小学数学归总问题
- 格式:docx
- 大小:13.58 KB
- 文档页数:2
归总问题说课稿尊敬的各位评委、老师们:大家好!今天我说课的内容是小学数学中的归总问题。
下面我将从教材分析、学情分析、教学目标、教学重难点、教学方法、教学过程以及教学反思这几个方面来展开我的说课。
一、教材分析“归总问题”是人教版小学数学教材中的一个重要知识点,它在解决实际问题中具有广泛的应用。
本节课是在学生已经掌握了一步计算的应用题和乘法、除法的意义及计算方法的基础上进行教学的。
通过本节课的学习,将为学生今后学习较复杂的应用题打下基础。
教材通过具体的情境,引导学生理解归总问题的结构特点和解题思路。
同时,教材注重培养学生的思维能力和解决实际问题的能力,让学生在解决问题的过程中,体会数学与生活的紧密联系。
二、学情分析三年级的学生已经具备了一定的数学基础知识和解决简单问题的能力,但他们的抽象思维能力和逻辑推理能力还相对较弱。
在学习归总问题时,可能会遇到理解题意、分析数量关系等方面的困难。
因此,在教学中,要注重引导学生通过直观的方式理解问题,逐步培养他们的抽象思维和逻辑推理能力。
基于对教材和学情的分析,我确定了以下教学目标:1、知识与技能目标:学生能够理解归总问题的含义,掌握归总问题的解题方法,并能正确列式解答。
2、过程与方法目标:通过观察、比较、分析等活动,培养学生的思维能力和解决实际问题的能力。
3、情感态度与价值观目标:让学生在解决问题的过程中,体验数学的价值,增强学习数学的兴趣和自信心。
四、教学重难点教学重点:理解归总问题的数量关系,掌握解题方法。
教学难点:正确分析数量关系,灵活运用解题方法。
五、教学方法为了实现教学目标,突破教学重难点,我将采用以下教学方法:1、情境教学法:创设生动有趣的情境,让学生在情境中发现问题、解决问题,提高学习兴趣。
2、启发式教学法:通过提问、引导等方式,启发学生思考,培养学生的思维能力。
3、小组合作学习法:组织学生进行小组合作学习,让学生在交流中互相启发,共同提高。
(一)创设情境,导入新课课件出示一个购物的情境:妈妈带了 200 元去超市买水果,每斤水果 10 元,妈妈一共可以买多少斤水果?引导学生列式解答:200÷10 = 20(斤)接着,改变情境:妈妈带了 200 元去超市买水果,买了 4 斤苹果,每斤苹果 10 元,剩下的钱还能买多少斤香蕉?香蕉每斤 5 元。
一、引言在三年级数学课程中,归一问题和归总问题是两个常见而重要的概念。
通过这两个概念,学生可以培养归纳和总结的能力,培养逻辑思维和解决问题的能力。
本文将对三年级数学中的归一问题和归总问题进行介绍和解析,以帮助学生更好地理解和掌握这些概念。
二、归一问题1.1 什么是归一问题归一问题是指将一个整体分解成若干个部分,然后按照一定的规律重新组合成原来的整体。
在这个过程中,学生需要观察、分析和归纳,培养逻辑思维和解决问题的能力。
1.2 归一问题的例子举例来说,假如一个盒子里有12颗糖果,老师让学生分成三组,每组有几颗糖果,这就是一个典型的归一问题。
学生需要计算出每组有几颗糖果,然后将它们重新组合成原来的12颗糖果。
1.3 归一问题的解决方法学生可以通过绘图、列式、分组或其他方法来解决归一问题。
在解决问题的过程中,学生需要注意观察规律,运用数学知识进行分析和计算,最终得出正确答案。
三、归总问题2.1 什么是归总问题归总问题是指将一些零散的信息或现象按照一定的规律进行总结和分类,以便更好地理解和掌握这些信息或现象。
通过归总,学生可以培养整理和总结的能力,培养系统性思维和分析问题的能力。
2.2 归总问题的例子举例来说,假如老师让学生总结小学三年级所有学过的数字,包括自然数、负数、小数、分数等,这就是一个典型的归总问题。
学生需要按照不同的规律进行分类和总结,以便更好地理解和记忆这些数字。
2.3 归总问题的解决方法学生可以通过绘图、表格、分类、总结或其他方法来解决归总问题。
在解决问题的过程中,学生需要注意分类规律,进行信息整合和比对,最终得出清晰和系统的总结结果。
四、归一问题和归总问题的通信3.1 归一问题和归总问题的共同点归一问题和归总问题都需要学生观察、分析、归纳和总结,培养学生的逻辑思维和解决问题的能力。
在解决这些问题的过程中,学生需要动脑筋、灵活思维,注重细节和整体,积极探索和实践,从而培养全面发展的学习能力。
小学数学归一归总问题总结一、问题描述归一问题:单一量不变归总问题:总量不变二、处理方法抓不变量(归一、归总、倍比)三、例题1、15元5个包子,照这样计算,30个包子多少钱?分析:包子单价不变,归一问题。
方法一:归一法,先求单一量。
15÷5=3(元)30×3=90(元)方法二:倍比法,先求倍数。
90÷5=615×6=90(元)2、15元5个包子,照这样计算,30元能买几个包子?分析:包子单价不变,归一问题。
方法一:归一法15÷5=3(元)30÷3=10(个)方法二:倍比法30÷15=25×2=10(元)3、一本书每天看3页,30天能看完。
如果每天看6页,多少天能看完?分析:书的总页数不变,归总问题。
方法一:归总法30×3=90(页)90÷6=15(天)方法二:倍比法6÷3=230÷2=15(天)4、一本书每天看3页,30天能看完。
如果要10天看完,平均每天看多少页?分析:书的总页数不变,归总问题。
方法一:归总法30×3=90(页)90÷10=9(页)方法二:倍比法30÷10=33×3=9(页)小结:1、倍比法一般用于相关量是整数倍时,且一般用于归一问题,归总问题相关量成反比,较难理解,故运用减少。
2、归一、归总问题虽较简单,但也特别易错,尤其是归一问题第二步乘除的判断,一定要好好理解题意。
3、归一、归总问题主要体现了“抓不变量”的思想,在处理许多其它问题时也会用到。
14.归一、归总问题知识要点梳理一、归一问题1.归一问题来历:我国珠算除法中有一种方法,称为归除法,除数是几,就称几归;除数是8,就称为8归。
而归一的意思,就是用除法求出单一量,这就是归一的说法。
在解答某些应用题时,常常需要先找出“单一量”,然后以这个“单一量”为标准,根据其他条件求出结果。
用这种解题思路解答的应用题,称为归一问题。
所谓“单一量”是指单位时间的工作量、物品的单价、单位面积的产量、单位时间所走的路程等。
2.归一问题有两种基本类型如下:先求单一量再一次归一:一步求单一量归正归一:求几个单一量一是多少(乘)二次归一:两步求单一量问题反归一:先求单一量再求包含几个单一量(除)3.正、反归一问题的相同点是:第一步先求出单一量;不同点是:第二步正归一是乘法,反归一是除法。
二、归总问题与归一问题类似的是归总问题,归一问题是找出“单一量”,而归总问题是先找出“总量”,然后再根据其他条件算出所求的问题,叫归总问题。
所谓“总量”是指几小时(几天)的总工作量、几亩地上的总产量、总路程、总产量、工作总量、物品的总价等。
数量关系:1份数量×份数=总量总量÷1份数量=份数总量÷另一份数=另一每份数量解题思路:先求出总数量,再根据题意得出所求的数量。
考点精讲分析典例精讲考点1 正归一问题【例1】一只小蜗牛6分钟爬行12分米,照这样速度1小时爬行多少米?【精析】为了求出蜗牛1小时爬多少米,必须先求出1分钟爬多少分米单一量(一次归一)即蜗牛的速度,然后以单一量为依据按要求算出结果。
【答案】①小蜗牛每分钟爬行多少分米?12÷6=2(分米)②1小时爬几米?1小时=60分2×60=120(分米)=12(米)答:小蜗牛1小时爬行12米。
【归纳总结】一般情况下第一步先求出单一量,第二步求几个单一量是多少。
【例2】王奶奶家养了5头奶牛,7天产牛奶630千克,照这样计算,8头奶牛15天可产牛奶多少千克?【精析】第一步先算1头奶牛7天产的牛奶为单一量一次归一,再算1头奶牛1天产的牛奶为单一量二次归一,最后8头奶牛15天可产牛奶多少千克。
本讲主要学习归总问题.通过本节课的学习,学生应了解归总问题的类型,以及解决归总问题的一般方法,掌握归总问题的基本关系式,并会将这种方法应用到一些实际问题中.归总问题与归一问题类似的是归总问题,归一问题是找出“单一量”,而归总问题是找出“总量”,再根据其它条件求出结果.所谓“总量”是指总路程、总产量、工作总量、物品的总价等.模块一、简单的归总问题【例 1】 “走美比萨店”共有5名员工,2名厨师每周分别工作36小时,每小时工资10美元;3名服务生每周工作30小时,每小时工资5美元。
如果你是“走美比萨店”的老板,你每周该向员工制服的工资一共为 美元。
【考点】简单的归总问题 【难度】1星 【题型】填空 【关键词】走美杯,3年级,初赛 【解析】 2361033057204501170⨯⨯+⨯⨯=+=(美元) 【答案】1170美元【例 2】 某车间需要加工3960个零件,3个工人10小时加工了1320个,其余的要求在15小时内完成,需要增加多少个工人?【考点】简单的归总问题 【难度】2星 【题型】解答 【解析】 每个工人每小时加工:132031044÷÷=(个),现在还剩下:396013202640-=(个)零件,15小时内完成需要工人264044154÷÷=(个),即需要增加1个工人.【答案】1个工人【例 3】 光明小学有50个学生帮学校搬砖,要搬2000块,4次搬了一半。
照这样算,再增加50个学生,还要几次运完?【考点】简单的归总问题 【难度】2星 【题型】解答【解析】 先求出每个学生每次运的砖数: 1200045052⨯÷÷=(块).再求出现在的学生一次过运的砖数: (50+50)×5=500(块).最后求出还要运的次数: 1200050022⨯÷= (次),简便方法: 4÷[(50+50)÷50]=2(次)。
小学三年级数学教案归总应用题9篇归总应用题 1教学目标1.使学生掌握两步应用题(归总)的结构特点和解答方法,能正确迅速地找到中间问题(先求什么).2.使学生学会列综合算式解答,初步掌握这类应用题的解题规律.3.训练学生有条理地分析数量关系,培养学生分析、解答应用题的能力.教学重点使学生掌握乘、除法应用题的数量关系、结构特征和解答方法.教学难点学画线段图,并借助线段图分析题中数量关系.教学过程一、联系生活实际,以旧引新.1.请你根据学过的乘除法数量关系,联系自己的生活实际举例提问.①单价×数量=总价②路程÷时间=速度③工作总量÷工效=工时学生可能举例:①一个足球50元,3个足球多少元?②我家到姥姥家相距大约120千米,坐汽车行了2小时,这辆汽车每小时行多少千米?③王师傅用小推车为食堂运菜,每小时运80千克,240千克的菜要几小时运完?2.改编:工人们修一条路,每天修12米,10天修完.________?求什么?(求这条路长多少米?)为什么?如果去掉这个问题,改成“如果每天修15米,几天修完?”应该如何解答呢?此时,学生可能会答也可能答不出.如果有答对的,请他说说是怎样算的;如果没有,教师提问:要想知道“如果每天修15米,几天修完?”,就要先求出什么?(工作总量)根据哪一数量关系求工作总量?教师导入:生活中这样的问题还有很多,今天我们就一起来研究这样的问题.二、尝试探索,学习新知.1.(1)出示例5:工人们修一条路,每天修12米,10天修完.如果每天修15米,几天修完?学生们自由读题,理解题意.教师谈话:通过读题,你想到了那些问题,提出来供同学们思考.学生可能提出:题目中已知几个条件,它们各是什么?要求什么问题?线段图应该怎么画?这道题可以先求什么?(中间问题)为什么?求出总数量后,再求什么?为什么?经同学们思考(也可以小组讨论),师生共同解决.全班重点讨论下面的问题:a.线段图怎样画?题中什么数量变了,什么没变?使学生明确:为了清楚地反映数量关系,最好画两条线段,两条线段要同样长,表示同一条路(说明工作总量是固定不变的).b.要求几天修完,必须先求什么?为什么?[看图分析:可以从条件出发,已知每天修12米(工效),又知道修了10天(工时),就可以求出这条路全长多少米?(工作总量)还可以从最后的问题出发,要求每天修15米,几天修完?必须知道这条路全长是多少米,题目里没有给工作总量,所以要先求出工作总量.]共同解题,说出解题方法.(学生边回答教师边板书:这条路全长多少米?12 × 10 = 120(米)几天修完?120 ÷ 15 = 8(天)综合算式: 12 × 10 ÷ 15⑤请学生说一说怎样检验?(2)教师提问:如果将第三个条件改成“每天修20米、每天修30米、每天修4 0米”,问题不变,仍求几天修完?应该怎样列式?12×10÷20=6(天) 12×10÷30=4(天)12×10÷40=3(天)(3)教师提问:如果将第三个条件和问题改成“如果要求6天修完,每天应修多少米?”应该怎样解答呢?订正:这条路长多少米? 12 × 10 = 120(米).每天应修多少米? 120 ÷ 6 = 20(米).综合算式:12×10÷6全班共同订正,说说你的解题思路,每一步算式的含义.(4)教师提问:再将第三个条件改成“要求5天修完、2天修完”,问题不变,仍求每天应修多少米?怎样列式?12×10÷5=24(米) 12×10÷2=60(米)2.对比质疑,归纳概括.教师提问:比较例5、改编题,它们有什么共同点和不同点?使学生明确:从应用题的结构上看,前两个条件是相同的,给了单一量和数量,第三个条件和问题不同,正好互相交换了一下.从解题思路上看,根据前两个条件就可以求出总数(工作总量),总数量是固定不变的(题目中一般在第一句话表示出来).不同的是:总数量÷份数=每份数,总数量÷每份数=份数.教师说明:具有以上特点的应用题叫做.(出示课题)三、巩固练习,发展提高.1.独立完成下题.①小华读一本书,每天读12页,6天可以读完.如果每天读9页,几天可以读完?②小华和小刚读同样一本书,小华每天读12页,6天读完,小刚想8天读完,平均每天要读几页?订正时说说解题的思路各是什么?2.填表:解放军列队出操.填出每行人数或行数.(说说解题思路)每行人数122045行数1510四、课堂小结.今天学习的是什么?你有什么收获?五、布置作业.1.方师傅给食堂运菜.如果用小推车每次运75千克,8次能运完.如果改用平板车运,4次就能运完.平板车每次运多少千克?2.招待所新来一批客人.每间住2人,需要15间房.如果每间房住3人,需要几间房?板书:探究活动折纸条游戏活动目的学生通过手、脑、口多种感官参与认知活动,加深对的认识;锻炼灵活的思维能力,提高数学素质.活动准备学生两人一组,每组准备1张较长的彩条,一张表格.活动过程1.规则:两人一组,甲任意将彩条折成2段(或几段),乙测量出一段彩条的长度并记录,接着两人互换任务,乙将彩条折成不同的段数请甲根据第一次的测量结果猜出现在每段彩条的长度并记录,互相检查(计算)猜对为赢;此为一局;每场游戏可定为4局,赢者一局加10分,输者记0分并送对方10分,最后分高者为胜.2.所填表格如下:归总应用题 2教学内容:教科书第115页第4题,练习二十六的第5—8题。
小学数学“归一问题”与“归总问题”总结+解题思路+例题整理一、归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。
这类应用题叫做归一问题。
【数量关系】总量÷份数=1份数量1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。
例1买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解:(1)买1支铅笔多少钱?0.6÷5=0.12(元)(2)买16支铅笔需要多少钱?0.12×16=1.92(元)列成综合算式0.6÷5×16=0.12×16=1.92(元)答:需要1.92元。
例23台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6天耕地多少公顷?解:(1)1台拖拉机1天耕地多少公顷?90÷3÷3=10(公顷)(2)5台拖拉机6天耕地多少公顷?10×5×6=300(公顷)列成综合算式90÷3÷3×5×6=10×30=300(公顷)答:5台拖拉机6天耕地300公顷。
例3:5辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?解:(1)1辆汽车1次能运多少吨钢材?100÷5÷4=5(吨)(2)7辆汽车1次能运多少吨钢材?5×7=35(吨)(3)105吨钢材7辆汽车需要运几次?105÷35=3(次)列成综合算式105÷(100÷5÷4×7)=3(次)答:需要运3次。
二、归总问题【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。
所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。
应用题-经典应用题-归一归总问题基本知识-1星题课程目标知识提要归一归总问题基本知识•概述归一问题是用等分除法求出一个单位的数值(单一量)之后,再求出题目所要求解的问题,解答归一问题的方法叫做归一法。
归总问题是找出总量,再根据其它条件求出结果。
与归一问题类似的是归总问题,归一问题是找出“单一量”,而归总问题是找出“总量”,再根据其它条件求出结果.所谓“总量”是指总路程、总产量、工作总量、物品的总价等.•分类归一问题可以分为两种:一种是求总量的,先求出一个单位量,然后利用乘法求出结果,这类问题叫做正归一问题(也称正归一);另一种是求份数的,求出一个单位量后,再用包含除法求出所求的结果,这类问题叫做反归一问题(也称反归一).•归一问题的基本关系式总工作量=每份的工作量(单一量)×份数份数=总工作量÷每份的工作量(单一量)每份的工作量(单一量)=总工作量÷份数精选例题归一归总问题基本知识1. 1805年的4月7日,贝多芬创作的第三交响曲在维也纳剧院首次公演.作为乐圣,他一生创作了100多部作品,其中“编号交响曲”9首,“钢琴奏鸣曲”的数量比“小提琴奏鸣曲”的3倍多5首,“小提琴奏鸣曲”的数量比“编号交响曲”多1首.那么,他一生共创作“钢琴奏鸣曲”首.【答案】35【分析】编号交响曲:9首小提琴奏鸣曲:9+1=10(首)钢琴奏鸣曲:3×10+5=35(首).2. 500张白纸的厚度为50毫米,那么张白纸的厚度是750毫米.【答案】7500【分析】因为500张白纸的厚度为50毫米,那么10张纸的厚度为1毫米,所以750毫米应为750×10=7500(张)白纸的厚度.3. 一筐水果中,恰好有一半数量是苹果,如果吃掉苹果数量的一半,筐中只剩下60个水果,那么,这时筐中还有个苹果.【答案】20【分析】最初苹果和其他水果各占一半,苹果被吃掉一半后,苹果占1份,其他水果占2份,一共3份共60个水果,所有一份是20个.4. 某工程队,16个工人9天能挖水沟1872米,27个工人14天能挖米.【答案】4914【分析】每个工人每天挖水沟1872÷16÷9=13(米),27个工人14天能挖27×14×13=4914(米).5. 购买3斤苹果,2斤桔子需8元;购8斤苹果,9斤桔子需25元,那么苹果、桔子各买1斤需元.【答案】3【分析】买3+8斤苹果和2+9斤桔子.需8+25=33(元),所以各买1斤需33÷11= 3(元).6. 筑路队修一段路,6个人45天完成,如果增加9人,天完成.【答案】18【分析】修这段路的工作总量是45×6=270(总工量),增加9人,共有15个人,需要270÷(6+9)=18(天)完成.7. 购买3斤苹果,2斤橘子需6.90元;购8斤苹果,9斤橘子需22.80元,那么苹果、橘子各买1斤需元.【答案】 2.7【分析】买3+8斤苹果和2+9斤橘子需6.9+22.8=29.7(元).所以各买1斤需要29.7÷11=2.7(元).8. 一个果园摘桃子,4个人3小时共摘了600千克,照这样计算,8个人6小时可以摘千克桃子.【答案】2400【分析】8个人是4个人的两倍,6小时是3小时的两倍,所以8个人6小时所摘桃子的重量恰好是4个人3小时摘桃子重量的4倍,因此8个人6小时可以摘桃子600×4=2400(千克).9. A牌电池的广告语是“一节更比六节强”,意义是A牌电池比其他电池更耐用.我们就假定1节A电池的电量是B电池的6倍.有两种耗电速度一样的时钟,现在同时在甲钟里装了4节A电池,乙钟里装了3节B电池.结果乙时钟正常工作了2个月就耗尽了,那么甲时钟还能正常工作月.【答案】14【分析】乙钟2个月耗3节B电池,甲钟相当于有24节,24÷3×2−2=1410. 学学4小时完成24道题目,按照这样的速度,他7小时可以完成多少道题目?如果要完成96道题目需要多长时间?【答案】16小时.【分析】学学每小时完成24÷4=6(道),7小时可以完成6×7=42(道),完成96道题目需要96÷6=16(时).11. 1人1小时种20棵树,4人7小时种多少棵树?【答案】560【分析】20×4×7=560(棵).12. 食堂运来一批蔬菜,原计划每天吃50千克,30天慢慢消耗消费完这批蔬菜.后来根据大家的意见,每天比原计划多吃10千克,这批蔬菜可以吃多少天?【答案】25【分析】这批蔬菜共有50×30=1500(千克),每天实际吃50+10=60(千克).所以实际可以吃1500÷60=25(天).13. 小明名看一本故事书,每天看6页,8天看完这本书的一半,以后每天多看2页,正好在借期内看完.这本书的借期是多少天?【答案】14【分析】故事书的一半是6×8=48(页),之后每天看6+2=8(页),后一半需要48÷8=6(天)看完,所以这本书的借期是6+8=14(天).14. 鲨鱼吃小鱼,4头鲨鱼3分钟吃1200条小鱼,按照这样的速度,5头鲨鱼8分钟吃多少条小鱼?【答案】4000条.【分析】1头鲨鱼1分钟吃1200÷4÷3=100条,那么5头鲨鱼8分钟吃100×8×5= 4000条.15. 学校买了12张办公桌和若干把椅子,共用去2440元,其中买办公桌用去1440元.又知每张办公桌比每把椅子贵70元.问一共买了多少把椅子?【答案】20【分析】每张办公桌是1440÷12=120(元),则每把椅子120−70=50(元),所以买了椅子(2440−1440)÷50=20(把).16. 买2块橡皮要1元钱,买同样的橡皮50块,需要多少钱?【答案】25元【分析】2块橡皮看成1组需1元钱,买50块橡皮50块需要50÷2×1=25(元).17. 一个工人在森林中锯木头,他用10分钟把一根树干锯成了3段,如果保持工作速度不变,要把每段木头再锯成两段,还需要多少分钟?【答案】15分钟【分析】3段需要锯2刀,那么锯一刀需10÷(3−1)=5(分钟),每段都锯成两段,还需要3刀,需要时间5×3=15(分钟).18. 一个修路队要修一条长2100米的公路,前5天平均每天修240米,余下的要求3天完成,平均每天要修多少米?【答案】300【分析】5天一共修路240×5=1200(米),还剩下2100−1200=900(米),3天修完,每天修900÷3=300(米).19. 3的位老师4小时可以解决120道题.按这样的速度,4位老师解决400道题需要多少小时?【答案】10小时.【分析】每人每小时做120÷3÷4=10道.4人做400道需400÷4÷10=10小时.20. 3台同样的磨面机1小时可磨面粉2400千克.问:(1)这3台磨面机磨5小时可磨出多少千克面粉?(2)1台磨面机磨1小时可磨出多少千克面粉?(3)1台磨面机磨5小时可磨出多少千克面粉?【答案】(1)12000;(2)800;(3)4000【分析】(1)这3台磨面机磨5小时可磨出:2400×5=12000(千克);(2)1台磨面机磨1小时可磨出:2400÷3=800(千克);(3)1台磨面机磨5小时可磨出:800×5=4000(千克).21. 庆庆在开心农场养了10头奶牛,5天共产奶100千克.已知每头奶牛每天产奶量相同,那么:(1)10头奶牛1天产奶多少千克?(2)1头奶牛5天产奶多少千克?(3)平均1头牛1天产奶多少千克?【答案】(1)20千克;(2)10千克;(3)2千克【分析】(1)10头奶牛1天产奶:100÷5=20(千克);(2)1头奶牛5天产奶:100÷10=10(千克);(3)1头奶牛1天产奶:20÷10=2(千克)或10÷5=2(千克)或100÷10÷5=2(千克).22. 某工厂一个车间,原计划20人4天做1280个零件,刚要开始生产,又增加了新任务,在工作效率相同的情况下,需要15个人7天才能全部完成,问增加了多少个零件?【答案】400【分析】每人每天能做1280÷4÷20=16(个)零件,15个人7天一共加工了16×15×7=1680(个)零件,所以增加了1680−1280=400(个)零件.23. 有4台相同的吊车,7小时卸煤280吨.那么:(1)1台吊车7小时卸煤多少吨?(2)4台吊车1小时卸煤多少吨?(3)平均1台吊车1小时卸煤多少吨?【答案】(1)70;(2)40;(3)10【分析】(1)1台吊车7小时卸煤:280÷4=70(吨);(2)4台吊车1小时卸煤:280÷7=40(吨);(3)1台吊车1小时卸煤:70÷7=10(吨)或40÷4=10(吨)或280÷7÷4=10(吨).24. 平整一块土地,原计划8人平整,每人每天工作9时,15天可以完成任务.由于急需播种,要求12天完成,并且增加2人.问:每天要工作几小时?【答案】9小时【分析】总的工作量为8×9×15=1080(单位工作量),现在比原先增加2人,共有10人,则现在每天工作1080÷12÷(8+2)=9(小时).25. 4辆大卡车运沙土,7趟共运走沙土336吨.现有沙土420吨,增加了3辆相同的卡车,问:几趟可以运完?【答案】5【分析】1辆卡车1趟运沙土336÷4÷7=120(吨),现在有4+3=7(辆),7辆卡车每趟运送沙土7×12=84(吨),需要420÷(7×12)=5(趟).26. 一个装订小组要装订2640本书,3小时装订240本.照这样下去,剩下的书还需要多少小时才能装订完?【答案】30【分析】3小时装订240本,每小时装订240÷3=80(本),还剩下书2640−240=2400(本),需要2400÷80=30(时).27. 3只猴子3天吃3个桃子,按照这样的速度,6只猴子6天能吃几个桃子?9只猴子要吃9个桃子,需要多少天?【答案】(1)12个;(2)3天.【分析】利用倍比法解题:(1)3×2×2=12个(2)9÷3=3天.28. 4辆大卡车运沙土,7趟共运走沙土140吨.现在有沙土400吨,要求5趟运完.问:需要增加同样的卡车多少辆?【答案】12【分析】每辆大卡车一趟运走沙土140÷4÷7=5(吨),要求5趟运完,一辆大卡车5趟运走5×5=25(吨),运400吨沙土需要大卡车400÷25=16(辆),需要增加大卡车16−4=12(辆).29. 一堆煤,第一天运走600吨,正好占这堆煤的16,第二天运走的数量与这堆煤的比是1:5,第二天运走多少吨?【答案】720【分析】根据量率对应关系,这堆煤共重600÷16=3600(吨),第二天运走3600÷5=720(吨)30. 5个工人要加工735个零件,前2天已经加工了135个.已知这2天中有1人因事假请假了1天.若每个工人每天加工的零件数相等,且以后几天无人请假,还要多少天才能完成任务?【答案】8【分析】5个工人2天加工了135个零件,其中1人请假1天,相当于5×2−1=9(个)工人1天加工了135个零件,所以每个工人每天加工的零件为135÷(5×2−1)=15(个),剩下的零件还需要(735−135)÷5÷15=8(天)加工完成.31. 每人每小时能包125个饺子.按照这样的速度,8个人5小时能包多少个饺子?【答案】5000个.【分析】125×8×5=5000.32. 一种钢轨,4根共重1900千克,现在有95000千克钢,可以制造这种钢轨多少根?(损耗忽略不计)【答案】200【分析】一根钢轨重1900÷4=475(千克),95000千克能制造钢轨95000÷475=200(根).33. 牛吃草,6头牛5天吃90捆草,按照这样的速度,8头牛3天吃多少捆草?多少头牛10天吃60捆草?【答案】(1)72捆;(2)2头.【分析】(1)1头牛1天吃90÷6÷5=3捆草,那么8头牛3天吃3×8×3=72捆草.(2)60÷3÷10=2头牛.34. 一个修路队要修一条长2700米的公路,前5天一共修了750米.照这样下去,余下的要多少天完成?【答案】13【分析】5天修了750米,每天修路750÷5=150(米),还剩下2700−750=1950(米),需要3天修完,每天修1950÷150=13(天).35. 买5支铅笔要1元钱,买同样的铅笔25支,需要多少钱?【答案】5元【分析】5支铅笔看成1组需1元钱,买25支铅笔共有25÷5=5(组),一共需要5×1=5(元).36. 3名小学生5分钟能吃30个饺子,照这样的速度,那么4名小学生8分钟能吃多少个饺子?【答案】64个.【分析】每人每分钟吃30÷3÷5=2个饺子.4人8分钟吃2×4×8=64个饺子.37. 一个工人在森林中锯木头,他用8分钟把一根树干锯成了3段,那么把树干锯成8段需要多长时间?【答案】28分钟【分析】3段需要锯2两刀,那么锯一刀需8÷(3−1)=4(分钟),锯8段需要锯7刀,时间为4×(8−1)=28(分钟).38. 有两条纸带,一条长21厘米,一条长13厘米,把两条纸带都剪下同样长的一段以后,发现短纸带剩下的长度是长纸带剩下的长度的813.问剪下的一段长多少厘米?【答案】0.2【分析】方法一:开始时,两条纸带的长度差为21−13=8厘米.因为两条纸带都剪去同样长度,所以两条纸带前后的长度差不变.设剪后短纸带长度为“8”份,长纸带即为“13”份,那么它们的差为13−8=5份,则每份为8÷5=1.6(厘米).所以,剪后短纸带长为1.6×8=12.8(厘米),于是剪去13−12.8=0.2(厘米).方法二:设剪下x厘米,则13−x 21−x =8 13,交叉相乘得:13×(13−x)=8×(21−x),解得x=0.2,即剪下的一段长0.2厘米.39. 有甲、乙、丙三种货物,若购甲3件、乙7件、丙1件,共需20元;若购甲4件、乙10件、丙1件,共需27元;则购买甲、乙、丙各1件,共需要元.【答案】6【分析】设甲、乙、丙的单价分别为x,y,z,则\[ \left\{\begin{gathered} 3x + 7y + z = 20 \cdots ① \hfill \\ 4x + 10y + z = 27 \cdots ② \hfill \\ \end{gathered} \right., \]由①×3−②×2得x+y+z=3×20−2×27=6,即各买一件需要6元.40. 3只老鼠5天偷吃了30根玉米.按照这样的速度,4只老鼠7天能偷吃多少根玉米?【答案】56【分析】3只老鼠1天吃的玉米:30÷5=6(根);1只老鼠1天吃的玉米:6÷3=2(根);4只老鼠1天吃的玉米:2×4=8(根);4只老鼠7天吃的玉米:8×7=56(根).41. 如果3台数控机床4小时可以加工960个同样的零件,那么1台数控机床加工400个相同的零件需要多长时间?【答案】5【分析】1台数控机床1小时加工960÷3÷4=80(个).同样的零件:1台数控机床加工400个零件需要400÷80=5(时).42. 3名工人5小时加工零件90个,要在10小时内完成540个零件的加工,至少需要工人少名?【答案】9【分析】方法一:3名工人5小时加工零件90个,就是说每人每小时加工(90÷3)÷5=6(个),那么一名工人10小时可以加工6×10=60(个),540个零件在10小时做完至少需要工人540÷60=9(人).方法二:3名工人5小时加工零件90个,假设在时间相同的情况下,3名工人10小时加工零件180个,要完成540个零件用倍比的思想,540个零件是180的3倍,时间相同,完成零件的数量是3倍,那么工人也是3倍的关系,3×3=9(人).43. 某运输公司用6辆汽车运水泥,每天可运96吨.根据运输情况,现在增加4辆同样的汽车,每天一共运水泥多少吨?【答案】160【分析】“增加4辆同样的汽车“,每天一共运水泥多少吨,应是增加的汽车运输量与增加前的运输量的和,即10辆汽车的运输量.96÷6×(6+4)=16×10=160(吨).44. 车间里有6个工人,5小时可以加工300个零件.若每个工人工作效率相同,问:(1)1个工人5小时可以加工多少个零件?(2)6个工人1小时可以加工多少个零件?(3)1个工人1小时可以加工多少个零件?【答案】(1)50;(2)60;(3)10【分析】(1)1个工人,5小时加工零件:300÷6=50(个);(2)6个工人,1小时加工零件:300÷5=60(个);(3)1个工人,1小时加工零件:60÷6=10(个).45. 某化工厂使用新技术前,每天用原料26吨,使用新技术后原来7天的原料现在可以用13天,该厂现在比过去每天节约多少吨原料?【答案】12【分析】过去7天共用原料26×7=182(吨),现在每天用料182÷13=14(吨),所以现在比过去每天节省原料26−14=12(吨).和46. 春风小学原计划栽种杨树、柳树和槐树共1500棵.植树开始后,当栽种了杨树总数的35 30棵柳树以后,又临时运来15棵槐树,这时剩下的3种树的棵数恰好相等.问原计划要栽植这三种树各多少棵?【答案】杨树:825;柳树:360;槐树:315【分析】将杨树分为5份,以这样的一份为一个单位,则:杨树=5份;柳树=2份+30棵;槐树=2份−15棵,则一份为(1500−30+15)÷(2+2+5)=165(棵),杨树5×165=825(棵);柳树165×2+30=360(棵);槐树165×2−15=315(棵).47. 汽车厂每名工人每天生产汽车零件 6 个.按照这样的速度,10 名工人 3 天能生产多少个零件?如果要用 5 天的时间生产出 300 个零件,那么需要多少名工人?【答案】 (1)180 个;(2)10 名.【分析】 (1)10×6×3=180 个.(2)300÷5÷6=10 名.48. 小华和爷爷的年龄比是 1:6,已知小华比爷爷小 50 岁,小华和爷爷的年龄和是多少?【答案】 70 岁【分析】 小华比爷爷小 50 岁,小华比爷爷少 5 份,求出 1 份是多少岁,再乘以总份数,就可求出小华和爷爷一共的岁数。
二、归总问题
【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。
所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几亩地上的总产量、几小时行的总路程等。
【数量关系】1份数量×份数=总量
总量÷1份数量=份数
总量÷另一份数=另一每份数量
【解题思路】先求出总数量,再根据题意得出所求的数量。
例1、服装厂原来做一套衣服用布3.2米,改进裁剪方法后,每套衣服用布2.8米。
原来做791套衣服的布,现在可以做多少套?
解:(1)这批布总共有多少米? 3.2×791=2531.2(米)
(2)现在可以做多少套?2531.2÷2.8=904(套)
列成综合算式 3.2×791÷2.8=904(套)
答:现在可以做904套。
例2、小华每天读24页书,12天读完了《哈利·波特》一书。
小明每天读36页书,几天可以读完《哈利·波特》?
解:(1)《哈利·波特》这本书总共有多少页?24×12=288(页)
(2)小华几天可以读完《哈利·波特》?288÷36=8(天)
列成综合算式24×12÷36=8(天)
答:小华8天可以读完《哈利·波特》。
例3、小明看一本书,原计划每天看35页,32天看完。
实际每天比计划多看5页,实际用多少天看完?
例4、食堂运来一批蔬菜,原计划每天吃50千克,30天慢慢消费完这批蔬菜。
后来根据大家的意见,每天比原计划多吃10千克,这批蔬菜可以吃多少天?
例5、一个工程队修一条公路,原计划每天修450米。
80天完成。
现在要求提前20天完成,平均每天应修多少米?
例6、家具厂生产一批小农具,原计划每天生产120件,28天完成任务;实际每天多生产了20件,可以提前几天完成任务?
例7、装运一批粮食,原计划用每辆装24袋的汽车9辆,15次可以运完;现在改用每辆可装30袋的汽车6辆来运,几次可以运完?
例8、修整一条水渠,原计划由8人修,每天工作7.5小时,6天可以完成任务,由于急需灌水,增加了2人,要求4天完成,每天要工作几小时?(一个工人一小时的工作量,叫做一个“工时”)
例9、一项工程,预计30人15天可以完成任务。
后来工作4天后,又增加3人。
如果每人工作效率相同,这样可以提前几天完成任务?
例10、一个农场计划28天完成收割任务,由于每天多收割7公顷,结果18天完成了任务。
实际每天收割多少公顷?
例11、休养所准备了120人30天的粮食,5天后又新来30人,余下的粮食还够吃多少天?
例12、一项工程原计划8个人每天工作6小时,10天可以完成。
现在为加快工程进度,增加22人,每天工作时间增加2小时,这样可以提前几天完成这项工程?
例13、修一条路,原计划每天修0.4千米,70天可以修完。
实际每天修的米数是计划的1.25倍。
实际用多少天完成?
例14、绿化队植树,计划8天完成任务。
实际每天植树240棵,7天就完成了全部的植树任务。
实际比计划每天多植树多少棵?。