高中数学 第三章 基本初等函数(Ⅰ)3.3 幂函数情境导学素材 新人教B版必修1
- 格式:doc
- 大小:75.50 KB
- 文档页数:1
高中数学第三章基本初等函数(Ⅰ)3.3 幂函数教学素材新人教B版必修1 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第三章基本初等函数(Ⅰ)3.3 幂函数教学素材新人教B版必修1)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第三章基本初等函数(Ⅰ)3.3 幂函数教学素材新人教B版必修1的全部内容。
3.3 幂函数教学建议1.注意幂函数y=xα的图象随指数α取值的不同而变化的分布规律及图象特征、性质的区别.幂函数的图象与其他函数相比,在理解和记忆上都感到比较困难,因为其形状和位置的变化都很复杂,对幂函数的图象分布应该引导学生进行一番研究,细致体会发现其规律性东西加以整理归纳记忆.幂函数y=xα的图象的变化有如下规律(如右图):总体上,所有幂函数图象都过点(1,1);随着α由-∞逐渐变大到+∞,图象绕点(1,1)逆时针旋转。
设第一象限被直线x=1,y=1,y=x分为六个部分,依次记作Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ、Ⅵ,则当α∈(-∞,0)时,图象穿过Ⅰ、Ⅳ部分;当α∈(0,1)时,图象穿过Ⅱ、Ⅴ部分;当α∈(1,+∞)时,图象穿过Ⅲ、Ⅵ部分;注意直线y=1,y=x(x≠0)分别是幂函数y=xα在α=0,1时的图象.图象如何绕点(1,1)旋转,观察上图就清楚了.对不同的α图象穿过哪两个部分,只要根据幂函数图象的特点,画一条经过点(1,1)、(2,2α)的曲线就可以了。
另外,根据幂函数图象的上述变化规律,对于任意的α∈R,幂函数y=xα的图象就能大致定位了.2。
给定一组数值,比较大小的步骤.第一步:区分正负.一是幂函数或指数函数值(幂式)确定符号;二是对数式确定符号,根据各自的性质进行.第二步:正数通常还要区分大于1还是小于1.第三步:同底的幂,用指数函数单调性;同指数的幂用幂函数单调性;同底的对数用对数函数单调性.第四步:对于底数与指数均不相同的幂,或底数与真数均不相同的对数值大小的比较,通常是找一中间值过渡或化同底(化同指)、或放缩、有时作商(或作差)、或指对互化,对数式有时还用换底公式作变换等等.3.(1)幂函数定义域的求法分以下5种情形:①α=0;②α为正整数;③α为负整数;④α为正分数;⑤α为负分数。
3.1.1实数指数幂及其运算【学习要点】1根式、分数指数幂的概念.2分数指数的运算性质.【学习要求】1理解根式和分数指数幂的概念及它们的运算性质.了解实数指数幂的意义。
2 会进行简单的运算。
【复习引入】1 、相同因数相乘个n a aaa ⋅⋅⋅记作na ,读作 ,a 叫做幂的 , n 叫做幂的 。
其中n 是正整数。
2、 正整数指数幂的性质:(1) (2) (3) (3)【概念探究】阅读教材85页到88页例1,完成下列各题。
1、 指数概念的扩充:n a 中的n 可以扩展为整数。
整数指数幂的性质为:(1) (2) (3) 。
2 、0a = ,n a -=3、零指数幂和负整数指数幂都要求 。
4、 如果存在实数x ,使得(,1,)nx a a R n n N +=∈>∈,则x 叫作 。
求a 的n 次方根,叫作把a 开n 次方,称作 。
5、规定正分数指数幂的定义是:(1) (2) 。
规定负分数指数幂的定义是: 。
规定0的正分数指数幂为0,0的负分数指数幂和0次幂 。
规定了分数指数幂以后,指数的概念也就从整数指数扩展到了 指数。
6 、有理指数幂的运算性质有:(1) (2) (3) 。
完成教材89页1题【例题解析】例题1计算下列各式,并把结果化为只含正整数指数的形式(式子中的,0a b ≠)(1)322123(3)9a b a b a b------=(2)34320()()[]()()a b a b a b a b --+--+(0,0)a b a b +≠-≠例题2化简下列各式 (12(23)1020.5231(2)2(2)(0.01)54--+⨯-小结:化简,注意体会指数的运算性质。
例3: 化简:332ba abb a练习:(1【补充练习】1、 化简,注意体会指数的运算性质:(1)22252432()()()a b a b a b --÷ (2)340.10.01--3、 求值,注意体会分数指数幂与根式的转换:(1) 2 1.53(0.027)-; (2; (3完成教材89页2题3.1.2 指数函数【学习要点】1. 了解指数函数模型的实际背景,认识数学与现实生活及其他学科的联系; 2. 理解指数函数的概念和意义;3. 能画出具体指数函数的图象,掌握指数函数的性质(单调性、特殊点). 【学习过程】一、新课导学探究任务一:指数函数模型思想及指数函数概念实例:细胞分裂时,第 1 次由1个分裂成 2 个,第 2 次由2个分裂成 4 个,第 3 次由4个分裂成 8 个,如此下去,如果第 x 次分裂得到 y 个细胞,那么细胞个数 y 与次数x 的关系式是什么?_________________________________.【讨论】:(1)这个关系式是否构成函数? (2)是我们学过的哪个函数?如果不是,你能否根据该函数的特征给它起个恰当的名字? 新知:一般地,函数)1,0(≠>=a a a y x 且叫做________函数,其中x 是自变量,函数的定义域是R .反思1:为什么规定10≠>a a 且呢?否则会出现什么情况呢? 【讨论】:则若,0=a _______________________________________. 则若,0<a _______________________________________.则若,1=a _______________________________________.反思2:函数x y 32⨯=是指数函数吗? 《学生活动》下列函数哪些是指数函数?(1)xy 3= (2)x y 12= (3)xy )2(-= (4)13+=xy (5)xy 23= (6)xy π= (7)24x y = (8))121()12(≠>-=a a a y x且____________________________探究任务二:指数函数的图象和性质引言:你能类比前面讨论函数性质时的思路,提出研究指数函数性质的内容和方法吗?回顾:(1)研究方法:画出函数图象,结合图象研究函数性质.(2)研究内容:定义域、值域、特殊点、单调性、最大(小)值等等.《作图》:在同一坐标系中画出下列函数图象:x y 2= x y )1(=《练习》在上面的坐标系中继续作出xxy y )31(3==与的图像【讨论】新知:根据图象归纳指数函数的性质《巩固训练》1. 函数xa y =中,无论10,0<<>a a 还是,都经过______________. 2. 指数函数x a y =中,x a 和的取值范围分别是_________________________. 3. 若函数xa y )12(+=是减函数,则a 的取值范围是__________________.二、典型例题例1:求下列函数的定义域: (1)23-=x y (2)x y 1)21(=例2:已知指数函数xa x f =)((1,0≠>a a 且)的图象经过点),3(π,求)3(),1(),0(-f f f 的值.例3:比较下列各题中两个值的大小: (1) 35.27.1 ,7.1 (2) 2.01.08.0 ,8.0-- (3) 1.33.09.0 ,7.1(4) 比较2131a a 与的大小,)1,0(≠>a a 且《练习》1. 求下列函数的定义域: (1)xy -=32 (2)123+=x y (3)xy 5)21(= (4)x y 17.0=2. 比较下列各题中两个数的大小: (1) 7.08.03,3(2) 1.01.075.0 ,75.0-(3) 5.37.201.1 ,01.1(4)已知的大小关系是则c b a c b a ,,,2.1,8.0,8.08.09.07.0===_____________________.3.2.1对数及其运算(1)【学习要点】1. 理解对数的概念;2. 能够说明对数与指数的关系;3. 掌握对数式与指数式的相互转化.【学习要点】理解对数概念,能够进行对数式与指数式的互化。
幂函数教学设计一、教学目标1.知识与技能 理解、掌握幂函数的图象与性质,并进一步掌握研究函数的一般方法。
2.过程与方法 渗透分类讨论、数形结合的思想及类比、联想的学习方法,提高归纳与概括的能力。
3.情感态度价值观 培养积极思考,通过自主探索获取新知的学习习惯和科学严谨的学习态度;体会从特殊到一般的思维过程. 二、教学重、难点本节课的重点内容是幂函数在第一象限的图象与性质及研究幂函数的一般方法。
相对于指数函数与对数函数来说,幂函数的情况比较复杂,对幂函数图象的共性的归纳是本节课的难点。
学情分析及教学内容分析 三、学情分析 1.知识储备方面学习幂函数之前,学生在初中已经掌握了一次函数,二次函数,正比例函数,反比例函数几类基本初等函数,并且在高中阶段独立探究过指数函数与对数函数的图象与性质,基本掌握了研究函数的一般方法与过程.由于幂函数的情况比较复杂,学生在对图象共性的归纳与概括方面可能遇到困难. 2. 思维水平方面所授课班级是理科实验9班,学生有较高的数学素养和较强的数学思维能力,对数学充满探索精神,对课堂教学有较高需求. 四. 教学内容分析1.幂函数在教材中的地位幂函数是新课标教材新增的内容,位于必修1第三章基本初等函数(Ⅰ)的第三节.在过渡性教材中,曾将幂函数这一内容删掉了,新课标又把幂函数重新编入教材,而相比起人教版的旧教材,幂函数的地位和难度都有所下降,新教材将幂函数的位置放到了指数函数与对数函数之后,并且将幂函数研究的对象限定为五个具体函数,通过研究它们来了解幂函数的性质. 2.幂函数的作用新教材将幂函数重新加入,主要考虑到幂函数在以下几方面的作用: 1.是幂函数在实际中的应用.2.学生在初中已经学习了x y =、2x y =、1-=x y 三个简单的幂函数,对它们的图象和性质已经有了一定的感性认识.现在明确提出幂函数的概念,有助于学生形成完整的知识结构.3.幂函数是基本初等函数(Ⅰ)研究的最后一个函数,在指数函数和对数函数之后,幂函数的学习与探究过程可体现类比的学习方法,渗透分类讨论数形结合的数学思想,培养归纳、概括的能力,并使学生进一步体会并掌握研究基本初等函数的一般思路与方法.组织探究二、幂函数的定义自然地,给出幂函数定义(板书,学生打开课本)一般地,形如:αxy=)(Ra∈的函数称为幂函数,其中α为常数.(由上面的式子可以看出幂函数和幂联系紧密,由于根式推广时,我们仅推广到有理数的情况,所以仅研究有理数)。
幂 函 数一、教材分析了三个特殊函数:二次函数、指数函数和对数函数,对怎样研究函数已经有了清晰的思路和方法.教材将幂函数放在指数函数和对数函数的学习之后,原因有三:第一,幂函数中有一特殊函数21x y =,学生在没有学习分数指数幂之前,不能从根本上理解此式;第二,学生在初中已经学习了12,,-===x y x y x y 三个简单的幂函数,在第一章中也通过信息技术应用知晓了函数3x y =,对它们的图象和性质已经有了一定的直观认知,现在明确提出幂函数的概念,有助于学生形成系统的知识结构;第三,有了之前的铺垫,幂函数的学习过程可以类比二次函数、指数函数、对数函数的研究方法,渗透分类讨论、数形结合的数学思想,达到培养学生归纳、概括的能力的目的,使学生熟练的利用它们解决一些实际问题,体会从特殊到一般的研究过程,进一步树立利用函数的定义域、值域、奇偶性与单调性研究一个未知函数的意识,以便能为研究一般函数图象与性质提供一个可操作性步骤,从这个角度看,本节课的教学更是一个对学生研究函数的方法和能力的综合评测,是对之前研究函数的一个升华.二、教学目标1.知识与技能目标了解幂函数的概念, 会画五个简单的幂函数12132,,,,-=====x y x y x y x y x y 的图象,能根据图象概括出幂函数的一般性质,同时能应用幂函数的图象和性质解决相关的简单问题; 2.过程与方法目标引导学生从具体幂函数的图象与性质中归纳出共性,培养学生的识图能力和抽象概括能力,培养学生数形结合的意识;通过对幂函数的学习,了解类比法在研究问题中的作用,使学生进一步熟练掌握研究一般函数的思想方法;3.情感、态度与价值观目标通过师生、生生彼此之间的讨论、互动,引导学生主动参与作图、分析图象的特征,培养学生合作、交流、探究的意志品质,并在研究函数变化的过程中体会事物的量变、质变规律,感受数学的对称美、和谐美,同时信息技术的应用也会激发学生的求知欲望.三、教学重难点:重点:通过具体实例认识幂函数的概念,研究其性质,体会图象的变化规律. 难点:幂函数的图象与性质的简单应用 重、难点突破措施: 1.以情感人,以理醒人创设情境中:问题开题,扣人心弦;层层探究中:分类探究,步步为营,丝丝入扣. 2.数形结合现代的多媒体技术直观、形象展示幂函数的指数与图象之间的关联,突破重难点.四、设计理念与任务分析本节课遵循教师为主导,以学生为主体的原则,采用学生自主探究式的教学方法,重视思维发生的过程,注重提高学生的数学思维能力,注重发展学生的创新意识,注重信息技术与数学课程的有效整合,充分体现数学的应用价值、思维价值.围绕本节课的教学重点,教学过程中以“问题串” 的形式展开教学,逐步引导学生观察、思考、归纳、总结。
幂函数幂函数是继指数函数和对数函数后研究的又一基本函数。
通过本节课的学习,学生将建立幂函数这一函数模型,并能用系统的眼光看待以前已经接触的函数,进一步确立利用函数的定义域、值域、奇偶性、单调性研究一个函数的意识,因而本节课更是一个对学生研究函数的方法和能力的综合检测。
1.知识目标:(1)通过实例,了解幂函数的概念;(2)会画简单幂函数的图象,并能根据图象得出这些函数的性质;(3)了解幂函数随幂指数改变的性质变化情况。
2.能力目标:在探究幂函数性质的活动中,培养学生观察和归纳能力,培养学生数形结合的意识和思想。
3.情感目标:通过师生、生生彼此之间的讨论、互动,培养学生合作、交流、探究的意识品质,同时让学生在探索、解决问题过程中,获得学习的成就感。
四教学重点常见的幂函数的图象和性质。
五教学难点画幂函数的图象引导学生概括出幂函数性质。
六教学方法:探究研讨法,讲练结合法七教学过程(一)创设情境问题一:下列问题中的函数各有什么特征?(1)如果张红购买了每千克1元的蔬菜w(kg),那么她应支付p=w元.这里p是w 的函数.(2)如果正方形的边长为a,那么正方形的面积为S=a2.这里S是a的函数.(3)如果立方体的边长为a,那么立方体的体积为V=a3.这里V是a的函数.(4)如果一个正方形场地的面积为S,那么这个正方形的边长为a=.这里a是S 的函数.(5)如果某人t(s)内骑车行进了1km,那么他骑车的平均速度为v=t-1(km/s).这里v是t的函数.请学生讨论、总结并回答,即可得出:p=w,s=a2,a=,v=t-1都是自变量的若干次幂的形式.问题二:这五个函数关系式从结构上看有什么共同的特点吗?提示学生:可以用x表示自变量,用y表示函数值,那么,上述函数式变成:y=x a的函数,其中x是自变量,a是实常数.由此揭示课题:今天这节课,我们就来研究:幂函数。
(二)、建立模型定义:一般地,函数y=x a叫作幂函数,其中x是自变量,a是实常数。
幂函数教学设计
一.教学设计思路
幂函数作为一类重要的函数模型,是学生在系统地学习了指数函数、对
数函数之后研究的又一类基本的初等函数。
幂函数模型在生活中是比较常见的,学习时结合生活中的具体实例来引出常见的幂函数。
组织学生画出他们的图象,根据图象观察、总结这几个常见幂函数的性质。
对于幂函数只需重点掌握这五个函数的图象和性质。
学习中学生容易将幂函数和指数函数混淆,因此在引出幂函数的概念之后,可以组织学生对两类不同函数的表达式进行辨析。
学生已经有了学习指数函数和对数函数的学习经历,这为学习幂函数做好了方法上的准备。
因此,学习过程中,引入幂函数的概念之后,尝试放手让学生自己进行合作探究学习。
二、课程标准:
通过具体实例,结合231,,,y x y y x y y x x
=====的图象,理解它们的变化规律,了解幂函数。
三.教学目标
知识与技能:通过实例,了解幂函数的概念,结合函数的图像,了解他们的变化情况,掌握研究一般幂函数的方法和思想.
过程与方法:使学生通过观察函数的图像来总结性质,并通过已学的知识对总结出的性质进行解释,从而达到对任一幂函数性质的分析
情感、态度、价值观:通过引导学生主动参与作图,分析图像的过程,培养学生的探索精神,在研究函数的变化过程中渗透辩证唯物主义观点。
重难点
重点:从五个具体幂函数中认识并总结幂函数的性质
难点: 画出幂函数的图象并概括其性质,体会变化规律
教学方法与手段
借助多媒体,合作探究+展示+应用+总结
教学基本流程。
高中数学人教B版教材目录高中数学(B版)必修一第一章集合第二章函数函数的概念和性质,一次函数和二次函数,函数与方程第三章基本初等函数(Ⅰ)指数与指数函数对数与对数函数幂函数高中数学(B版)必修二第一章立体几何初步空间几何体的表面积和体积三视图第二章平面解析几何初步中点坐标公式两点间距离公式直线方程圆的方程空间直角坐标系(文不学)高中数学(B版)必修三第一章算法初步程序(主要是和必修五数列的内容结合考)第二章统计茎叶图和??第三章概率古典概型(文的重点)高中数学(B版)必修四第一章基本初等函(Ⅱ)任意角的概念与弧度制任意角的三角函数三角函数的图象与性质(主要是以三角函数的图像)第二章平面向量向量的线性运算向量的分解与向量的坐标运算平面向量的数量积(重点)第三章三角恒等变换和角公式倍角公式和半角公式(诱导公式)高中数学(B版)必修五第一章解三角形正弦定理和余弦定理第二章数列数列(一般数列的通项和前N项和,递推公式)等差数列等比数列第三章不等式均值不等式一元二次不等式及其解法(与集合放在一起,或者是解答题中)二元一次不等式(组)与简单线性规划问题(直线)(文)高中数学(B版)选修1-1第一章常用逻辑用语命题与量词基本逻辑联结词充分条件、必要条件与命题的四种形式(一般会出选择题)第二章圆锥曲线与方程椭圆双曲线抛物线第三章导数及其应用导数导数的运算高中数学(B版)选修1-2第一章统计案例第二章推理与证明第三章数系的扩充与复数的引入第四章框图选修2-1第一章常用逻辑用语命题及其关系充分条件与必要条件简单的逻辑联结词全称量词与存在量词第二章圆锥曲线与方程曲线与方程椭圆双曲线抛物线第三章空间向量与立体几何空间向量及其运算阅读与思考向量概念的推广与应用立体几何中的向量方法选修2-2第一章导数及其应用变化率与导数导数的计算导数在研究函数中的应用定积分的概念微积分基本定理定积分的简单应用第二章推理与证明合情推理与演绎推理直接证明与间接证明数学归纳法第三章数系的扩充与复数的引入数系的扩充和复数的概念复数代数形式的四则运算选修2-3第一章计数原理分类加法计数原理与分步乘法计数原理排列与组合探二项式定理第二章随机变量及其分布离散型随机变量及其分布列二项分布及其应用离散型随机变量的均值与方差第三章统计案例回归分析的基本思想及其初步应用独立性检验的基本思想及其初步应用。