第八章-凝固新技术—定向凝固
- 格式:pptx
- 大小:6.00 MB
- 文档页数:71
定向凝固定向凝固是指在凝固过程中采用强制手段,在凝固金属和未凝固金属熔体中建立起特定方向的温度梯度,从而使熔体沿着与热流相反的方向凝固,最终得到具有特定取向柱状晶的技术。
定向凝固是研究凝固理论和金属凝固规律的重要手段,也是制备单晶材料和微米级(或纳米级)连续纤维晶高性能结构材料和功能材料的重要方法。
自20世纪60年代以来,定向凝固技术发展很快。
由最初的发热剂法、功率降低法发展到目前广泛应用的高速凝固法、液态金属冷却法和连续定向凝固技术。
现代航空发动机的涡轮叶片和导向叶片是用铸造高温合金材料制成,这类材料晶界在高温受力条件下是较薄弱的地方,这是因为晶界处原子排列不规则,杂质较多,扩散较快,于是人们设想利用定向凝固方法制成单晶,消除所有晶界,结果性能明显提高了。
定向凝固技术广泛应用于高温合金、磁性材料、单晶生长、自生复合材料的制备等力面,并且在类单晶金属间化合物、形状记忆合金领域具有极广阔的应用前景。
制备方法:1. 发热剂法定向凝固技术的起始阶段。
基本原理:将铸型预热到一定温度后,迅速放到水冷铜底座上并立即进行浇注,顶部覆盖发热剂,侧壁采用隔热层绝热,水冷铜底座下方喷水冷却,从而在金属液和已凝固金属中建立起一个自下而上的温度梯度,实现定向凝固。
2. 功率降低法铸型加热感应圈分两段,铸件在凝固过程中不动,在底部采用水冷激冷板。
加热时上下两部分感应圈全通电,在加入熔化好的金属液前建立所要的温度场,注入过热的合金液。
然后下部感应圈断电,通过调节输入上部感应圈的功率,在液态金属中形成一个轴向温度梯度。
热量主要通过已凝固部分及底盘由冷却水带走。
由于热传导能力随着离水冷平台距离的增加而明显降低,温度梯度在凝固过程中逐渐减小,所以轴向上的柱状晶较短。
并且柱状晶之间的平行度差,合金的显微组织在不同部位差异较大,甚至产生放射状凝固组织。
3. 高速凝固法装置和功率降低法相似,多了拉锭机构,可使模壳按一定速度向下移动,改善了功率降低法温度梯度在凝固过程中逐渐减小的缺点;另外,在热区底部使用辐射挡板和水冷套,挡板附近产生较大的温度梯度,局部冷却速度增大,有利于细化组织,提高力学性能。
定向凝固技术1、定向凝固的研究状况定向凝固成形技术是伴随高温合金的发展而逐渐发展起来的,是在凝固过程中采用强制手段,在凝固金属和未凝固熔体中建立起特定方向的温度梯度,从而使熔体沿着与热流相反的方向凝固,以获得具有特定取向柱状晶的技术。
定向凝固技术很好的控制了凝固组织的晶粒取向,消除横向晶界,提高了材料的纵向力学性能,因而自美国普拉特·惠特尼航空公司采用高温合金定向凝固技术以来,这项技术得到广泛的应用。
1.1定向凝固理论的研究定向凝固理论的研究,主要涉及定向凝固中液-固界面形态及其稳定性,液-固界面处相变热力学、动力学,定向凝固过程晶体生长行为以及微观组织的演绎等,其中包括成分过冷理论、MS 界面稳定性、线性扰动理论、非线性扰动理论等。
从Chalmers[1]等的成分过冷理论到Mullins[2]等的界面稳定动力学理论(MS 理论),人们对凝固过程有了更深刻的认识。
下面主要分析一下成分过冷理论和界面稳定性理论。
(1)成分过冷理论成分过冷理论是针对单相二元合金凝固过程界面成分的变化提出的,如对于平衡分配系数小于1的合金在冷却下来时,由于溶质在固相和液相中的分配系数不同,溶质原子随着凝固的进行,被排挤到液相中去,并形成一定的浓度梯度,与这种溶质梯度相对应的液相线温度与真实温度分布之间有不同的值,其差值大于零时,意味着该部分熔体处于过冷状态,有形成固相的可能性而影响界面的稳定性。
Chalmers等人通过分析得出了成分过冷的判据,确定了合金凝固过程中固液界面前沿的形态取决于两个参数:G L/v和G L·v,即分别为界面前沿液相温度梯度和凝固速度的商和积。
前者决定了界面形态,而后者决定了晶体的显微组织(即枝晶间距或晶粒大小)[3]。
成分过冷理论能成功的判定无偏析特征的平面凝固的条件,避免胞晶或枝晶的生成。
但是成分过冷理论只考虑了温度梯度和浓度梯度这两个具有相反效应的因素对界面稳定性的影响,忽略了非平面界面的表面张力、凝固时的结晶潜热及固相中温度梯度等的影响。
定向凝固
原理:由隔热层将装置的上部加热区和下部冷却区隔开而形成沿着铸件轴向形成的一维温度梯度,铸件再上部被融化和过热,下部进行强制冷却,凝固界面位于隔热板附近,通过向下抽拉实现单向排列的凝固组织。
两个因素:(1)温度梯度:高的温度梯度提高界面稳定性,增加冷却速率,细化晶枝作用明显,细化伽马强化相,枝晶偏析减轻。
(2)控制界面位置:抽拉速率的提高,元素偏析先增大后减小。
HRS:高速凝固法LMC:液态金属冷却法
高温度梯度凝固:可以显著提高合金的持久性能和疲劳寿命,但是过快的凝固速率将会导致柱晶生长偏离<001>取向,由此引起持久强度的下降。
因此,合适的温度梯度和凝固速率才能获得最佳性能。
简述定向(顺序)凝固的概念
定向(顺序)凝固是一种特殊的冷凝作用,其特点是在凝固过程
中有定向发展的能力,即凝固材料的微观结构可以朝一个特定
的方向发展,这与普通的凝固过程不同。
定向凝固可以按照不同的形式进行,它们囊括了若干技术,例
如熔模凝固、熔炉凝固、激光凝固和离子凝固。
它们可以精确
控制板块件材料的结构,从而为其在后面的切削、加工和组装
过程提供一种优化的解决方案。
定向凝固的主要优势是能够提高产品质量,并且产品经过定向
凝固之后可以大大提高结构强度。
它们可以很好的控制有害的
晶界胞晶的形成,从而提高凝固后的材料力学性能。
定向凝固
可以有效的减少材料结合过程中的力学应力,从而改善光学性能,使产品结构更加稳定,能满足客户对抗衰耗、高电流密度
和低功耗的要求。
此外,定向凝固还可以提高材料的耐热能力、抗化学介质能力
和电气绝缘性,因此它是一种有利可图的金属制造方式。
它在
机械制造、航空航天制造和军事制造领域中得到了广泛的应用。
总之,定向凝固可以提高产品的强度和稳定性,从而减少产品
的加工时间,降低加工成本,有效的提高产品的质量和性能,
是一种广泛应用的金属制造工艺技术。
定向凝固定向凝固是指在凝固过程中采用强制手段,在凝固金属和未凝固金属熔体中建立起特定方向的温度梯度,从而使熔体沿着与热流相反的方向凝固,最终得到具有特定取向柱状晶的技术。
定向凝固是研究凝固理论和金属凝固规律的重要手段,也是制备单晶材料和微米级(或纳米级)连续纤维晶高性能结构材料和功能材料的重要方法。
自20世纪60年代以来,定向凝固技术发展很快。
由最初的发热剂法、功率降低法发展到目前广泛应用的高速凝固法、液态金属冷却法和连续定向凝固技术。
现代航空发动机的涡轮叶片和导向叶片是用铸造高温合金材料制成,这类材料晶界在高温受力条件下是较薄弱的地方,这是因为晶界处原子排列不规则,杂质较多,扩散较快,于是人们设想利用定向凝固方法制成单晶,消除所有晶界,结果性能明显提高了。
定向凝固技术广泛应用于高温合金、磁性材料、单晶生长、自生复合材料的制备等力面,并且在类单晶金属间化合物、形状记忆合金领域具有极广阔的应用前景。
制备方法:1. 发热剂法定向凝固技术的起始阶段。
基本原理:将铸型预热到一定温度后,迅速放到水冷铜底座上并立即进行浇注,顶部覆盖发热剂,侧壁采用隔热层绝热,水冷铜底座下方喷水冷却,从而在金属液和已凝固金属中建立起一个自下而上的温度梯度,实现定向凝固。
2. 功率降低法铸型加热感应圈分两段,铸件在凝固过程中不动,在底部采用水冷激冷板。
加热时上下两部分感应圈全通电,在加入熔化好的金属液前建立所要的温度场,注入过热的合金液。
然后下部感应圈断电,通过调节输入上部感应圈的功率,在液态金属中形成一个轴向温度梯度。
热量主要通过已凝固部分及底盘由冷却水带走。
由于热传导能力随着离水冷平台距离的增加而明显降低,温度梯度在凝固过程中逐渐减小,所以轴向上的柱状晶较短。
并且柱状晶之间的平行度差,合金的显微组织在不同部位差异较大,甚至产生放射状凝固组织。
3. 高速凝固法装置和功率降低法相似,多了拉锭机构,可使模壳按一定速度向下移动,改善了功率降低法温度梯度在凝固过程中逐渐减小的缺点;另外,在热区底部使用辐射挡板和水冷套,挡板附近产生较大的温度梯度,局部冷却速度增大,有利于细化组织,提高力学性能。
定向凝固技术
定向凝固技术是一种用于制造具有特定晶体取向的金属或合金材料的技术。
这种技术通过控制材料的凝固过程,使其在特定方向上生长,从而获得具有特定晶体取向的材料。
定向凝固技术的基本原理是在材料凝固过程中,通过控制凝固速度和温度分布,使晶粒在特定方向上生长。
这种技术通常使用定向凝固炉或定向凝固模具来实现。
定向凝固技术的优点包括:
1. 可以获得具有特定晶体取向的材料,从而提高材料的力学性能和物理性能。
2. 可以控制材料的晶粒尺寸和分布,从而提高材料的强度和韧性。
3. 可以减少材料中的缺陷和杂质,从而提高材料的质量和可靠性。
定向凝固技术广泛应用于航空航天、汽车、电子、医疗等领域,特别是在制造高强度、高韧性、高耐腐蚀性的材料方面具有重要作用。
定向凝固技术1、定向凝固的研究状况定向凝固成形技术是伴随高温合金的发展而逐渐发展起来的,是在凝固过程中采用强制手段,在凝固金属和未凝固熔体中建立起特定方向的温度梯度,从而使熔体沿着与热流相反的方向凝固,以获得具有特定取向柱状晶的技术。
定向凝固技术很好的控制了凝固组织的晶粒取向,消除横向晶界,提高了材料的纵向力学性能,因而自美国普拉特·惠特尼航空公司采用高温合金定向凝固技术以来,这项技术得到广泛的应用。
1.1定向凝固理论的研究定向凝固理论的研究,主要涉及定向凝固中液-固界面形态及其稳定性,液-固界面处相变热力学、动力学,定向凝固过程晶体生长行为以及微观组织的演绎等,其中包括成分过冷理论、MS 界面稳定性、线性扰动理论、非线性扰动理论等。
从Chalmers[1]等的成分过冷理论到Mullins[2]等的界面稳定动力学理论(MS理论),人们对凝固过程有了更深刻的认识。
下面主要分析一下成分过冷理论和界面稳定性理论。
(1)成分过冷理论成分过冷理论是针对单相二元合金凝固过程界面成分的变化提出的,如对于平衡分配系数小于1的合金在冷却下来时,由于溶质在固相和液相中的分配系数不同,溶质原子随着凝固的进行,被排挤到液相中去,并形成一定的浓度梯度,与这种溶质梯度相对应的液相线温度与真实温度分布之间有不同的值,其差值大于零时,意味着该部分熔体处于过冷状态,有形成固相的可能性而影响界面的稳定性。
Chalmers等人通过分析得出了成分过冷的判据,确定了合金凝固过程中固液界面前沿的形态取决于两个参数:GL/v和GL·v,即分别为界面前沿液相温度梯度和凝固速度的商和积。
前者决定了界面形态,而后者决定了晶体的显微组织(即枝晶间距或晶粒大小)[3]。
成分过冷理论能成功的判定无偏析特征的平面凝固的条件,避免胞晶或枝晶的生成。
但是成分过冷理论只考虑了温度梯度和浓度梯度这两个具有相反效应的因素对界面稳定性的影响,忽略了非平面界面的表面张力、凝固时的结晶潜热及固相中温度梯度等的影响。
定向凝固定向凝固是指在凝固过程中采用强制手段,在凝固金属和未凝固金属熔体中建立起特定方向的温度梯度,从而使熔体沿着与热流相反的方向凝固,最终得到具有特定取向柱状晶的技术。
定向凝固是研究凝固理论和金属凝固规律的重要手段,也是制备单晶材料和微米级(或纳米级)连续纤维晶高性能结构材料和功能材料的重要方法。
自20世纪60年代以来,定向凝固技术发展很快。
由最初的发热剂法、功率降低法发展到目前广泛应用的高速凝固法、液态金属冷却法和连续定向凝固技术。
现代航空发动机的涡轮叶片和导向叶片是用铸造高温合金材料制成,这类材料晶界在高温受力条件下是较薄弱的地方,这是因为晶界处原子排列不规则,杂质较多,扩散较快,于是人们设想利用定向凝固方法制成单晶,消除所有晶界,结果性能明显提高了。
定向凝固技术广泛应用于高温合金、磁性材料、单晶生长、自生复合材料的制备等力面,并且在类单晶金属间化合物、形状记忆合金领域具有极广阔的应用前景。
制备方法:1. 发热剂法定向凝固技术的起始阶段。
基本原理:将铸型预热到一定温度后,迅速放到水冷铜底座上并立即进行浇注,顶部覆盖发热剂,侧壁采用隔热层绝热,水冷铜底座下方喷水冷却,从而在金属液和已凝固金属中建立起一个自下而上的温度梯度,实现定向凝固。
2. 功率降低法铸型加热感应圈分两段,铸件在凝固过程中不动,在底部采用水冷激冷板。
加热时上下两部分感应圈全通电,在加入熔化好的金属液前建立所要的温度场,注入过热的合金液。
然后下部感应圈断电,通过调节输入上部感应圈的功率,在液态金属中形成一个轴向温度梯度。
热量主要通过已凝固部分及底盘由冷却水带走。
由于热传导能力随着离水冷平台距离的增加而明显降低,温度梯度在凝固过程中逐渐减小,所以轴向上的柱状晶较短。
并且柱状晶之间的平行度差,合金的显微组织在不同部位差异较大,甚至产生放射状凝固组织。
3. 高速凝固法装置和功率降低法相似,多了拉锭机构,可使模壳按一定速度向下移动,改善了功率降低法温度梯度在凝固过程中逐渐减小的缺点;另外,在热区底部使用辐射挡板和水冷套,挡板附近产生较大的温度梯度,局部冷却速度增大,有利于细化组织,提高力学性能。