生物降解材料
- 格式:pdf
- 大小:248.01 KB
- 文档页数:13
⽣物可降解材料可⽣物降解的材料有天然⾼分⼦、⽣物合成⾼分⼦、⼈⼯合成⾼分⼦、⽣物活性玻璃、磷酸三钙等。
天然⾼分⼦均为亲⽔性材料,如胶原、明胶、甲壳素、淀粉、纤维素、透明质酸等,它们在⼈体内的降解速度与材料在⼈体⽣理环境下的溶解特性有关。
例如明胶分⼦能够溶于与体液相似pH 值为714 的⽣理盐⽔中,因⽽必须先进⾏交联才能作为材料在⼈体中使⽤[4~6 ] ,其交联产物在⼈体内降解2溶解的速度很快,⼏天内就可被⼈体完全吸收。
与此相对应,在正常⽣理环境下不溶解的天然⾼分⼦,如甲壳素(在酸性环境下溶解) [7 ] ,其降解速率就要慢得多。
磷酸三钙具有良好的⽣物相容性、⽣物活性以及⽣物降解性,是理想的⼈体硬组织修复和替代材料,在⽣物医学⼯程学领域⼀直受到⼈们的密切关注。
医学上通常使⽤的是磷酸三钙的⼀种特殊形态—β-磷酸三钙。
β-磷酸三钙主要是由钙、磷组成,其成分与⾻基质的⽆机成分相似,与⾻结合好。
动物或⼈体细胞可以在β-磷酸三钙材料上正常⽣长,分化和繁殖。
通过⼤量实验研究证明:β-磷酸三钙对⾻髓造⾎机能⽆不良反应,⽆排异反应,⽆急性毒性反应,不致癌变,⽆过敏现象。
因此β-磷酸三钙可⼴泛应⽤于关节与脊柱融合、四肢创伤、⼝腔颌⾯的外科、⼼⾎管外科,以及填补⽛周的空洞等⽅⾯。
随着⼈们对β-磷酸三钙研究的不断深⼊,其应⽤形式也出现了多样化,幵在临床医学中体现了较好的性能。
梁⼽等通过实验发现其溶⾎程度<5%,当β-磷酸三钙被植⼊⼈体内后,其在体液中能发⽣降解和吸收,钙、磷被体液吸收后进⼊⼈体循环系统,⼀定时间后植⼊⼈体的β-磷酸三钙逐渐溶解消失,形成新⾻。
Arai等利⽤β-磷酸三钙多孔陶瓷填充8~15cm 的腓⾻节段缺损,获得了腓⾻再⽣。
平均术后2个⽉即可达到重建。
不会发⽣踝关节及胫⾻的移位。
郑承泽等将β-磷酸三钙与⾃体⾻髓复合应⽤于临床,修复包括肿瘤性⾻缺损和陈旧性⾻折⾻缺损,经术后调查,结果显⽰植⼊材料的成⾻作⽤明显,说明β-磷酸三钙与⾃体⾻髓复合是⼀种治疗⾻缺损理想的⽅法。
可生物降解高分子材料的分类及应用生物降解高分子材料是指通过微生物、酶或其他生物作用而能够分解成简单物质并最终转化为无害物质的高分子材料。
它是一种具有环保特性的材料,与传统材料相比,生物降解高分子材料可以更好地保护环境和资源。
根据生物降解高分子材料的结构和用途,可以将其分为以下几类。
一、生物可降解聚合物生物可降解聚合物主要由天然物质如淀粉、纤维素、脂肪酸等通过化学或生物转化制得。
这些材料可以被微生物或酶降解为二氧化碳、水和其他简单有机物,对环境没有污染。
生物可降解聚合物应用广泛,如包装材料、医药、土壤保护和制造复合材料等。
二、合成高分子合成高分子是人工制造的高分子材料,在化学结构和物理性质上与传统塑料类似,但是经过特殊加工和处理可以被生物降解分解。
合成高分子的生物降解性受其化学结构和分子量的影响,通常需要经过改性和添加生物降解助剂等措施才能够实现生物降解。
合成高分子的应用包括餐具、包装材料、医用材料和环保复合材料等。
三、生物基复合材料生物基复合材料由天然纤维如木材、麻、竹等与生物可降解高分子复合而成。
这种复合材料具有较好的生物降解性能,同时保持了天然材料的优良性能,如强度和耐久性。
生物基复合材料可以替代传统材料,用于汽车、航空、建筑、家具等领域。
四、生物基聚氨酯生物基聚氨酯是一种新型的生物可降解高分子材料,由多元醇、异氰酸酯等反应制得。
生物基聚氨酯可以通过微生物降解为天然氨基酸和其他有机物,对环境无污染,同时具有优良的力学性能和耐热性能。
生物基聚氨酯的应用包括医药、包装、造纸等领域。
总的来说,生物降解高分子材料具有广泛的应用前景,但是它们的生产和应用还需要进一步发展和完善,以加快其应用和推广的进程,进一步保护环境和资源。
生物降解材料的研究及发展趋势生物降解材料是一种能被生物体代谢分解为无毒、无害的物质的材料,具有广阔的应用前景和环保意义。
与传统的合成材料相比,生物降解材料不会对环境产生永久性的污染,同时对人体健康也没有危害。
因此,生物降解材料成为近年来热门的研究领域之一。
一、背景介绍人类生活不断地依赖于材料,生产出的产品让我们的生活更加便利、舒适。
但是传统的合成材料不断对地球环境产生影响,使得环境污染越来越严重。
传统材料往往具有不良的耐久性,如果不能完全回收和再利用,就会在环境中存在较长时间。
例如塑料袋,在被人使用后往往会被随意丢弃,进入河流、海洋,在长时间内难以分解,对海洋的生态系统产生危害。
与之相反,生物降解材料作为一种全新类型的材料,它所使用的原材料主要来自生物大分子、生物聚合物和天然有机物等,目前已经在食品、医疗、农业、纺织、建筑、包装等领域得到广泛应用。
生物降解材料可以在短时间内被微生物降解为无毒、无害的物质,对于环境的污染减少了很多。
二、生物降解材料的种类生物降解材料大体上可以分为三类:生物可降解的聚合物材料、天然纤维素材料和生物质材料。
1. 生物可降解的聚合物材料生物可降解的聚合物材料是目前生物降解材料中研究和应用最广泛的种类,它主要是以土壤微生物降解为主。
其中,聚乳酸(PLA)、聚羟基脂肪酸酯(PHAs)、聚己内酯(PCL)、聚丙烯酸酯(PAA)等是较为常见的生物可降解材料。
这类材料的优点是可以经常热塑性加工,制备方式类似于传统的石油聚合物的制备方式。
2. 天然纤维素材料天然纤维素材料是一种天然有机物材料,它是以木质素、纤维素等天然高分子化合物作为原料,经过一定加工工艺后制成的。
这类材料做出来比较坚硬和有强度,适合制作需要耐久度较高和稳定性好的食品包装材料。
3. 生物质材料生物质材料来源于农业和林业废弃物,是一种资源和能源的复合材料。
这类材料的研究主要是为了解决环境中农业和林业发展所面临的问题,可以通过转化为汽车部件、建筑材料、生物燃料、肥料等降低对环境的污染。
生物降解材料的制备与性能研究一、引言生物降解材料是近年来广受关注的研究领域之一。
随着环境污染和资源匮乏问题的日益突出,寻找可替代传统塑料的生物降解材料成为了迫切需求。
本文将探讨生物降解材料的制备与性能研究的最新进展。
二、生物降解材料的制备方法2.1 天然材料的利用许多天然材料本身就具有良好的生物降解性能,例如纤维素、蛋白质和淀粉等。
这些天然材料可以通过简单的物理或化学方法进行提取和改性,以用于制备生物降解材料。
其中,纤维素基材料在包装和纺织等领域得到了广泛应用。
2.2 合成材料的改性某些合成材料可以通过添加生物降解剂、控制反应条件或引入活性基团等方式进行改性,使其具备良好的生物降解性能。
例如,聚丙烯酸酯可以通过引入酯键断裂点,实现其在自然环境中的降解。
三、生物降解材料的性能研究方法3.1 降解性能测试生物降解材料的降解性能是评价其可行性的重要指标之一。
常用的测试方法包括水分吸收性、质量损失率和失重率等。
这些指标可以帮助确定材料在不同环境条件下的降解速率与稳定性。
3.2 力学性能测试力学性能对生物降解材料的实际应用至关重要。
拉伸强度、弯曲强度和冲击强度等指标可以通过标准试验方法进行测定。
力学性能的研究有助于评估材料的可靠性和承载能力。
3.3 生物降解产物分析生物降解材料在降解过程中会产生一系列物质,如有机酸、水和二氧化碳等。
分析这些降解产物可以了解材料的降解路径和反应机理。
常用的分析方法包括气相色谱、质谱和核磁共振等。
四、生物降解材料的应用前景生物降解材料在包装、医疗和农业等领域具有广阔的应用前景。
例如,将生物降解材料应用于食品包装可以减少传统塑料包装对环境的影响。
此外,生物降解材料还可以应用于植物保护剂的封装和农药载体等。
五、存在的问题与挑战生物降解材料的研究存在着一些挑战和问题,例如降解速率与材料的稳定性之间的平衡、制备工艺的标准化和市场推广等。
此外,如何在生物降解材料中添加功能性物质,以满足特定的应用需求,也是当前研究的热点之一。
生物降解原材料
生物降解原材料是指在自然环境中可以被微生物分解为无害物质
的材料。
这些原材料通常来自于可再生资源,如植物、动物或微生物,而且在使用过程中不会对环境造成污染。
常见的生物降解原材料包括:
1. 聚乳酸(PLA):聚乳酸是一种由玉米淀粉或其他植物淀粉制成的生物塑料,可在自然环境中被微生物分解为二氧化碳和水。
2. 聚羟基丁酸酯(PHB):聚羟基丁酸酯是一种由细菌发酵产生
的生物塑料,可在自然环境中被微生物分解为二氧化碳和水。
3. 纤维素:纤维素是一种由植物细胞壁制成的天然材料,可在自
然环境中被微生物分解为二氧化碳和水。
4. 淀粉:淀粉是一种由植物制成的天然材料,可在自然环境中被
微生物分解为二氧化碳和水。
5. 生物聚酯:生物聚酯是一种由可再生资源制成的生物塑料,可
在自然环境中被微生物分解为二氧化碳和水。
这些生物降解原材料通常用于生产一次性餐具、包装材料、垃圾袋等产品,以减少对环境的污染。