方法。
在涌水量预测方面,人们根据隧道环境地下水所处地质体的不同性质、水文地质条件的复杂程度、施工的方式及生产的要求等因素,提出了隧道涌水量计算的确定性数学模型和随机性数学模型两大类方法。
岩溶区隧道涌水研究必须要注重水文地质条件的研究, 因为每一种方法、公式的提出都是基于地质条件的研究基础之上的。
岩溶区
地质条件一向比较复杂, 从隧道施工期发生的比较严重的涌水事件来看,岩溶区易发生涌水地质条件可以分以下四类:⑴向斜盆地形成的储水构造;⑵断层破碎带、不整合面和侵入岩接触面;⑶岩溶管道、地下河;⑷其他含水构造、含水体。
以上只从宏观上列举了一些可能发生严重涌水的地质条件, 这是远远不够的, 对隧道涌水条件应进行详细研究, 这是其他隧道涌水研究工作的基础,必须予以重视。
[1]
二、岩溶区隧道涌水量预测方法
目前涌水量预测计算方法很多, 主要有以下几种:
1.进似方法
这种方法主要包括涌水量曲线方程(一般称Q-S曲线)外推法和水文地质比拟法2 种。
预测时前者以勘探阶段抽(放) 水试验的成果为依据,后者则应用类似隧道水文地质资料来计算,但两者共同的应用前提是水文地质资料相似性,前者要求试验阶段与未来掘进阶段条件相似,后者则立足于勘探区与借以比拟的施工区条件一致,因此,属于近似的预测方法。
这种方法的预测精度取决于试验段和施工段的相似性, 两者越相似则精度越高, 反之则越差。
我们知道岩溶的发育具有不均一性, 要查明一个地区的岩溶发育情况往往是很难的, 所以建议此种方法在岩溶区少用, 或最好不用。
2.专业理论方法
专业理论方法较多, 也是目前国内外应用较多的方法。
这些方法
可归纳为: 地下水动力学法、水均衡法和其他方法。
(1)地下水动力学法
地下水动力学法又称解析法, 是根据地下水动力学原理用数学解析的方法对给定边界值和初值条件下的地下水运动建立解析式, 而达到预测隧道涌水量的目的。
在地下水运动学中有以裘布衣公式(1875) 为代表的稳定流理论和以泰斯公式(1935) 为代表的非稳定流理论,根据这两大理论,人们研究出了许多隧道涌水量预测的经验公式,比较常见的有:日本的佐藤邦明公式、落合敏郎公式,前苏联的科斯加可夫公式、吉林斯基公式、福希海默公式以及其它的一些经验公式等。
[2-5]
地下水动力学法是比较常用的方法, 但在工程建设中往往受地形、人力、物力、经费等诸因素影响, 使预测精度受到限制。
地下水动力学法在岩溶区的应用有很大的局限性, 使用时必须根据具体情况进行适当的修正, 一般情况下最好不用, 如非用不可, 建议应与其他方法结合使用。
(2)水均衡法[7]
水均衡法是根据水均衡原理, 查明隧道施工期水均衡各收入、支出部分之间的关系进而获得施工段的涌水量。
水均衡法能给出任意条件下进入施工地段的总的“可能涌水量”而不能用来计算单独隧道的涌水量。
当施工地段地下水的形成条件较简单时, 采用水均衡法有良好的效果, 如分水岭地段、小型自流盆地等。
水均衡法的关键是均衡式的建立即均衡要素的测定。
但是在解决这问题时遇到了一个困难,
就是天然条件下的水均衡关系在隧道的施工过程中常常遭受强烈的破坏, 如强烈的降压疏干使地下水运动的速度和水力坡降增大等等。
水均衡法虽然有种种不足, 但它有一个最大的特点, 就是能在查明有保证的根本补给来源的情况下, 确定隧道的极限涌水量值。
因此在补给源有限时, 它可以作为核对其他方法计算结果的一种补充性计算方法。
(3)其他方法
其他方法主要有地下径流模数法、降水入渗法、地下径流深度法和地球物理化学法。
3.数值法
数值法是随着电子计算机的出现而迅速发展起来的一种近似计算方法。
用它来求解描述疏干流场的数学模型有两种途径, 即有限元法和有限差分法。
前者对求解区域通常采用三角形单元剖分, 用变分原理或卡辽金法或最小位能原理求解描述疏干流场单元节点上的近似值。
而后者则一般采用方格形剖分单元并用差分代替微分方程, 通过求解节点上的差分方程获得近似解。
这两种方法中以有限元法应用得最为广泛。
有限元法的数学基础是能量守恒原理和分割近似原理。
所谓能量守恒原理就是用能量的观点来研究平衡问题。
对疏干流场而言, 它的平衡问题取决于水量的收支和存储, 而平衡过程中能量转换规律则服从渗透定律, 它是建立疏干流场数学模型的基础。
分割近似原理运用在隧道涌水量预测中就是将反映实际疏干流场渗透运动的光滑连续水头曲面用一个彼此衔接无缝且不重叠的有限三角形拼凑
起来的连续但不光滑的折面来代替, 从而可使复杂的非线性问题简化为线性问题。
4.随机数学方法[2]
该方法主要是根据灰色理论、模糊数学、数量化理论和虚拟变量多元回归方法等随机数学方法, 选取涌水灾害的影响因素, 先进行关联度分析, 然后按涌水程度进行分类, 最后进行涌水量预测。
5.非线形理论方法
通过对隧道涌水的深入研究,人们发现隧道涌水往往是一个非线形的系统,认为系统本身是一个不断与外界环境进行物资、能量和信息交换的开放系统,具有协同性、自组织性、信息性的特点,而用线形理论或线形化理论来研究属于非线形系统的隧道涌水系统是与客观实际相悖的,因此提出用非线形理论来进行隧道涌水的预测。
目前,非线形理论应用于隧道涌水预测的还相对较少,常见的有神经元网络专家系统、系统辨识法等。
[6]
由上可见, 隧道涌水量预测计算方法很多, 目前较为常用的主要是专业理论方法, 但其预测精度远远不够, 究其原因主要是岩溶系统是一个复杂的开放系统, 是非线性的, 目前人们对岩溶系统认识还不是很完善, 因此涌水量预测必需采用多种方法结合,、多学科交叉的手段, 以提高预测精度。
三、结论与建议
本文论述了隧道涌水预测的基本原理与方法,并重点结合岩溶地
区特殊的地质条件对有关方法进行了阐述。
但是隧道的涌水是一个复杂的过程,对于这样的一个复杂过程,任何的数学模型或计算机方法都只能是对实际情况近似模拟。
从能量转换角度考虑,总收入应该等于总支出,问题关键在于总收入有多少转化为隧道的总支出,要解决这个问题,我们必须研究转化的中间过程。
而对中间转化过程研究第一步应该是进行详细的地质调查,借助地理信息系统等,找出区域地下水(岩溶等) 的宏观发育规律,然后对隧道内进行详细调查,运用蒙特卡洛模拟等方法,找出隧道围岩水微观分布规律(如溶洞、地下河、断层及构造破碎带分布规律等) ,从而为隧道涌水数学模型的建立创造基本条件,提高隧道涌水预测的精度。