2013年福建省泉州市中考数学试题(word版,含答案)
- 格式:doc
- 大小:673.50 KB
- 文档页数:14
福建省泉州市2013年中考数学试卷一、选择题(每小题3分,共21分)B4.(3分)(2013•泉州)把不等式组的解集在数轴上表示出来,正确的是( )B,7.(3分)(2013•泉州)为了更好保护水资源,造福人类,某工厂计划建一个容积V(m)一定的污水处理池,池的底面积S(m2)与其深度h(m)满足关系式:V=Sh(V≠0),则S关于h的函数图象大致是()B(y=二、填空题(每小题4分,共40分):在答题卡上相应题目的答题区域内作答. 8.(4分)(2013•泉州)的立方根是.的立方根是;故答案为:.= (1+x )(1﹣x ) .示为 1.1×105.11.(4分)(2013•泉州)如图,∠AOB=70°,QC⊥OA于C,QD⊥OB于D,若QC=QD,则∠AOQ=35°.AOQ=∠A0B=12.(4分)(2013•泉州)九边形的外角和为360°.13.(4分)(2013•泉州)计算:+=1.14.(4分)(2013•泉州)方程组的解是.故原方程组的解为状一定是平行四边形.AC EF=AC16.(4分)(2013•泉州)如图,菱形ABCD的周长为8,对角线AC和BD相交于点O,AC:BD=1:2,则AO:BO=1:2,菱形ABCD的面积S=16.,,=16结果是12,第2次输出的结果是6,第3次输出的结果是3,依次继续下去…,第2013次输出的结果是3.代入x次输出的结果是×次输出的结果是×次输出的结果为×次输出的结果为×次输出的结果为×18.(9分)(2013•泉州)计算:(4﹣π)0+|﹣2|﹣16×4﹣1+÷.4+2÷19.(9分)(2013•泉州)先化简,再求值:(x﹣1)+x(x+2),其中x=.时,原式交AD的延长线于点F,求证:BE=CF.21.(9分)(2013•泉州)四张小卡片上分别写有数字1、2、3、4,它们除数字外没有任何区别,现将它们放在盒子里搅匀.(1)随机地从盒子里抽取一张,求抽到数字3的概率;(2)随机地从盒子里抽取一张,将数字记为x,不放回再抽取第二张,将数字记为y,请你用画树状图或列表的方法表示所有等可能的结果,并求出点(x,y)在函数y=图象上的概率.的概率为;P=.(1)求a的值;(2)若点A(m,y1)、B(n,y2)(m<n<3)都在该抛物线上,试比较y1与y2的大小.23.(9分)(2013•泉州)某校开展“中国梦•泉州梦•我的梦”主题教育系列活动,设有征文、独唱、绘画、手抄报四个项目,该校共有800人次参加活动.下面是该校根据参加人次绘制的两幅不完整的统计图,请根据图中提供的信息,解答下面的问题.(1)此次有200名同学参加绘画活动,扇形统计图中“独唱”部分的圆心角是36度.请你把条形统计图补充完整.(2)经研究,决定拨给各项目活动经费,标准是:征文、独唱、绘画、手抄报每人次分别为10元、12元、15元、12元,请你帮学校计算开展本次活动共需多少经费?动的一个雏形,如图所示,甲、乙两点分别从直径的两端点A、B以顺时针、逆时针的方向同时沿圆周运动,甲运动的路程l(cm)与时间t(s)满足关系:l=t2+t(t≥0),乙以4cm/s的速度匀速运动,半圆的长度为21cm.(1)甲运动4s后的路程是多少?(2)甲、乙从开始运动到第一次相遇时,它们运动了多少时间?(3)甲、乙从开始运动到第二次相遇时,它们运动了多少时间?ttt t+4t=21t t+4t=63直线BC上的动点.(1)求∠ABC的大小;(2)求点P的坐标,使∠APO=30°;(3)在坐标平面内,平移直线BC,试探索:当BC在不同位置时,使∠APO=30°的点P的个数是否保持不变?若不变,指出点P的个数有几个?若改变,指出点P的个数情况,并简要说明理由.﹣中,令y=2),==2,),APO=∠∠2,0)作EF∥AB,交BO于F;(1)求EF的长;(2)过点F作直线l分别与直线AO、直线BC交于点H、G;①根据上述语句,在图1上画出图形,并证明=;②过点G作直线GD∥AB,交x轴于点D,以圆O为圆心,OH长为半径在x轴上方作半圆(包括直径两端点),使它与GD有公共点P.如图2所示,当直线l绕点F旋转时,点P也随之运动,证明:=,并通过操作、观察,直接写出BG长度的取值范围(不必说理);(3)在(2)中,若点M(2,),探索2PO+PM的最小值..所以,则问题转化为证明.根据①中的结论,易得,故问题得证.∠,即×=2由①得:.)可得:=,再认真检查一遍,估计一下你的得分情况,如果你全卷得分低于90分(及格线),则本题的得分将计入全卷总分,但计入后全卷总分不超过90分;如果你全卷已经达到或超过90分,则本题的得分不计入全卷总分.27.(2013•泉州)方程x+1=0的解是x=﹣1.28.(2013•泉州)如图,∠AOB=90°,∠BOC=30°,则∠AOC=60°.。
福建省泉州市2013年中考数学模拟试题三 华东师大版一、选择题(每小题3分,共21分)每小题只有一个答案是正确的,答对的得3分,答错、不答或答案超过一个的一律得0分. 1.-3的绝对值是( ) A .3; B .-3; C .31; D . 31-. 2. 已知∠1=40°,则∠1的余角的度数是( )A .40°;B .50°;C .140 °;D .150°. 3.不等式组10420x x ->⎧⎨-⎩,≤的解集在数轴上表示为 ( )4.要使分式11x +有意义,则x 应满足的条件是( )A .1x ≠ ;B .0x ≠ ;C .1x ≠- ;D .1x >.5.下图中几何体的左视图是 ( )6.若两圆的半径分别是3cm 和4cm ,圆心距为6cm ,则这两圆的位置关系是 ( )A .外离;B .内切;C .外切; D. 相交.7.在平面直角坐标系中,已知直线343+-=x y 与x 轴、y 轴分别交于A 、B 两点,点C(0,n )是y 轴上一点.把坐标平面沿直线AC 折叠,使点B 刚好落在x 轴上,则n 的值是( )A.3或4;B. 3或12;C. 3或-4;D. 3或-12.二、填空题(每小题4分,共40分). 8.计算:34a a ⋅= .9.分解因式:x x 422- = .10.宝岛台湾的面积为36000平方公里,用科学记数法表示约为 平方公里. 11.六边形的内角和等于 °.ABCD正面A CB D12.在体育测试中5名同学的成绩分别是(单位:分)90,85,89,90,92,则这组数据的众数为 .13.如图,∠A 是⊙O 的圆周角,∠A=60°,则∠BOC 的度数为 °. 14.已知△ABC 与△DEF 的相似比为3∶5,则它们的周长比为 .15.在反比例函数x y 3-=中,当0>x 时,函数值y 随着x 的增大而_________.16.关于x 的方程211x ax +=-的解是正数,则a 的取值范围是 ____ . 17.如图,点A,B 为直线y x =上的两点,过A,B 两点分别作y 轴的平行线交双曲线xy 1=(0>x )于C,D 两点. 若BD=2AC. (1) 直线y x =与双曲线x y 1=(0>x )的交点坐标为( , )(2)则4CO 2-OD 2的值为 .三、解答题(共89分)在答题卡上相应题目的答题区域内作答. 18.(9分)计算:│-3│-18÷2+20130-(51)-119.(9分)先化简,再求值:)1)(1()3(-+-+a a a ,其中23-=a .20.(9分)初三(1)班同学每人从篮球、排球、羽毛球和乒乓球中选取一项做为课外活动项目.下面是选取的两个不完整统计图(图1和图2).根据图中提供的信息, 请解答以下问题:(1)初三(1)班共有多少名学生?(2)计算参加乒乓球运动的人数,并在条形统计图(图1)中,将表示“乒乓球”的部分补充完整;(3)求出扇形统计图中“羽毛球”扇形圆心角的度数.21.(9分)如图,在矩形ABCD 中,E,F 为BC 上两点,且BE=CF . 求证: △ABF ≌△DCE .22.(9分)一个不透明的口袋里装有红、白、黄三种颜色的小球(除颜色外其余都相同), 其中白球有2个,黄球有1个.若从中任意摸出一个球,这个球是黄球的概率为51. (1)求口袋中红球的个数;(2)把口袋中的球搅匀后摸出一个球,放回搅匀再摸出第二个球,摸出‘两个红球’ 和摸出‘两个白球’这两个事件发生的概率相等?为什么?A BCDE F乒乓球羽毛球排球篮球运动项目人数201612840图1乒乓球20% 羽毛球排球24%篮球40%图223.(9分)如图1,在底面积为l00cm 2、高为20cm 的长方体水槽内放人一个圆柱形烧杯.以恒定不变的流量速度先向烧杯中注水,注满烧杯后,继续注水,直至注满水槽为止,此过程中,烧杯本身的质量、体积忽略不计,烧杯在大水槽中的位置始终不改变.水槽中水面上升的高度h 与注水时间t 之间的函数关系如图2所示. (1)先向烧杯中注水,注满烧杯需要 秒; (2)注满水槽所用的时间为 秒; (3)注水的速度为 3cm /秒;(4)求烧杯的高度.24.(9分)某商店计划同时购进一批甲、乙两种型号的计算器,若购进甲型计算器3只和乙型计算器5只,共需要资金370元;若购进甲型计算器2只和乙型计算器7只, 共需要资金430元.(1)求甲、乙两种型号的计算器每只进价各是多少元?(2) 该商店计划购进这两种型号的计算器共50只,而可用于购买这两种型号的计算器的资金不少于2250元但又不超过2270元.该商店有几种进货方案? (3)已知商店出售一只甲型计算器可获利m 元,出售一只乙型计算器可获利(16-m )元,试问在(2)的条件下,商店采用哪种方案可获利最多?(商家出售的计算 器均不低于成本价)图1 图220)25.(13分)如图1,在平面直角坐标系xoy中,菱形OABC的顶点O与坐标原点重合,点 A的坐标分别为A(4,3),点B在x轴的正半轴上.(1)求OA的长;(2)动点P从点O出发以每秒1个单位长度的速度,在菱形OABC的边上依次沿O—A—B—C的顺序向点C运动,当点P与点C重合时停止运动.①设点P的运动时间为t秒,△POC的面积为S,求S与t的函数关系式.②已知Q是∠AOB的角平分线上的动点,当点P在线段OA上时,求PQ+AQ的最小值.26.(13分) 如图,已知抛物线322++-=x x y 与x 轴交于A 、B 两点(点B 在点A 的 右侧),与y 轴交于点C.(1)直接写出A 、B 、C 三点的坐标;(2)点M 是线段BC 上的点(不与B ,C 重合),设点M 的横坐标为m . ①若以A 为圆心、AM 长为半径的圆与直线BC 相切,求点M 的坐标; ②过点M 作MN ∥y 轴交抛物线于N ,连接NB 、NC ,当△BNC 的面积取最大值时, 求m 的值.③在②的条件下。
2013年福建省泉州市晋江市初中学业质量检查数学试卷(二)参考答案与试题解析一、选择题(每小题3分,共21分)每小题有四个答案,其中有且只有一个答案是正确的,请在答题卡上相应题目的答题区域内作答,答对的得3分,答错或不答的一律得0分..2.(3分)(2013•晋江市)如图,已知直线a∥b,直线c与a、b分别交点于A、B,∠1=50°,则∠2=()325.(3分)(2013•晋江市)若反比例函数的图象上有两点P1(2,y1)和P2(3,y2),那么()反比例函数解析式6.(3分)(2013•晋江市)如图,是由一个长方体和一个圆锥体组成的立体图形,其正视图是()B.7.(3分)(2013•晋江市)如图,E、F分别是正方形ABCD的边AB、BC上的点,BE=CF,连接CE、DF.将△BCE绕着正方形的中心O按逆时针方向旋转到△CDF的位置,则旋转角是()二、填空题(每小题4分,共40分)在答题卡上相应题目的答题区域内作答.8.(4分)(2013•晋江市)化简:﹣(﹣2)=2.9.(4分)(2013•晋江市)因式分解:4﹣a2=(2+a)(2﹣a).10.(4分)(2013•晋江市)从2013年起,泉州市财政每年将安排50000000元用于建设“美丽乡村”.将数据50000000用科学记数法表示为5×107.11.(4分)(2013•晋江市)计算:=1.﹣==112.(4分)(2013•晋江市)不等式组的解集是﹣1<x≤2.13.(4分)(2013•晋江市)某班派5名同学参加数学竞赛,他们的成绩(单位:分)分别为:80,92,125,60,97.则这5名同学成绩的中位数是92分.14.(4分)(2013•晋江市)正六边形的每个内角的度数是120度.15.(4分)(2013•晋江市)如图,在△ABC中,AB=AC,△ABC的外角∠DAC=130°,则∠B=65°.B=×16.(4分)(2013•晋江市)若a+b=5,ab=6,则a﹣b=±1.17.(4分)(2013•晋江市)如图,在Rt△ABC中,∠C=90°,∠A=30°,.若动点D在线段AC上(不与点A、C重合),过点D作DE⊥AC交AB边于点E.(1)当点D运动到线段AC中点时,DE=;(2)点A关于点D的对称点为点F,以FC为半径作⊙C,当DE=或时,⊙C与直线AB相切.,AB=2,BC=,故答案为:;,,由三角形面积公式得:AC=DF=AD=∴=,∴,;∴=,∴,故答案为:或三、解答题(共89分)在答题卡上相应题目的答题区域内作答.18.(9分)(2013•晋江市)计算:.19.(9分)(2013•晋江市)先化简,再求值:(x+3)2﹣x(x﹣5),其中.时,)+9=20.(9分)(2013•晋江市)如图,BD是菱形ABCD的对角线,点E、F分别在边CD、DA上,且CE=AF.求证:BE=BF.,21.(9分)(2013•晋江市)一个不透明的口袋中装有4张卡片,卡片上分别标有数字1、﹣2、﹣3、4,它们除了标有的数字不同之外再也没有其它区别,小芳从盒子中随机抽取一张卡片.(1)求小芳抽到负数的概率;(2)若小明再从剩余的三张卡片中随机抽取一张,请你用树状图或列表法,求小明和小芳两人均抽到负数的概率.=22.(9分)(2013•晋江市)如图,在方格纸中(小正方形的边长为1),△ABC的三个顶点均为格点,将△ABC 沿x轴向左平移5个单位长度,根据所给的直角坐标系(O是坐标原点),解答下列问题:(1)画出平移后的△A′B′C′,并直接写出点A′、B′、C′的坐标;(2)求出在整个平移过程中,△ABC扫过的面积.23.(9分)(2013•晋江市)为了创建书香校园,切实引导学生多读书、乐读书、会读书、读好书,某校开展“好书伴我成长”的读书活动,为了解全校学生读书情况,随机调查了50名学生读书的册数,并将全部调(1)表中的a=18,b=16,请你把条形统计图补充完整;(2)若该校共有2000名学生,请你根据样本数据,估计该校学生在本次活动中读书不少于3册的人数.(人)24.(9分)(2013•晋江市)为了让市民树立起“珍惜水、节约水、保护水”的用水理念,某市从2013年4月起,居民生活用水按阶梯式计算水价,水价计算方式如图所示,每吨水需另加污水处理费0.80元.已知小张家2013年4月份用水20吨,交水费49元;5月份用水25吨,交水费65.4元.(温馨提示:水费=水价+污水处理费)(1)m、n的值;(2)随着夏天的到来,用水量将增加.为了节省开支,小张计划把6月份的水费控制在不超过家庭月收入的2%.若小张家的月收入为8190元,则小张家6月份最多能用水多少吨?,解得25.(13分)(2013•晋江市)将矩形OABC置于平面直角坐标系中,点A的坐标为(0,4),点C的坐标为(m,0)(m>0),点D(m,1)在BC上,将矩形OABC沿AD折叠压平,使点B落在坐标平面内,设点B的对应点为点E.(1)当m=3时,点B的坐标为(3,4),点E的坐标为(0,1);(2)随着m的变化,试探索:点E能否恰好落在x轴上?若能,请求出m的值;若不能,请说明理由.(3)如图,若点E的纵坐标为﹣1,抛物线(a≠0且a为常数)的顶点落在△ADE的内部,求a的取值范围.勾股定理可得则有即解得中,由勾股定理可得∴,∴解得∴,(∴,∵此抛物线的顶点必在直线抛物线的顶点落在解得的取值范围为26.(13分)(2013•晋江市)如图,在平面直角坐标系xOy中,一动直线l从y轴出发,以每秒1个单位长度的速度沿x轴向右平移,直线l与直线y=x相交于点P,以OP为半径的⊙P与x轴正半轴交于点A,与y轴正半轴交于点B.设直线l的运动时间为t秒.(1)填空:当t=1时,⊙P的半径为,OA=2,OB=2;(2)若点C是坐标平面内一点,且以点O、P、C、B为顶点的四边形为平行四边形.①请你直接写出所有符合条件的点C的坐标;(用含t的代数式表示)②当点C在直线y=x上方时,过A、B、C三点的⊙Q与y轴的另一个交点为点D,连接DC、DA,试判断△DAC 的形状,并说明理由.,∴,即∴,即相似比为四、附加题(共10分):在答题卡上相应题目的答题区域内作答. 27.(10分)(1)计算:2a2+3a2=5a2.(2)已知∠1与∠2互余,∠1=55°,则∠2=35°.。
绝密★启用前试题类型:A 滨州市二〇一三年初中学生学业考试数学试题温馨提示:1.本试卷共8页,满分120分,考试时间为120分钟.2.请用蓝色或黑色钢笔、圆珠笔直接在试卷上作答(作图可用铅笔).3.答卷前请将密封线内的项目填写清楚,并将座号填写在右下角的座号栏内.一、选择题:本大题共12分小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,并将其字母标号填写在答题栏内.每小题选对得3分,错选、不选或多选均记0分,满分36分.题号 1 2 3 4 5 6 7 8 9 10 11 12 答案1.(2013山东滨州,1,3分)计算13-12,正确的结果为A.15B.-15C.16D.-16【答案】D.2.(2013山东滨州,2,3分)化简3aa,正确的结果为A.a B.a2C.a-1D.a-2【答案】B.3.(2013山东滨州,3,3分)把方程12x=1变形为x=2,其依据是A.等式的性质1 B.等式的性质2C.分式的基本性质D.不等式的性质1【答案】B.4.(2013山东滨州,4,3分)如图,在⊙O中圆心角∠BOC=78°,则圆周角∠BAC的大小为A.156°B.78°C.39°D.12°【答案】C.5.(2013山东滨州,5,3分)左图所示的几何体是由若干个大小相同的小正方体组成的.若从正上方看这个几何体,则所看到的平面图形是【答案】A.6.(2013山东滨州,6,3分)若点A(1,y1)、B(2,y2)都在反比例函数y=kx(k>0)的图象上,则y1、y2的大小关系为A.y1<y2B.y1≤y2C.y1>y2D.y1≥y2【答案】C.7.(2013山东滨州,7,3分)若正方形的边长为6,则其外接圆半径与内切圆半径的大小分别为A.6,32B .32,3 C.6,3 D .62,32【答案】B.8.(2013山东滨州,8,3分)如图,将等边△ABC沿射线BC向右平移到△DCE的位置,连接AD、BD,则下列结论:①AD=BC;②BD、AC互相平分;③四边形ACED是菱形.其中正确的个数是A.0 B.1 C.2 D.3【答案】D.9.(2013山东滨州,9,3分)若从长度分别为3、5、6、9的四条线段中任取三条,则能组成三角形的概率为A.12B.34C.13D.14【答案】A.10.(2013山东滨州,10,3分)对于任意实数k,关于x的方程x2-2(k+1)x-k2+2k-1=0的根的情况为A.有两个相等的实数根B.没有实数根C.有两个不相等的实数根D.无法确定【答案】C.11.(2013山东滨州,11,3分)若把不等式组2xx--3⎧⎨-1-2⎩≥,≥的解集在数轴上表示出来,则其对应的图形为A.长方形B.线段C.射线D.直线【答案】B.12.(2013山东滨州,12,3分)如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,与y轴交于C点,且对称轴为x=1,点B坐标为(-1,0).则下面的四个结论:①2a+b=0;②4a-2b+c<0;③ac>0;④当y<0时,x<-1或x>2.其中正确的个数是A.1 B.2 C.3 D.4【答案】B.二、填空题:本大题共6各小题,每小题填对最后结果得4分,满分24分.13.(2013山东滨州,13,4分)分解因式:5x2-20=______________.【答案】5(x+2)(x-2).14.(2013山东滨州,14,4分)在△ABC中,∠C=90°,AB=7,BC=5,则边AC的长为______________.【答案】2615.(2013山东滨州,15,4分)在等腰△ABC中,AB=AC,∠A=50°,则∠B=______________.【答案】65°16.(2013山东滨州,16,4分)一元二次方程2x2-3x+1=0的解为______________.【答案】x1=1,x2=1 2 .17.(2013山东滨州,17,4分)在ABCD中,点O是对角线AC、BD的交点,点E是边CD的中点,且AB=6,BC=10,则OE=______________.【答案】A.18.(2013山东滨州,18,4分)观察下列各式的计算过程:5×5=0×1×100+25,15×15=1×2×100+25,25×25=2×3×100+25,35×35=3×4×100+25,…………请猜测,第n个算式(n为正整数)应表示为____________________________.【答案】[10(n-1)+5]×[10(n-1)+5]=100n(n-1)+25.三、解答题:本大题共7个小题,满分60分.解答时请写出必要的演推过程.19.(2013山东滨州,19,6分)(本小题满分6分,请在下列两个小题中,任选其一完成即可)(1)解方程组:3419 x yx y+=⎧⎨-=4.⎩,(2)解方程:352. 23x x+-1=【解答过程】解:(1)3419x yx y+=⎧⎨-=4.⎩,①②.由②,得x=4+y,③把③代入①,得3(4+y)+4y=19,12+3y+4y=19,y=1.把y=1代入③,得x=4+1=5.∴方程组的解为5 xy=⎧⎨=1.⎩,(2)去分母,得3(3x+5)=2(2x-1).去括号,得9x+15=4x-2.移项、合并同类项,得5x=-17.系数化为1,得x=-175.20.(2013山东滨州,20,7分)(计算时不能使用计算器)计算:33-(3)2+0(3)π+-27+32-.【解答过程】解:原式=3-3+1-33+2-3=-33.21.(2013山东滨州,21,8分)某高中学校为使高一新生入校后及时穿上合身的校服,现提前对某校九年级三班学生即将所穿校服型号情况进行了摸底调查,并根据调查结果绘制了如下两个不完整的统计图(校服型号以身高作为标准,共分为6种型号).根据以上信息,解答下列问题:(1)该班共有多少名学生?其中穿175型校服的学生有多少?(2)在条形统计图中,请把空缺的部分补充完整;(3)在扇形统计图中,请计算185型校服所对应扇形圆心角的大小;(4)求该班学生所穿校服型号的众数和中位数.【解答过程】解:(1)15÷30%=50(人),50×20%=10(人),即该班共有50名学生,其中穿175型校服的学生有10人.(2)补充如下:(3)185型的人数是50-3-15-15-10-5=2(人),圆心角的度数为360°×250=14.4°.(4)165型和170型出现的次数最多都是15次,故众数是165和170;共50个数据,第25和第26个数据都是170,故中位数是170.22.(2013山东滨州,22,8分)如图,在△ABC中,AB=AC,点O在边AB上,⊙O过点B且分别与边AB、BC相交于点D、E,EF⊥AC,垂足为F.求证:直线EF是⊙O的切线.【解答过程】证明:连接OE,∵OB=OE,∴∠B=∠OEB.∵AB=AC,∴∠B=∠C.∴∠OEB=∠C.∴OE∥AC.∵EF⊥AC,∴OE⊥EF.∴直线EF是⊙O的切线.23.(2013山东滨州,23,9分)某高中学校为高一新生设计的学生单人桌的抽屉部分是长方体形,抽屉底面周长为180cm,高为20cm.请通过计算说明,当底面的宽x为何值时,抽屉的体积y最大?最大为多少?(材质及其厚度等暂忽略不计)【解答过程】解:根据题意,得y=20x(1802-x),整理,得y=-20x2+1800x.∵y=-20x2+1800x=-20(x2-90x+2025)+40500=-20(x-45)2+40500,∵-20<0,∴当x=45时,函数有最大值,y最大值=40500,即当底面的宽为45cm 时,抽屉的体积最大,最大为40500cm 2. 24.(2013山东滨州,24,10分)某高中学校为高一新生设计的学生板凳的正面视图如图所示.其中BA=CD ,BC=20cm ,BC 、EF 平行于地面AD 且到地面AD 的距离分别为40cm 、8cm ,为使板凳两腿底端A 、D 之间的距离为50cm ,那么横梁EF 应为多长?(材质及其厚度等暂忽略不计)【解答过程】 解:过点C 作CM ∥AB ,交EF 、AD 于N 、M ,作CP ⊥AD ,交EF 、AD 于Q 、P .由题意,得四边形ABCM 是平行四边形, ∴EN=AM=BC=20(cm).∴MD=AD -AM=50-20=30(cm). 由题意知CP=40cm ,PQ=8cm , ∴CQ=32cm . ∵EF ∥AD ,∴△CNF ∽△CMD .∴NF MD =CQCP , 即30NF =3240. 解得NF=24(cm).∴EF=EN+NF=20+24=44(cm). 答:横梁EF 应为44cm .25.(2013山东滨州,25,12分) 根据要求,解答下列问题:(1)已知直线l 1的函数解析式为y=x ,请直接写出过原点且与l 1垂直的直线l 2的函数表达式;(2)如图,过原点的直线l 3向上的方向与x 轴的正方向所成的角为30°. ①求直线l 3的函数表达式;②把直线l 3绕原点O 按逆时针方向旋转90°得到直线l 4,求直线l 4的函数表达式.(3)分别观察(1)、(2)中的两个函数表达式,请猜想:当两直线互相垂直时,它们的函数表达式中自变量的系数之间有何关系?请根据猜想结论直接写出过原点且与直线y=-1 5 x垂直的直线l5的函数表达式.【解答过程】解:(1)y=-x.(2)①如图,在直线l3上任取一点M,作MN⊥x轴,垂足为N.设MN的长为1,∵∠MON=30°,∴ON=3.设直线l3的表达式为y=kx,把(3,1)代入y=kx,得1=3k,k=33.∴直线l3的表达式为y=33x.②如图,作出直线l4,且在l4取一点P,使OP=OM,作PQ⊥y轴于Q,同理可得∠POQ=30°,PQ=1,OQ=3,设直线l4的表达式为y=kx,把(-1,3)代入y=kx,得3=-k,∴k=-3.∴直线l4的表达式为y==-3x.(3)当两直线互相垂直时,它们的函数表达式中自变量的系数互为负倒数,即两系数的乘积等于-1.∴过原点且与直线y=-15x垂直的直线l5的函数表达式为y=5x.。
2013年福建省泉州市初中毕业升学考试思想品德试卷(考试时间:90分钟;试卷满分:100分;考试形式:开卷)温馨提示:1、考生可携带课本和《时事》等材料进入考场,供作答时参考。
2、考试期间禁止交流、讨论、相互抄袭。
3、请把所有答案写到答题卡指定位置上,不要错位、越界答题。
一、选择题(下列各题均有四个选项,其中只有一个选项最符合题意,请将所选答案的字母填涂在答题卡指定位置上。
每小题2分,共50分)1、2013年1月31日,中共中央、国务院发布《关于加快发展现代农业进一步增强()的若干意见》。
A、农村发展创新B、农村发展活力C、农村文化发展D、农业科技发展2、 2013年4月19日,中共中央政治局决定从今年下半年开始,在全党自上而下分批开展党的()教育实践活动。
A、思想路线B、基本路线C、组织路线D、群众路线3、2012年我国国内生产总值为519322亿元,比上年增长()。
A、7、8%B、7、9%C、8%D、8、8%4、2013年1月18日,国家科学技术奖励大会在北京召开,______、______两位院士获2012年度国家最高科学技术奖。
A、郑哲敏谷超豪B、师昌绪谢家麟C、郑哲敏王小谟D、谢家麟吴良镛5、2013年3月15日是“国际消费者权益日”,中国消费者协会决定2013年消费维权年主题是“()”。
A、消费与民生B、让消费者更有力量C、消费与服务D、消费与安全6、 2012年9月19日,国务院常务会议决定自2013年起,将每年6月全国节能宣传周的第三天设立为“()”。
A、全国环保日B、全国节能日C、全国节约日D、全国低碳日7、2012年7月24日,我国成立的下辖西沙、中沙、南沙诸群岛及其海域,我国领土最南端、陆地面积最小、管辖总面积最大、人口最少的地级市是()。
A、三沙市B、舟山市C、三亚市D、琼海市8、2013年4月6日至8日,博鳌亚洲论坛年会在海南举行。
本届年会的主题是“():亚洲寻求共同发展”。
二〇一三年福州市初中毕业会考、高级中等学校招生考试数 学 试 卷(全卷共4页,三大题,共22小题;满分150分;考试时间120分钟)一、选择题(共10小题,每题4分,满分40分;每小题只有一个正确的选项,请在答题卡的相应位置填涂)1(2013福建福州,1,4分) 2的倒数是( )A12B 2C -12D -2【答案】A2(2013福建福州,2,4分)如图,OA ⊥OB ,若∠1=40°,则∠2的度数是( )A 20°B 40°C 50°D 60°【答案】C3(2013福建福州,3,4分)2012年12月13日,嫦娥二号成功飞抵距地球约700万公里远的深空7 000 000用科学记数法表示为( )A 7×105B 7×106C 70×106D 7×107【答案】 B4(2013福建福州,4,4分)下列立体图形中,俯视图是正方形的是( )ABCD【答案】D5(2013福建福州,5,4分)下列一元二次方程有两个相等实数根的是( )A x 2+3=0B x 2+2x =0C (x +1) 2=0D (x +3)(x -1)=0【答案】C6(2013福建福州,6,4分)不等式1+x <0的解集在数轴上表示正确的是( )0 1 2 3-2 -1 0 1-1 0 1 2-2 -1 0 112 OB ACA B C D【答案】A7(2013福建福州,7,4分)下列运算正确的是( )A a ·a 2=a 3B (a 2)3=a 5C 22()a a b b=D a 3÷a 3=a【答案】A8(2013福建福州,8,4分)如图,已知△ABC ,以点B 为圆心,AC 长为半径画弧;以点C 为圆心,AB 长为半径画弧,两弧交于点D ,且点A 、点D 在BC 异侧,连接AD ,量一量线段AD 的长,约为( )A 25 cmB 30 cmC 35 cmD 40 cm【答案】A9(2013福建福州,9,4分)袋中有红球4个,白球若干个,它们只有颜色上的区别从袋中随机地取出一个球,如果取到白球的可能性较大,那么袋中白球的个数可能是( )A 3个B 不足3个C 4个D 5个或5个以上【答案】D10(2013福建福州,10,4分)A 、B 两点在一次函数图象上的位置如图所示,两点的坐标分别为A (x +a ,y +b ),B (x ,y ),下列结论正确的是( )A a >0B a <0C b =0D ab <0【答案】B二、填空题(共5小题,每题4分,满分20分;请将正确答案填在答题卡相应位置) 11(2013福建福州,11,4分)计算:21a a-=_________ 【答案】1a; 12(2013福建福州,12,4分)矩形的外角和等于_______度【答案】360;13(2013福建福州,13,4分)某校女子排球队队员的年龄分布如下表:A BOyx AB C年龄 13 14 15 人数474则该校女子排球队队员的平均年龄是_______岁 【答案】14;14(2013福建福州,14,4分)已知实数a 、b 满足:a +b =2,a -b =5,则(a +b )3·(a -b )3的值是___________【答案】1000;15(2013福建福州,15,4分)如图,由7个形状、大小完全相同的正六边形组成网格,正六边形的顶点成为格点已知每个正六边形的边长为1,△ABC 的顶点都在格点上,则△ABC 的面积是____________CA B【答案】23;三、解答题(满分90分;请将正确答案及解答过程填在答题卡相应位置作图或添辅助线用铅笔画完,再用黑色签字笔描黑) 16(每小题7分,共14分)(1)(2013福建福州,16(1),7分)计算:0(1)412-+--; 【答案】 解:0(1)412-+-- =1+4-23=5-23(2)(2013福建福州,16(2),7分)化简:2(3)(4)a a a ++- 【答案】解:2(3)(4)a a a ++- =a 2+6a +9+4a -a 2 =10a +917(每小题8分,共16分)(1)(2013福建福州,17(1),8分)如图,AB 平分∠CAD ,AC =AD 求证:BC =BD【答案】证明一:∵AB 平分∠CAD ,∴∠BAC =∠BAD , 在△ABC 和△ABD 中 ,,,AB AB BAC BAD AC AD =⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△ABD ∴BC =BD 证明二:连接CD∵AC =AD ,AB 平分∠CAD , ∴AB 垂直平分CD ,∴BC =BD (2)列方程解应用题(2013福建福州,17(2),8分)把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本则还缺25本这个班有多少学生? 【答案】解法一:设这个班有x 名学生,根据题意,得: 3x +20=4x -25 解得:x =45答:这个班共有45名学生解法二:设这个班有x 名学生,图书一共有y 本 320425y x y x =+⎧⎨=-⎩ ,解得45,155.x y =⎧⎨=⎩答:这个班共有45名学生18(10分)(2013福建福州,18,10分)为了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查已知抽取的样本中,男生、女生人数相同,利用所得数据绘制如下统计图表:身高情况分组表(单位:cm ) 男生身高情况直方图 女生身高情况扇形统计图组别 身高 A x <155 B 155≤x <160 C 160≤x <165 D165≤x <170CDBAEx ≥170根据图表提供的信息,回答下列问题:(1)样本中,男生身高的众数在_______组,中位数在_______组; (2)样本中,女生身高在E 组的人数有_______人;(3)已知该校共有男生400人、女生380人,请估计身高在160≤x <170之间的学生约有多少人?【答案】(1)众数在B 组;中位数在C 组 (2)样本女生人数=样本男生人数=40; E 组女生百分比=5%E 组女生人数=40×5%=2(人) (3)男生:400×1840=180(人) 女生:380×40%=152(人)19(2013福建福州,19,12分)如图,在平面直角坐标系xOy 中,点A 的坐标为(-2,0),等边三角形AOC 经过平移或轴对称或旋转都可以得到△OBD (1)△AOC 沿x 轴向右平移得到△OBD ,则平移的距离是_______个单位长度; △AOC 与△BOD 关于直线对称,则对称轴是_______;△AOC 绕原点O 顺时针旋转得到△DOB ,则旋转角可以是_______度;(2)连接AD ,交OC 于点E ,求∠AEO 的度数【答案】(1)平移的距离是2个单位;对称轴是y 轴;旋转角等于120° (2)∵△ACO 、△BOD 是等边三角形,∴∠CAO =60°,OA =OD , ∵∠AOD =120°,OA =OD ,∴∠DAO =30°,∴AE 平分∠CAO ,∴AD 垂直平分CO ,∴∠AEO =90°20(12分)如图,在△ABC 中,以AB 为直径的⊙O 交AC 于点M ,弦MN ∥BC 交AB 于点E ,且ME =1,AM =2,AE =3 (1)求证:BC 是⊙O 的切线; (2)求BN 的长AO xyCDB第20题图CNM OABE【答案】(1)证明:∵ME =1,AM =2,AE =3,∴AE 2+ME 2=AM 2,∴∠AEM =90°,∵MN ∥BC ,∴∠B =∠AEM =90°, ∵AB 为⊙O 的直径,∴BC 是⊙O 的切线 (2)连接OM ,BM ,∵∠AEM =90°,AB 为⊙O 的直径,∴BN =BM ,∠AMB =90°,∵∠AEM =90°,ME =1,AM =2,∴∠CAB =30°, ∴∠BOM =60°,∵∠CAB =30°,AM =2,∴AB =433∴BM =60231803π⨯⨯=239π ∴BN 的长为239π21(12分)如图,等腰梯形ABCD 中,AD ∥BC ,∠B =45°,P 是BC 上一点,△P AD 的面积为12,设AB =x ,AD =y(1)求y 与x 的函数关系式;(2)若∠APD =45°,当y =1时,求PB ·PC 的值; (3)若∠APD =90°,求y 的最小值备用图第21题图DD BC CBA EA【答案】(1)如图2,过点A 作AH ⊥BC ,垂足为H 在Rt △ABH 中,∠B =45°,AB =x ,所以AH =22x由S △APD=12AD AH⋅,可得112222y x=⋅整理,得2yx=(2)当y=1时,2x=如图3,如图4,由于∠APC=∠B+∠1,∠APC=∠APD+∠2,当∠APD=∠B=∠C=45°时,∠1=∠2所以△ABP∽△PCD因此AB PC BP CD=所以PC·PD=AB·CD=2图2 图3 图4 (3)如图5,当∠APD=90°时,点P在以AD为直径的圆上如图6,当AD最小时,圆与BC相切于点P此时△APD是等腰直角三角形所以AD=2AH,即222y x =⨯由(1)知,2yx=于是可以解得此时2y=图5 图622(14分)我们知道,经过原点的抛物线解析式可以是y=ax2+bx(a≠0)(1)对于这样的抛物线;当顶点坐标为(1,0)时,a=;当顶点坐标为(m,m),m≠0时,a与m之间的关系式是;(2)继续探究,如果b≠0,且过原点的抛物线顶点在直线y=kx(k≠0)上,请用含k的代数式表示b;(3)现有一组过原点的抛物线,顶点A1,A2,…,A n在直线y=x,横坐标依次为1,2,…,n(n为正整数,且n 为正整数,且n≤12),分别过每个顶点作x轴的垂线,垂足记为B1,B2,…,B n,以线段A n B n为边向右作正方形A n B nC nD n若这组抛物线中有一条经过点D n,求所有满足条件的正方形边长【答案】(1)当顶点坐标为(1,1)时,a =-1;当顶点坐标为(m ,m ),m ≠0时,a 与m 之间的关系式是1a m=- (2)设抛物线的顶点的坐标为(m ,km ), 那么222()2y a x m km ax amx am km =-+=-++对照y =ax 2+bx ,可得20,2.am km b am ⎧+=⎨=-⎩由此得到b =2k (3)正方形的顶点D 1,D 2,…,D n 的坐标分别为(2,1)、(4,2)、(6,3)、(8,4)、(10,5)、(12,6)、(14,7)、(16,8)、(18,9)、(20,10)、(22,11)、(24,12),这些点在直线12y x =上 由(1)知,当抛物线的顶点(m ,m )在直线y =x 上时,1a m=-根据抛物线的对称性,抛物线与x 轴的交点为原点O 和(2m ,0) 所以顶点为(m ,m )的抛物线的解析式为1(2)y x x m m=-- 联立12y x =和1(2)y x x m m =--,可得点D 的坐标为33(,)24m m 当m 分别取正整数4、8、12时,对应的点D 为D 3(6,3)、D 6(12,6)、D 9(18,9),它们所对应的正方形的边长分别为3、6、9(如图1所示)图1。
某某省某某市2013年中考数学模拟试题一 华东师大版一、选择题(本大题有7题,每小题3分,共21分.每小题有四个选项,其中有且只有一个选项正确)1.-5的绝对值是(). A .51B .51 C .-5D .52.联合国人口基金会的报告显示,世界人口总数在2011 年10 月31 日达到70 亿.将70 亿用科学记数法表示为( ).A .7×109B . 7×108C . 70×108D .0.7×10103.下列图形中,既是轴对称图形,又是中心对称图形的是( ).4.一个不等式组的解集在数轴上表示出来如图所示,则下列符合条件的不等式组为().A .B .C .D .5.如图是一个由4个相同的正方体组成的立体图形,它的三视图是( ).6.已知:菱形ABCD 中,对角线AC 与BD 相交于点O ,OE∥DC 交 BC 于点E ,AD=6cm ,则OE 的长为( ).A .2cmB .3cmC .4cmD .6cm7.如图,在方格纸中建立直角坐标系,已知一次函数第6题b x y +-=1的图象与反比例函数xky =2的图象相 交于点A (5,1)和1A . 若点A 和1A 关于直线x y =对称. 由图象可得不等式0kx b x+-≥的解是( ). A. x ≥5B. 0<x ≤-1C. 1≤x ≤5D. x ≥5或 0<x ≤1 二、填空题(每小题4分,共40分) 8.33(2)a -=__________. 9.分解因式:216x -=. 10.五边形的内角和=.11.使62x -有意义的x 的取值X 围是.12.某校七年级(2)班要选取6名学生参加年段数学竞赛,有13名同学参加班级选拔赛,预赛成绩各不相同,小梅已知道自己的成绩,她只需了解这13名同学成绩的众数,中位数,平均数中的 ,就能知道自已能否进入决赛.13. 如图,在等边ABC △中,6AB =,D 是BC 3BC BD =,ABD △绕点A 旋转后得到ACE △.则CE 的长为_______.14. 如图,等腰梯形ABCD 中,AD∥BC,AB=AD=2,∠B=60°,则BC 的长为. 15.抛物线y=x 2+x 的顶点坐标是,y 的最小值=_________.16. 如图,在平行四边形ABCD 中,AD=2,AB=4,∠A=30°,以点A 为圆心,AD 的长为半径画弧交AB 于点E ,连接CE ,则阴影部分的面积是(结果保留π).第13题第14题第17题第16题17.如图,反比例函数ky x=经过点(1,3),则k=;若点M 为该曲线上的一点,过点M 作x 轴、y 轴的垂线,分别交直线y =-x +m 于点D 、C 两点,若直线y =-x +m 与y 轴交于点A ,与x 轴相交于点B ,则AD •BC 的值为. 三.解答题(共89分)18. (9分)计算:()11π31862sin 608-⎛⎫-+÷-︒- ⎪⎝⎭.19.(9分)化简,求值: 11222+-+--x xx x x x ,其中x=2.20.(9分)如图,在平行四边形ABCD 中,点E 在边BC 上,点F 在BC 的延长线上,且BE=CF .求证:∠BAE=∠CDF.21.(9分)某年级组织学生参加夏令营活动,本次夏令营活动分为甲、乙、丙三组进行.下面条形统计图和扇形统计图反映了学生参加夏令营活动的报名情况,请你根据图中的信息回答下列问题:(1)该年级报名参加本次活动的总人数为人,报名参加乙组的人数为人,请你补全条形统计图中乙组的空缺部分;(2)根据实际情况。
2013年福建省泉州市晋江市中考数学试卷一、选择题(每小题3分,共21分)每小题有四个答案,其中有且只有一个答案是正确的,请在答题卡上相应题目的答题区域内作答,答对的得3分,答错或不答的一律得0分.1.(3分)(2013•晋江市)﹣2013的绝对值是()A.2013 B.﹣2013 C.D.2.(3分)(2013•晋江市)如图,已知直线a∥b,直线c与a、b分别交点于A、B,∠1=50°,则∠2=()A.40°B.50°C.100°D.130°3.(3分)(2013•晋江市)计算:2x3•x2等于()A.2B.x5C.2x5D.2x64.(3分)(2013•晋江市)已知关于x的方程2x﹣a﹣5=0的解是x=﹣2,则a的值为()A.1B.﹣1 C.9D.﹣95.(3分)(2013•晋江市)若反比例函数的图象上有两点P1(2,y1)和P2(3,y2),那么()A.y1<y2<0 B.y1>y2>0 C.y2<y1<0 D.y2>y1>06.(3分)(2013•晋江市)如图,是由一个长方体和一个圆锥体组成的立体图形,其正视图是()A.B.C.D.7.(3分)(2013•晋江市)如图,E、F分别是正方形ABCD的边AB、BC上的点,BE=CF,连接CE、DF.将△BCE 绕着正方形的中心O按逆时针方向旋转到△CDF的位置,则旋转角是()A.45°B.60°C.90°D.120°二、填空题(每小题4分,共40分)在答题卡上相应题目的答题区域内作答.8.(4分)(2013•晋江市)化简:﹣(﹣2)=_________.9.(4分)(2013•晋江市)因式分解:4﹣a2=_________.10.(4分)(2013•晋江市)从2013年起,泉州市财政每年将安排50000000元用于建设“美丽乡村”.将数据50000000用科学记数法表示为_________.11.(4分)(2013•晋江市)计算:=_________.12.(4分)(2003•湘潭)不等式组的解集是_________.13.(4分)(2013•晋江市)某班派5名同学参加数学竞赛,他们的成绩(单位:分)分别为:80,92,125,60,97.则这5名同学成绩的中位数是_________分.14.(4分)(2006•南通)正六边形的每个内角的度数是_________度.15.(4分)(2013•晋江市)如图,在△ABC中,AB=AC,△ABC的外角∠DAC=130°,则∠B=_________°.16.(4分)(2013•晋江市)若a+b=5,ab=6,则a﹣b=_________.17.(4分)(2013•晋江市)如图,在Rt△ABC中,∠C=90°,∠A=30°,.若动点D在线段AC上(不与点A、C重合),过点D作DE⊥AC交AB边于点E.(1)当点D运动到线段AC中点时,DE=_________;(2)点A关于点D的对称点为点F,以FC为半径作⊙C,当DE=_________时,⊙C与直线AB相切.三、解答题(共89分)在答题卡上相应题目的答题区域内作答.18.(9分)(2013•晋江市)计算:.19.(9分)(2013•晋江市)先化简,再求值:(x+3)2﹣x(x﹣5),其中.20.(9分)(2013•晋江市)如图,BD是菱形ABCD的对角线,点E、F分别在边CD、DA上,且CE=AF.求证:BE=BF.21.(9分)(2013•晋江市)一个不透明的口袋中装有4张卡片,卡片上分别标有数字1、﹣2、﹣3、4,它们除了标有的数字不同之外再也没有其它区别,小芳从盒子中随机抽取一张卡片.(1)求小芳抽到负数的概率;(2)若小明再从剩余的三张卡片中随机抽取一张,请你用树状图或列表法,求小明和小芳两人均抽到负数的概率.22.(9分)(2013•晋江市)如图,在方格纸中(小正方形的边长为1),△ABC的三个顶点均为格点,将△ABC沿x轴向左平移5个单位长度,根据所给的直角坐标系(O是坐标原点),解答下列问题:(1)画出平移后的△A′B′C′,并直接写出点A′、B′、C′的坐标;(2)求出在整个平移过程中,△ABC扫过的面积.23.(9分)(2013•晋江市)为了创建书香校园,切实引导学生多读书、乐读书、会读书、读好书,某校开展“好书伴我成长”的读书活动,为了解全校学生读书情况,随机调查了50名学生读书的册数,并将全部调查结果绘制成两幅不完整的统计图表.册数人数1 22 133 a4 b5 1请根据图表提供的信息,解答下列问题:(1)表中的a=_________,b=_________,请你把条形统计图补充完整;(2)若该校共有2000名学生,请你根据样本数据,估计该校学生在本次活动中读书不少于3册的人数.24.(9分)(2013•晋江市)为了让市民树立起“珍惜水、节约水、保护水”的用水理念,某市从2013年4月起,居民生活用水按阶梯式计算水价,水价计算方式如图所示,每吨水需另加污水处理费0.80元.已知小张家2013年4月份用水20吨,交水费49元;5月份用水25吨,交水费65.4元.(温馨提示:水费=水价+污水处理费)(1)m、n的值;(2)随着夏天的到来,用水量将增加.为了节省开支,小张计划把6月份的水费控制在不超过家庭月收入的2%.若小张家的月收入为8190元,则小张家6月份最多能用水多少吨?25.(13分)(2013•晋江市)将矩形OABC置于平面直角坐标系中,点A的坐标为(0,4),点C的坐标为(m,0)(m>0),点D(m,1)在BC上,将矩形OABC沿AD折叠压平,使点B落在坐标平面内,设点B的对应点为点E.(1)当m=3时,点B的坐标为_________,点E的坐标为_________;(2)随着m的变化,试探索:点E能否恰好落在x轴上?若能,请求出m的值;若不能,请说明理由.(3)如图,若点E的纵坐标为﹣1,抛物线(a≠0且a为常数)的顶点落在△ADE的内部,求a的取值范围.26.(13分)(2013•晋江市)如图,在平面直角坐标系xOy中,一动直线l从y轴出发,以每秒1个单位长度的速度沿x轴向右平移,直线l与直线y=x相交于点P,以OP为半径的⊙P与x轴正半轴交于点A,与y轴正半轴交于点B.设直线l的运动时间为t秒.(1)填空:当t=1时,⊙P的半径为_________,OA=_________,OB=_________;(2)若点C是坐标平面内一点,且以点O、P、C、B为顶点的四边形为平行四边形.①请你直接写出所有符合条件的点C的坐标;(用含t的代数式表示)②当点C在直线y=x上方时,过A、B、C三点的⊙Q与y轴的另一个交点为点D,连接DC、DA,试判断△DAC 的形状,并说明理由.四、附加题(共10分):在答题卡上相应题目的答题区域内作答.友情提示:请同学们做完上面考题后,再认真检查一遍,估计一下你的得分情况.如果你全卷得分低于90分(及格线),则本题的得分将计入全卷总分,但计入后全卷总分不超过90分;如果你全卷已经达到或超过90分,则本题的得分不计入全卷总分.27.(5分)(2013•晋江市)计算:2a2+3a2=_________.28.(5分)(2013•晋江市)已知∠1与∠2互余,∠1=55°,则∠2=_________°.2013年福建省泉州市晋江市中考数学试卷参考答案与试题解析一、选择题(每小题3分,共21分)每小题有四个答案,其中有且只有一个答案是正确的,请在答题卡上相应题目的答题区域内作答,答对的得3分,答错或不答的一律得0分.1.(3分)(2013•晋江市)﹣2013的绝对值是()A.2013 B.﹣2013 C.D.考点:绝对值.分析:根据负数的绝对值等于它的相反数解答.解答:解:﹣2013的绝对值是2013.故选A.点评:本题考查了绝对值的性质,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(3分)(2013•晋江市)如图,已知直线a∥b,直线c与a、b分别交点于A、B,∠1=50°,则∠2=()A.40°B.50°C.100°D.130°考点:平行线的性质.分析:根据两直线平行,同位角相等可得∠1=∠2,进而得到∠2=50°.解答:解:∵a∥b,∴∠1=∠2,∵∠1=50°,∴∠2=50°,故选:B.点评:此题主要考查了平行线的性质,关键是掌握两直线平行,同位角相等.3.(3分)(2013•晋江市)计算:2x3•x2等于()A.2B.x5C.2x5D.2x6考点:单项式乘单项式.分析:根据单项式乘单项式的法则进行计算即可.解答:解:2x3•x2=2x5.故选C.点评:此题考查了单项式乘单项式,用到的知识点是单项式的乘法法则,是一道基础题,计算时要注意指数的变化.4.(3分)(2013•晋江市)已知关于x的方程2x﹣a﹣5=0的解是x=﹣2,则a的值为()A.1B.﹣1 C.9D.﹣9考点:一元一次方程的解.专题:计算题.分析:将x=﹣2代入方程即可求出a的值.解答:解:将x=﹣2代入方程得:﹣4﹣a﹣5=0,解得:a=﹣9.故选D点评:此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.5.(3分)(2013•晋江市)若反比例函数的图象上有两点P1(2,y1)和P2(3,y2),那么()A.y1<y2<0 B.y1>y2>0 C.y2<y1<0 D.y2>y1>0考点:反比例函数图象上点的坐标特征.分析:根据反比例函数图象的增减性做出正确的判定.解答:解:∵反比例函数解析式中的2>0,∴该反比例函数的图象位于第一、三象限,且在每一象限内y的值随x的增大而减小.又∵点P1(2,y1)和P2(3,y2)都位于第一象限,且2<3,∴y1>y2>0.故选B.点评:本题考查了反比例函数图象上点的坐标特征.反比例函数图象上点的坐标都满足该函数解析式.6.(3分)(2013•晋江市)如图,是由一个长方体和一个圆锥体组成的立体图形,其正视图是()A.B.C.D.考点:简单组合体的三视图.分析:找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.解答:解:从几何体的正面看可得一个三角形和一个矩形,故选:D.点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.7.(3分)(2013•晋江市)如图,E、F分别是正方形ABCD的边AB、BC上的点,BE=CF,连接CE、DF.将△BCE 绕着正方形的中心O按逆时针方向旋转到△CDF的位置,则旋转角是()A.45°B.60°C.90°D.120°考点:旋转的性质;正方形的性质.分析:首先作出旋转中心,根据多边形的性质即可求解.解答:解:如图,连接AC、BD,AC与BD的交点即为旋转中心O.根据旋转的性质知,点C与点D对应,则∠DOC就是旋转角.∵四边形ABCD是正方形.∴∠DOC=90°.故选C.点评:本题主要考查了旋转的性质,以及正多边形的性质,正确理解正多边形的性质以及旋转角(对应点与旋转中心所连线段的夹角等于旋转角)是解题的关键.二、填空题(每小题4分,共40分)在答题卡上相应题目的答题区域内作答.8.(4分)(2013•晋江市)化简:﹣(﹣2)=2.考点:相反数.分析:根据相反数的定义解答即可.解答:解:﹣(﹣2)=2.故答案为:2.点评:本题考查了相反数的定义,是基础题.9.(4分)(2013•晋江市)因式分解:4﹣a2=(2+a)(2﹣a).考点:因式分解-运用公式法.分析:利用平方差公式a2﹣b2=(a﹣b)(a+b),把4﹣a2写成22﹣a2的形式即可.解答:解:4﹣a2=(2+a)(2﹣a).故答案为:(2+a)(2﹣a).点评:本题考查了公式法分解因式,熟记平方差公式的结构特点是解题的关键,是一道基础题,比较简单.10.(4分)(2013•晋江市)从2013年起,泉州市财政每年将安排50000000元用于建设“美丽乡村”.将数据50000000用科学记数法表示为5×107.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将50000000用科学记数法表示为:5×107.故答案为:5×107.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.(4分)(2013•晋江市)计算:=1.考点:分式的加减法.专题:计算题.分析:先通分,再加减,然后约分.解答:解:原式=﹣==1.点评:本题考查了分式的加减,学会通分是解题的关键.12.(4分)(2003•湘潭)不等式组的解集是﹣1<x≤2.考点:解一元一次不等式组.专题:计算题.分析:分别求出每个不等式的解集,然后求它们的交集,即为不等式组的解集.解答:解:由①得:x>﹣1由②得:x≤2解集为﹣1<x≤2.点评:注意各个不等式的解集的公式部分就是这个不等式组的解集.13.(4分)(2013•晋江市)某班派5名同学参加数学竞赛,他们的成绩(单位:分)分别为:80,92,125,60,97.则这5名同学成绩的中位数是92分.考点:中位数.分析:根据中位数的定义先把这组数据从小到大排列,再找出最中间的数即可.解答:解:将这组数据从小到大排列为:60,80,92,97,125,最中间的数是92,则这5名同学成绩的中位数是92;故答案为:92.点评:此题考查了中位数,掌握中位数的概念是解题的关键,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).14.(4分)(2006•南通)正六边形的每个内角的度数是120度.考点:多边形内角与外角.专题:计算题.分析:利用多边形的内角和为(n﹣2)•180°求出正六边形的内角和,再结合其边数即可求解.解答:解:根据多边形的内角和定理可得:正六边形的每个内角的度数=(6﹣2)×180°÷6=120°.点评:本题需仔细分析题意,利用多边形的内角和公式即可解决问题.15.(4分)(2013•晋江市)如图,在△ABC中,AB=AC,△ABC的外角∠DAC=130°,则∠B=65°.考点:等腰三角形的性质.分析:根据等边对等角可得∠B=∠C,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.解答:解:∵AB=AC,∴∠B=∠C,∴∠DAC=∠B+∠C=2∠B,∵∠DAC=130°,∴∠B=×130°=65°.故答案为:65.点评:本题考查了等腰三角形等边对等角的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,是基础题,熟记性质是解题的关键.16.(4分)(2013•晋江市)若a+b=5,ab=6,则a﹣b=±1.考点:完全平方公式.分析:首先根据完全平方公式将(a﹣b)2用(a+b)与ab的代数式表示,然后把a+b,ab的值整体代入求值.解答:解:(a﹣b)2=(a+b)2﹣ab=52﹣4×6=1,则a﹣b=±1.故答案是:±1.点评:本题主要考查完全平方公式,熟记公式的几个变形公式对解题大有帮助.17.(4分)(2013•晋江市)如图,在Rt△ABC中,∠C=90°,∠A=30°,.若动点D在线段AC上(不与点A、C重合),过点D作DE⊥AC交AB边于点E.(1)当点D运动到线段AC中点时,DE=;(2)点A关于点D的对称点为点F,以FC为半径作⊙C,当DE=或时,⊙C与直线AB相切.考点:切线的性质;含30度角的直角三角形;勾股定理;三角形中位线定理.分析:(1)求出BC,AC的值,推出DE为三角形ABC的中位线,求出即可;(2)求出AB上的高,CH,即可得出圆的半径,证△ADE∽△ACB得出比例式,代入求出即可.解答:解:(1)∵∠C=90°,∠A=30°,,∴BC=AB=2,AC=6,∵∠C=90°,DE⊥AC,∴DE∥BC,∵D为AC中点,∴E为AB中点,∴DE=BC=,故答案为:;(2)过C作CH⊥AB于H,∵∠ACB=90°,BC=2,AB=4,AC=6,∴由三角形面积公式得:BC•AC=AB•CH,CH=3,分为两种情况:①如图1,∵CF=CH=3,∴AF=6﹣3=3,∵A和F关于D对称,∴DF=AD=,∵DE∥BC,∴△ADE∽△ACB,∴=,∴=,DE=;②如图2,∵CF=CH=3,∴AF=6+3=9,∵A和F关于D对称,∴DF=AD=4.5,∵DE∥BC,∴△ADE∽△ACB,∴=,∴=,DE=;故答案为:或点评:本题考查了三角形的中位线,含30度角的直角三角形性质,相似三角形的性质和判定等知识点的应用,主要考查学生综合运用定理进行推理和计算的能力.三、解答题(共89分)在答题卡上相应题目的答题区域内作答.18.(9分)(2013•晋江市)计算:.考点:实数的运算;零指数幂;负整数指数幂.专题:推理填空题.分析:本题涉及零指数幂、负指数幂、绝对值、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式==1+1﹣2+4=4.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握零指数幂、负指数幂、绝对值、二次根式化简等考点的运算.19.(9分)(2013•晋江市)先化简,再求值:(x+3)2﹣x(x﹣5),其中.考点:整式的混合运算—化简求值.专题:计算题.分析:原式第一项利用完全平方公式展开,第二项利用单项式乘多项式法则计算,去括号合并得到最简结果,将x 的值代入计算即可求出值.解答:解:原式=x2+6x+9﹣x2+5x=11x+9,当x=﹣时,原式=11×(﹣)+9=.点评:此题考查了整式的混合运算﹣化简求值,涉及的知识有:完全平方公式,单项式乘多项式法则,去括号合并,以及合并同类项法则,熟练掌握公式及法则是解本题的关键.20.(9分)(2013•晋江市)如图,BD是菱形ABCD的对角线,点E、F分别在边CD、DA上,且CE=AF.求证:BE=BF.考点:菱形的性质;全等三角形的判定与性质.专题:证明题.分析:根据菱形的性质可得AB=BC,∠A=∠C,再证明△ABF≌△CBE,根据全等三角形的性质可得BF=BE.解答:证明:∵四边形ABCD是菱形,∴AB=BC,∠A=∠C,∵在△ABF和△CBE中,,∴△ABF≌△CBE(SAS),∴BF=BE.点评:此题主要考查了菱形的性质,以及全等三角形的判定与性质,关键是掌握菱形的四条边都相等.21.(9分)(2013•晋江市)一个不透明的口袋中装有4张卡片,卡片上分别标有数字1、﹣2、﹣3、4,它们除了标有的数字不同之外再也没有其它区别,小芳从盒子中随机抽取一张卡片.(1)求小芳抽到负数的概率;(2)若小明再从剩余的三张卡片中随机抽取一张,请你用树状图或列表法,求小明和小芳两人均抽到负数的概率.考点:列表法与树状图法.分析:(1)由一个不透明的口袋中装有4张卡片,卡片上分别标有数字1、﹣2、﹣3、4,它们除了标有的数字不同之外再也没有其它区别,小芳从盒子中随机抽取一张卡片,抽到负数的有2种情况,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小明和小芳两人均抽到负数的情况,再利用概率公式求解即可求得答案.解答:解:(1)∵一个不透明的口袋中装有4张卡片,卡片上分别标有数字1、﹣2、﹣3、4,它们除了标有的数字不同之外再也没有其它区别,∴小芳从盒子中随机抽取一张卡片,抽到负数的有2种情况,∴P(小芳抽到负数)=;(2)画树状图如下:∵共有12种机会均等的结果,其中两人均抽到负数的有2种;∴P(两人均抽到负数)=.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.22.(9分)(2013•晋江市)如图,在方格纸中(小正方形的边长为1),△ABC的三个顶点均为格点,将△ABC沿x轴向左平移5个单位长度,根据所给的直角坐标系(O是坐标原点),解答下列问题:(1)画出平移后的△A′B′C′,并直接写出点A′、B′、C′的坐标;(2)求出在整个平移过程中,△ABC扫过的面积.考点:作图-平移变换.专题:作图题.分析:(1)根据网格结构找出点A′、B′、C′的位置,然后顺次连接即可,再根据平面直角坐标系写出坐标即可;(2)观图形可得△ABC扫过的面积为四边形AA'B'B的面积与△ABC的面积的和,然后列式进行计算即可得解.解答:解:(1)平移后的△A′B′C′如图所示;点A′、B′、C′的坐标分别为(﹣1,5)、(﹣4,0)、(﹣1,0);(2)由平移的性质可知,四边形AA′B′B是平行四边形,∴△ABC扫过的面积=S四边形AA'B'B+S△ABC=B′B•AC+BC•AC=5×5+×3×5=25+=.点评:本题考查了利用平移变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.23.(9分)(2013•晋江市)为了创建书香校园,切实引导学生多读书、乐读书、会读书、读好书,某校开展“好书伴我成长”的读书活动,为了解全校学生读书情况,随机调查了50名学生读书的册数,并将全部调查结果绘制成两幅不完整的统计图表.册数人数1 22 133 a4 b5 1请根据图表提供的信息,解答下列问题:(1)表中的a=18,b=16,请你把条形统计图补充完整;(2)若该校共有2000名学生,请你根据样本数据,估计该校学生在本次活动中读书不少于3册的人数.考点:条形统计图;用样本估计总体;统计表.分析:(1)根据条形统计图可求a的值,再用随机调查的总人数减去各类的人数,列式可求b的值,依此把条形统计图补充完整;(2)先求出本次活动中读书不少于3册的人数所占的比值,然后即可估算出人数.解答:解:(1)a=18,b=16,条形统计图如图所示:(2)所抽查的50名学生中,读书不少于3册的学生有18+16+1=35(人),(人).答:该校在本次活动中读书不少于3册的学生有1400人.点评:本题考查条形统计图的知识.结合生活实际,绘制条形统计图或从统计图中获取有用的信息,是近年中考的热点.只要能认真准确读图,并作简单的计算,一般难度不大.24.(9分)(2013•晋江市)为了让市民树立起“珍惜水、节约水、保护水”的用水理念,某市从2013年4月起,居民生活用水按阶梯式计算水价,水价计算方式如图所示,每吨水需另加污水处理费0.80元.已知小张家2013年4月份用水20吨,交水费49元;5月份用水25吨,交水费65.4元.(温馨提示:水费=水价+污水处理费)(1)m、n的值;(2)随着夏天的到来,用水量将增加.为了节省开支,小张计划把6月份的水费控制在不超过家庭月收入的2%.若小张家的月收入为8190元,则小张家6月份最多能用水多少吨?考点:二元一次方程组的应用;一元一次不等式的应用.专题:图表型.分析:(1)根据“用水20吨,交水费49元”可得方程20(m+0.80)=49,“用水25吨,交水费65.4元”可得方程49+(25﹣20)(n+0.80)=65.4,联立两个方程即可得到m、n的值;(2)首先计算出用水量的范围,用水量为30吨花费为81.8元,2%×8190=163.8,小张家6月份的用水量超过30吨,再设小张家6月份的用水x吨,由题意可得不等式81.8+(2×1.65+0.80)(x﹣30)≤163.8,再解不等式即可.解答:解:(1)由题意得:,解得;(2)由(1)得m=1.65,n=2.48当用水量为30吨时,水费为:49+(30﹣20)×(2.48+0.80)=81.8(元),2%×8190=163.8(元),∵163.8>81.8,∴小张家6月份的用水量超过30吨.可设小张家6月份的用水x吨,由题意得81.8+(2×1.65+0.80)(x﹣30)≤163.8,解得x≤50,答:小张家6月份最多能用水50吨.点评:此题主要考查了二元一次方程组的应用,以及一元一次不等式的应用,关键是正确理解图中所表示的意义,掌握水的收费标准.25.(13分)(2013•晋江市)将矩形OABC置于平面直角坐标系中,点A的坐标为(0,4),点C的坐标为(m,0)(m>0),点D(m,1)在BC上,将矩形OABC沿AD折叠压平,使点B落在坐标平面内,设点B的对应点为点E.(1)当m=3时,点B的坐标为(3,4),点E的坐标为(0,1);(2)随着m的变化,试探索:点E能否恰好落在x轴上?若能,请求出m的值;若不能,请说明理由.(3)如图,若点E的纵坐标为﹣1,抛物线(a≠0且a为常数)的顶点落在△ADE的内部,求a的取值范围.考点:二次函数综合题.专题:综合题.分析:(1)根据点A、点D、点C的坐标和矩形的性质可以得到点B和点E的坐标;(2)由折叠的性质求得线段DE和AE的长,然后利用勾股定理得到有关m的方程,求得m的值即可;(3)过点E作EF⊥AB于F,EF分别与AD、OC交于点G、H,过点D作DP⊥EF于点P,首先利用勾股定理求得线段DP的长,从而求得线段BF的长,再利用△AFG∽△ABD得到比例线段求得线段FG的长,最后求得a的取值范围.解答:解:(1)点B的坐标为(3,4),点E的坐标为(0,1);(2)点E能恰好落在x轴上.理由如下:∵四边形OABC为矩形,∴BC=OA=4,∠AOC=∠DCE=90°,由折叠的性质可得:DE=BD=OA﹣CD=4﹣1=3,AE=AB=OC=m,如图1,假设点E恰好落在x轴上,在Rt△CDE中,由勾股定理可得,则有,在Rt△AOE中,OA2+OE2=AE2即解得…(7分)(3)如图2,过点E作EF⊥AB于F,EF分别与AD、OC交于点G、H,过点D作DP⊥EF于点P,则EP=PH+EH=DC+EH=2,在Rt△PDE中,由勾股定理可得∴,在Rt△AEF中,,EF=5,AE=m∵AF2+EF2=AE2∴解得,∴,,E(,﹣1)∵∠AFG=∠ABD=90°,∠FAG=∠BAD∴△AFG∽△ABD∴即,解得FG=2,∴EG=EF﹣FG=3∴点G的纵坐标为2,∵∴此抛物线的顶点必在直线上,又∵抛物线的顶点落在△ADE的内部,∴此抛物线的顶点必在EG上,∴﹣1<10﹣20a<2,解得故a的取值范围为.点评:本题考查了二次函数的综合知识,是一道有关折叠的问题,主要考查二次函数、矩形、相似形等知识,试题中贯穿了方程思想和数形结合的思想,请注意体会.26.(13分)(2013•晋江市)如图,在平面直角坐标系xOy中,一动直线l从y轴出发,以每秒1个单位长度的速度沿x轴向右平移,直线l与直线y=x相交于点P,以OP为半径的⊙P与x轴正半轴交于点A,与y轴正半轴交于点B.设直线l的运动时间为t秒.(1)填空:当t=1时,⊙P的半径为,OA=2,OB=2;(2)若点C是坐标平面内一点,且以点O、P、C、B为顶点的四边形为平行四边形.①请你直接写出所有符合条件的点C的坐标;(用含t的代数式表示)②当点C在直线y=x上方时,过A、B、C三点的⊙Q与y轴的另一个交点为点D,连接DC、DA,试判断△DAC 的形状,并说明理由.考点:圆的综合题.分析:(1)利用垂径定理、等腰直角三角形的性质求解;(2)①本问关键是画出符合条件的图形,总共有3种情况,如答图1所示,注意不要遗漏;②关键点在于:首先,本问的图形比较复杂,需正确作出图形;其次,找到线段CD与AD之间的关联,这就是Rt△DCE∽Rt△ADO,通过计算可知其相似比为1,即两个三角形全等,从而得到CD=AD,△DAC 为等腰直角三角形;本问符合条件的点C有2个,因此存在两种情形,分别如答图2和答图3所示,注意不要遗漏.解答:解:(1),OA=2,OB=2;…(3分)(2)符合条件的点C有3个,如图1.连接PA,∵∠AOB=90°,由圆周角定理可知,AB为圆的直径,点A、P、B共线.∵圆心P在直线y=x上,∴∠POA=∠POB=45°,又∵PO=PA=PB,∴△POB与△POA均为等腰直角三角形.设动直线l与x轴交于点E,则有E(t,0),P(t,t),B(0,2t).∵OBPC1为平行四边形,∴C1P=OB=2t,C1E=C1P+PE=2t+t=3t,∴C1(t,3t);同理可求得:C3(t,﹣t);∵OPBC2为平行四边形,且PB=PO,∠OPB=90°,∴▱OPBC2为正方形,其对角线OB位于y轴上,则点P与点C2关于x轴对称,∴C2(﹣t,t);∴符合条件的点C有3个,分别为C1(t,3t)、C2(﹣t,t)、C3(t,﹣t);…(7分)(3)△DAC是等腰直角三角形.理由如下:当点C在第一象限时,如图2,连接DA、DC、PA、AC.由(2)可知,点C的坐标为(t,3t),由点P坐标为(t,t),点A坐标为(2t,0),点B坐标为(0,2t),可知OA=OB=2t,△OAB是等腰直角三角形,又PO=PB,进而可得△OPB也是等腰直角三角形,则∠POB=∠PBO=45°.∵∠AOB=90°,∴AB为⊙P的直径,∴A、P、B三点共线,又∵BC∥OP,∴∠CBE=∠POB=45°,∴∠ABC=180°﹣∠CBE﹣∠PBO=90°,∴AC为⊙Q的直径,∴DA⊥DC…(9分)∴∠CDE+∠ADO=90°过点C作CE⊥y轴于点E,则有∠DCE+∠CDE=90°,∴∠ADO=∠DCE,∴Rt△DCE∽Rt△ADO,∴,即,解得OD=t或OD=2t依题意,点D与点B不重合,∴舍去OD=2t,只取OD=t,∴,即相似比为1,此时两个三角形全等,则DC=AD,∴△DAC是等腰直角三角形.…(11分)当点C在第二象限时,如图3,同上可证△DAC也是等腰直角三角形.…(12分)综上所述,当点C在直线y=x上方时,△DAC必为等腰直角三角形.…(13分)点评:本题是代数几何综合题,综合考查了圆、一次函数、平行四边形、正方形、等腰直角三角形、相似三角形、全等三角形等知识点,图形复杂,难度较大,对学生的数学能力要求很高.本题容易失分之处在于:其一,(2)①问中有三种情形,(2)②问中有两种情形,学生容易遗漏;其二,(2)②问中找不到线段AD与CD之间的关联关系(Rt△DCE∽Rt△ADO),从而无从判断△DAC的形状.四、附加题(共10分):在答题卡上相应题目的答题区域内作答.友情提示:请同学们做完上面考题后,再认真检查一遍,估计一下你的得分情况.如果你全卷得分低于90分(及格线),则本题的得分将计入全卷总分,但计入后全卷总分不超过90分;如果你全卷已经达到或超过90分,则本题的得分不计入全卷总分.27.(5分)(2013•晋江市)计算:2a2+3a2=5a2.考点:合并同类项.分析:根据合并同类项的法则,即系数相加作为系数,字母和字母的指数不变即可求解.。
2013年福建省福州市中考数学试卷一、选择题(共10小题,每小题4分,满分40分;每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.(4分)2的倒数是()A.B.﹣C.2 D.﹣22.(4分)如图,OA⊥OB,若∠1=40°,则∠2的度数是()A.20°B.40°C.50°D.60°3.(4分)2012年12月13日,嫦娥二号成功飞抵距地球约700万公里远的深空,7 000 000用科学记数法表示为()A.7×105 B.7×106 C.70×106D.7×1074.(4分)下列立体图形中,俯视图是正方形的是()A.B. C. D.5.(4分)下列一元二次方程有两个相等实数根的是()A.x2+3=0 B.x2+2x=0 C.(x+1)2=0 D.(x+3)(x﹣1)=06.(4分)不等式1+x<0的解集在数轴上表示正确的是()A.B.C.D.7.(4分)下列运算正确的是()A.a•a2=a3B.(a2)3=a5C.D.a3÷a3=a8.(4分)如图,已知△ABC,以点B为圆心,AC长为半径画弧;以点C为圆心,AB长为半径画弧,两弧交于点D,且点A,点D在BC异侧,连结AD,量一量线段AD的长,约为()A.2.5cm B.3.0cm C.3.5cm D.4.0cm9.(4分)袋中有红球4个,白球若干个,它们只有颜色上的区别.从袋中随机地取出一个球,如果取到白球的可能性较大,那么袋中白球的个数可能是()A.3个B.不足3个C.4个D.5个或5个以上10.(4分)A,B两点在一次函数图象上的位置如图所示,两点的坐标分别为A(x+a,y+b),B(x,y),下列结论正确的是()A.a>0 B.a<0 C.b=0 D.ab<0二、填空题(共5小题,每小题4分.满分20分;请将正确答案填在答题卡相应位置)11.(4分)计算:= .12.(4分)矩形的外角和等于度.13.(4分)某校女子排球队队员的年龄分布如下表:年龄13 14 15人数 4 7 4则该校女子排球队队员的平均年龄是岁.14.(4分)已知实数a,b满足a+b=2,a﹣b=5,则(a+b)3•(a﹣b)3的值是.15.(4分)如图,由7个形状、大小完全相同的正六边形组成网格,正六边形的顶点称为格点.已知每个正六边形的边长为1,△ABC的顶点都在格点上,则△ABC的面积是.三、解答题(满分90分;请将正确答案及解答过程填在答题卡相应位置,作图或添辅助线用铅笔画完,再用黑色签字笔描黑)16.(14分)(1)计算:;(2)化简:(a+3)2+a(4﹣a)17.(16分)(1)如图,AB平分∠CAD,AC=AD,求证:BC=BD;(2)列方程解应用题把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?18.(10分)为了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查.已知抽取的样本中,男生、女生的人数相同,利用所得数据绘制如下统计图表:身高情况分组表(单位:cm)组别身高A x<155B 155≤x<160C 160≤x<165D 165≤x<170E x≥170根据图表提供的信息,回答下列问题:(1)样本中,男生的身高众数在组,中位数在组;(2)样本中,女生身高在E组的人数有人;(3)已知该校共有男生400人,女生380人,请估计身高在160≤x<170之间的学生约有多少人?19.(12分)如图,在平面直角坐标系xOy中,点A的坐标为(﹣2,0),等边三角形AOC 经过平移或轴对称或旋转都可以得到△OBD.(1)△AOC沿x轴向右平移得到△OBD,则平移的距离是个单位长度;△AOC与△BOD关于直线对称,则对称轴是;△AOC绕原点O顺时针旋转得到△DOB,则旋转角度可以是度;(2)连结AD,交OC于点E,求∠AEO的度数.20.(12分)如图,在△ABC中,以AB为直径的⊙O交AC于点M,弦MN∥BC交AB 于点E,且ME=1,AM=2,AE=(1)求证:BC是⊙O的切线;(2)求的长.21.(12分)如图,等腰梯形ABCD中,AD∥BC,∠B=45°,P是BC边上一点,△PAD 的面积为,设AB=x,AD=y(1)求y与x的函数关系式;(2)若∠APD=45°,当y=1时,求PB•PC的值;(3)若∠APD=90°,求y的最小值.22.(14分)我们知道,经过原点的抛物线的解析式可以是y=ax2+bx(a≠0)(1)对于这样的抛物线:当顶点坐标为(1,1)时,a= ;当顶点坐标为(m,m),m≠0时,a与m之间的关系式是(2)继续探究,如果b≠0,且过原点的抛物线顶点在直线y=kx(k≠0)上,请用含k的代数式表示b;(3)现有一组过原点的抛物线,顶点A1,A2,…,A n在直线y=x上,横坐标依次为1,2,…,n(为正整数,且n≤12),分别过每个顶点作x轴的垂线,垂足记为B1,B2,…,B n,以线段A n B n为边向右作正方形A n B n C n D n,若这组抛物线中有一条经过D n,求所有满足条件的正方形边长.2013年福建省福州市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分;每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.(4分)(2013•福州)2的倒数是()A.B.﹣C.2 D.﹣2【分析】根据倒数的概念求解.【解答】解:2的倒数是.故选A.【点评】主要考查倒数的定义,要求熟练掌握.需要注意的是倒数的性质:负数的倒数是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.(4分)(2013•福州)如图,OA⊥OB,若∠1=40°,则∠2的度数是()A.20°B.40°C.50°D.60°【分析】根据互余两角之和为90°即可求解.【解答】解:∵OA⊥OB,∠1=40°,∴∠2=90°﹣∠1=90°﹣40°=50°.故选C.【点评】本题考查了余角的知识,属于基础题,掌握互余两角之和等于90°是解答本题的关键.3.(4分)(2013•福州)2012年12月13日,嫦娥二号成功飞抵距地球约700万公里远的深空,7 000 000用科学记数法表示为()A.7×105 B.7×106 C.70×106D.7×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于7 000 000有7位,所以可以确定n=7﹣1=6.【解答】解:7 000 000=7×106.故选B.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.4.(4分)(2014•资阳)下列立体图形中,俯视图是正方形的是()A.B. C. D.【分析】根据从上面看得到的图形是俯视图,可得答案.【解答】解;A、正方体的俯视图是正方形,故A正确;B、圆柱的俯视图是圆,故B错误;C、三棱锥的俯视图是三角形,故C错误;D、圆锥的俯视图是圆,故D错误,故选:A.【点评】本题考查了简单几何体的三视图,从上面看得到的图形是俯视图.5.(4分)(2013•福州)下列一元二次方程有两个相等实数根的是()A.x2+3=0 B.x2+2x=0 C.(x+1)2=0 D.(x+3)(x﹣1)=0【分析】根据计算根的判别式,根据判别式的意义可对A、B、C进行判断;由于D的两根可直接得到,则可对D进行判断.【解答】解:A、△=0﹣4×3=﹣12<0,则方程没有实数根,所以A选项错误;B、△=4﹣4×0=4>0,则方程有两个不相等的实数根,所以B选项错误;C、x2+2x+1=0,△=4﹣4×1=0,则方程有两个相等的实数根,所以C选项正确;D、x1=﹣3,x2=1,则方程有两个不相等的实数根,所以D选项错误.故选C.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.6.(4分)(2013•福州)不等式1+x<0的解集在数轴上表示正确的是()A.B.C.D.【分析】求出不等式的解集,即可作出判断.【解答】解:1+x<0,解得:x<﹣1,表示在数轴上,如图所示:故选:A.【点评】此题考查了在数轴上表示不等式的解集,以及解一元一次不等式,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.7.(4分)(2013•福州)下列运算正确的是()A.a•a2=a3B.(a2)3=a5C.D.a3÷a3=a【分析】A、原式利用同底数幂的乘法法则计算得到结果,即可作出判断;B、原式利用幂的乘方运算法则计算得到结果,即可作出判断;C、原式分子分母分别乘方得到结果,即可作出判断;D、原式利用同底数幂的除法法则计算得到结果,即可作出判断.【解答】解:A、a•a2=a3,故A选项正确;B、(a2)3=a6,故B选项错误;C、()2=,故C选项错误;D、a3÷a3=1,故C选项错误,故选A【点评】此题考查了分式的乘除法,同底数幂的乘除法,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.8.(4分)(2013•福州)如图,已知△ABC,以点B为圆心,AC长为半径画弧;以点C 为圆心,AB长为半径画弧,两弧交于点D,且点A,点D在BC异侧,连结AD,量一量线段AD的长,约为()A.2.5cm B.3.0cm C.3.5cm D.4.0cm【分析】首先根据题意画出图形,知四边形ABDC是平行四边形,再利用刻度尺进行测量即可.【解答】解:如图所示:测量可得AD=3.0cm,故选:B.【点评】此题主要考查了复杂作图,关键是正确理解题意,画出图形.9.(4分)(2013•福州)袋中有红球4个,白球若干个,它们只有颜色上的区别.从袋中随机地取出一个球,如果取到白球的可能性较大,那么袋中白球的个数可能是()A.3个B.不足3个C.4个D.5个或5个以上【分析】根据取到白球的可能性较大可以判断出白球的数量大于红球的数量,从而得解.【解答】解:∵袋中有红球4个,取到白球的可能性较大,∴袋中的白球数量大于红球数量,即袋中白球的个数可能是5个或5个以上.故选D.【点评】本题考查可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等.10.(4分)(2013•福州)A,B两点在一次函数图象上的位置如图所示,两点的坐标分别为A(x+a,y+b),B(x,y),下列结论正确的是()A.a>0 B.a<0 C.b=0 D.ab<0【分析】根据函数的图象可知:y随x的增大而增大,y+b<y,x+a<x得出b<0,a<0,即可推出答案.【解答】解:∵根据函数的图象可知:y随x的增大而增大,∴y+b<y,x+a<x,∴b<0,a<0,∴选项A、C、D都不对,只有选项B正确,故选:B.【点评】本题考查了一次函数图象上点的坐标特征的应用,主要考查学生的理解能力和观察图象的能力.二、填空题(共5小题,每小题4分.满分20分;请将正确答案填在答题卡相应位置)11.(4分)(2013•福州)计算:= .【分析】因为分式的分母相同,所以分母不变,分子相减即可得出答案.【解答】解:原式==.故答案为.【点评】本题比较容易,考查分式的减法运算.12.(4分)(2013•福州)矩形的外角和等于360 度.【分析】根据多边形的外角和定理解答即可.【解答】解:矩形的外角和等于360度.故答案为:360.【点评】本题考查了多边形的外角和,多边形的外角和与边数无关,任何多边形的外角和都是360°.13.(4分)(2013•福州)某校女子排球队队员的年龄分布如下表:年龄13 14 15人数 4 7 4则该校女子排球队队员的平均年龄是14 岁.【分析】根据加权平均数的计算公式把所有人的年龄数加起来,再除以总人数即可.【解答】解:根据题意得:(13×4+14×7+15×4)÷15=14(岁),故答案为:14.【点评】此题考查了加权平均数,掌握加权平均数的计算公式是解题的关键,是一道基础题.14.(4分)(2013•福州)已知实数a,b满足a+b=2,a﹣b=5,则(a+b)3•(a﹣b)3的值是1000 .【分析】所求式子利用积的乘方逆运算法则变形,将已知等式代入计算即可求出值.【解答】解:∵a+b=2,a﹣b=5,∴原式=[(a+b)(a﹣b)]3=103=1000.故答案为:1000【点评】此题考查了幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.15.(4分)(2013•福州)如图,由7个形状、大小完全相同的正六边形组成网格,正六边形的顶点称为格点.已知每个正六边形的边长为1,△ABC的顶点都在格点上,则△ABC 的面积是2.【分析】延长AB,然后作出过点C与格点所在的直线,一定交于格点E,根据S△ABC=S△AEC ﹣S△BEC即可求解.【解答】解:延长AB,然后作出过点C与格点所在的直线,一定交于格点E.正六边形的边长为1,则半径是1,则CE=4,中间间隔一个顶点的两个顶点之间的距离是:,则△BCE的边EC上的高是:,△ACE边EC上的高是:,则S △ABC=S△AEC﹣S△BEC=×4×(﹣)=2.故答案是:2.【点评】本题考查了正多边形的计算,正确理解S△ABC=S△AEC﹣S△BEC是关键.三、解答题(满分90分;请将正确答案及解答过程填在答题卡相应位置,作图或添辅助线用铅笔画完,再用黑色签字笔描黑)16.(14分)(2013•福州)(1)计算:;(2)化简:(a+3)2+a(4﹣a)【分析】(1)原式第一项利用零指数幂法则计算,第二项利用负数的绝对值等于它的相反数计算,最后一项化为最简二次根式,计算即可得到结果;(2)原式第一项利用完全平方公式展开,第二项利用单项式乘多项式法则计算即可得到结果.【解答】解:(1)原式=1+4﹣2=5﹣2;(2)原式=a2+6a+9+4a﹣a2=10a+9.【点评】此题考查了整式的混合运算,以及实数的运算,涉及的知识有:完全平方公式,平方差公式,去括号法则,以及合并同类项法则,熟练掌握公式及法则是解本题的关键.17.(16分)(2013•福州)(1)如图,AB平分∠CAD,AC=AD,求证:BC=BD;(2)列方程解应用题把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?【分析】(1)求出∠CAB=∠DAB,根据SAS推出△ABC≌△ABD即可;(2)设这个班有x名学生,根据题意得出方程3x+20=4x﹣25,求出即可.【解答】(1)证明:∵AB平分∠CAD,∴∠CAB=∠DAB,在△ABC和△ABD中∴△ABC≌△ABD(SAS),∴BC=BD.(2)解:设这个班有x名学生,根据题意得:3x+20=4x﹣25,解得:x=45,答:这个班有45名学生.【点评】本题考查了全等三角形的性质和判定,一元一次方程的应用,主要考查学生的推理能力和列方程的能力.18.(10分)(2013•福州)为了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查.已知抽取的样本中,男生、女生的人数相同,利用所得数据绘制如下统计图表:身高情况分组表(单位:cm)组别身高A x<155B 155≤x<160C 160≤x<165D 165≤x<170E x≥170根据图表提供的信息,回答下列问题:(1)样本中,男生的身高众数在B 组,中位数在C 组;(2)样本中,女生身高在E组的人数有 2 人;(3)已知该校共有男生400人,女生380人,请估计身高在160≤x<170之间的学生约有多少人?【分析】(1)根据众数的定义,以及中位数的定义解答即可;(2)先求出女生身高在E组所占的百分比,再求出总人数然后计算即可得解;(3)分别用男、女生的人数乘以C、D两组的频率的和,计算即可得解.【解答】解:∵B组的人数为12,最多,∴众数在B组,男生总人数为4+12+10+8+6=40,按照从低到高的顺序,第20、21两人都在C组,∴中位数在C组;(2)女生身高在E组的频率为:1﹣17.5%﹣37.5%﹣25%﹣15%=5%,∵抽取的样本中,男生、女生的人数相同,∴样本中,女生身高在E组的人数有40×5%=2人;(3)400×+380×(25%+15%)=180+152=332(人).答:估计该校身高在160≤x<170之间的学生约有332人.故答案为(1)B,C;(2)2.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.19.(12分)(2013•福州)如图,在平面直角坐标系xOy中,点A的坐标为(﹣2,0),等边三角形AOC经过平移或轴对称或旋转都可以得到△OBD.(1)△AOC沿x轴向右平移得到△OBD,则平移的距离是 2 个单位长度;△AOC与△BOD关于直线对称,则对称轴是y轴;△AOC绕原点O顺时针旋转得到△DOB,则旋转角度可以是120 度;(2)连结AD,交OC于点E,求∠AEO的度数.【分析】(1)由点A的坐标为(﹣2,0),根据平移的性质得到△AOC沿x轴向右平移2个单位得到△OBD,则△AOC与△BOD关于y轴对称;根据等边三角形的性质得∠AOC=∠BOD=60°,则∠AOD=120°,根据旋转的定义得△AOC绕原点O顺时针旋转120°得到△DOB;(2)根据旋转的性质得到OA=OD,而∠AOC=∠BOD=60°,得到∠DOC=60°,所以OE为等腰△AOD的顶角的平分线,根据等腰三角形的性质得到OE垂直平分AD,则∠AEO=90°.【解答】解:(1)∵点A的坐标为(﹣2,0),∴△AOC沿x轴向右平移2个单位得到△OBD;∴△AOC与△BOD关于y轴对称;∵△AOC为等边三角形,∴∠AOC=∠BOD=60°,∴∠AOD=120°,∴△AOC绕原点O顺时针旋转120°得到△DOB.(2)如图,∵等边△AOC绕原点O顺时针旋转120°得到△DOB,∴OA=OD,∵∠AOC=∠BOD=60°,∴∠DOC=60°,即OE为等腰△AOD的顶角的平分线,∴OE垂直平分AD,∴∠AEO=90°.故答案为2;y轴;120.【点评】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了等边三角形的性质、轴对称的性质以及平移的性质.20.(12分)(2013•福州)如图,在△ABC中,以AB为直径的⊙O交AC于点M,弦MN∥BC交AB于点E,且ME=1,AM=2,AE=(1)求证:BC是⊙O的切线;(2)求的长.【分析】(1)欲证明BC是⊙O的切线,只需证明OB⊥BC即可;(2)首先,在Rt△AEM中,根据特殊角的三角函数值求得∠A=30°;其次,利用圆心角、弧、弦间的关系、圆周角定理求得∠BON=2∠A=60°,由三角形函数的定义求得ON==;最后,由弧长公式l=计算的长.【解答】(1)证明:如图,∵ME=1,AM=2,AE=,∴ME2+AE2=AM2=4,∴△AME是直角三角形,且∠AEM=90°.又∵MN∥BC,∴∠ABC=∠AEM=90°,即OB⊥BC.又∵OB是⊙O的半径,∴BC是⊙O的切线;(2)解:如图,连接ON.在Rt△AEM中,sinA==,∴∠A=30°.∵AB⊥MN,∴=,EN=EM=1,∴∠BON=2∠A=60°.在Rt△OEN中,sin∠EON=,∴ON==,∴的长度是:•=.【点评】本题综合考查了切线的判定与性质、勾股定理的逆定理,弧长的计算,解直角三角形等.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.21.(12分)(2013•福州)如图,等腰梯形ABCD中,AD∥BC,∠B=45°,P是BC边上一点,△PAD的面积为,设AB=x,AD=y(1)求y与x的函数关系式;(2)若∠APD=45°,当y=1时,求PB•PC的值;(3)若∠APD=90°,求y的最小值.【分析】(1)如图1,过A作AE垂直于BC,在直角三角形ABE中,由∠B=45°,AB=x,利用锐角三角函数定义表示出AE,三角形PAD的面积以AD为底,AE为高,利用三角形面积公式表示出,根据已知的面积即可列出y与x的函数关系式;(2)根据∠APC=∠APD+∠CPD,以及∠APC为三角形ABP的外角,利用外角性质得到关系式,等量代换得到∠BAP=∠CPD,再由四边形ABCD为等腰梯形,得到一对底角相等及AB=CD,可得出三角形ABP与三角形PDC相似,由相似得比例,将CD换为AB,由y 的值求出x的值,即为AB的值,即可求出PB•PC的值;(3)取AD的中点F,过P作PH垂直于AD,由直角三角形PF大于等于PH,当PF=PH 时,PF最小,此时F与H重合,由三角形APD为直角三角形,利用直角三角形斜边上的中线等于斜边的一半得到PF等于AD的一半,表示出PF即为PH,三角形APD面积以AD 为底,PH为高,利用三角形面积公式表示出三角形APD面积,由已知的面积求出y的值,即为最小值.【解答】解:(1)如图1,过A作AE⊥BC于点E,在Rt△ABE中,∠B=45°,AB=x,∴AE=AB•sinB=x,∵S△APD=AD•AE=,∴•y•x=,则y=;(2)∵∠APC=∠APD+∠CPD=∠B+∠BAP,∠APD=∠B=45°,∴∠BAP=∠CPD,∵四边形ABCD为等腰梯形,∴∠B=∠C,∴△ABP∽△PCD,∴=,∴PB•PC=AB•DC=AB2,当y=1时,x=,即AB=,则PB•PC=()2=2;(3)如图2,取AD的中点F,连接PF,过P作PH⊥AD,可得PF≥PH,当PF=PH时,PF有最小值,又∵∠APD=90°,∴PF=AD=y,∴PH=y,∵S△APD=•AD•PH=,∴•y•y≥,即y2≥2,∵y>0,∴当取“=“时,y取最小值,则y的最小值为.【点评】此题考查了相似形综合题,涉及的知识有:等腰梯形的性质,相似三角形的判定与性质,直角三角形斜边上的中线性质,以及三角形的面积求法,熟练掌握相似三角形的判定与性质是解本题的关键.22.(14分)(2013•福州)我们知道,经过原点的抛物线的解析式可以是y=ax2+bx(a≠0)(1)对于这样的抛物线:当顶点坐标为(1,1)时,a= ﹣1 ;当顶点坐标为(m,m),m≠0时,a与m之间的关系式是a=﹣或am+1=0(2)继续探究,如果b≠0,且过原点的抛物线顶点在直线y=kx(k≠0)上,请用含k的代数式表示b;(3)现有一组过原点的抛物线,顶点A1,A2,…,A n在直线y=x上,横坐标依次为1,2,…,n(为正整数,且n≤12),分别过每个顶点作x轴的垂线,垂足记为B1,B2,…,B n,以线段A n B n为边向右作正方形A n B n C n D n,若这组抛物线中有一条经过D n,求所有满足条件的正方形边长.【分析】(1)利用顶点坐标公式(﹣,)填空;(2)首先,利用配方法得到抛物线的解析式y=a(x+)2﹣,则易求该抛物线的顶点坐标(﹣,﹣);然后,把该顶点坐标代入直线方程y=kx(k≠0),即可求得用含k的代数式表示b;(3)根据题意可设可设A n(n,n),点D n所在的抛物线顶点坐标为(t,t).由(1)(2)可得,点D n所在的抛物线解析式为y=﹣x2+2x.所以由正方形的性质推知点D n的坐标是(2n,n),则把点D n的坐标代入抛物线解析式即可求得4n=3t.然后由n、t的取值范围来求点A n的坐标,即该正方形的边长.【解答】解:(1)∵顶点坐标为(1,1),∴,解得,,即当顶点坐标为(1,1)时,a=﹣1;当顶点坐标为(m,m),m≠0时,,解得,则a与m之间的关系式是:a=﹣或am+1=0.故答案是:﹣1;a=﹣或am+1=0.(2)∵a≠0,∴y=ax2+bx=a(x+)2﹣,∴顶点坐标是(﹣,﹣).又∵该顶点在直线y=kx(k≠0)上,∴k(﹣)=﹣.∵b≠0,∴b=2k;(3)∵顶点A1,A2,…,A n在直线y=x上,∴可设A n(n,n),点D n所在的抛物线顶点坐标为(t,t).∴a=﹣,b=2,∴由(1)(2)可得,点D n所在的抛物线解析式为y=﹣x2+2x.∵四边形A n B n C n D n是正方形,∴点D n的坐标是(2n,n),∴﹣(2n)2+2•2n=n,∴4n=3t.∵t、n是正整数,且t≤12,n≤12,∴n=3,6或9.∴满足条件的正方形边长是3,6或9.【点评】本题考查了待定系数法求二次函数的解析式,二次函数图象上点的坐标特征,二次函数的顶点坐标公式以及正方形的性质.解答(3)题时,要注意n的取值范围.。
5.方茴说:“那时候我们不说爱,爱是多么遥远、多么沉重的字眼啊。
我们只说喜欢,就算喜欢也是偷偷摸摸的。
”6.方茴说:“我觉得之所以说相见不如怀念,是因为相见只能让人在现实面前无奈地哀悼伤痛,而怀念却可以把已经注定的谎言变成童话。
”7.在村头有一截巨大的雷击木,直径十几米,此时主干上唯一的柳条已经在朝霞中掩去了莹光,变得普普通通了。
8.这些孩子都很活泼与好动,即便吃饭时也都不太老实,不少人抱着陶碗从自家出来,凑到了一起。
9.石村周围草木丰茂,猛兽众多,可守着大山,村人的食物相对来说却算不上丰盛,只是一些粗麦饼、野果以及孩子们碗中少量的肉食。
2013年福建省泉州市晋江市中考数学试卷(解析版)一.选择题(每小题3分,共21分)每小题有四个答案,其中有且只有一个答案是正确的,请在答题卡上相应题目的答题区域内作答,答对的得3分,答错或不答的一律得0分.1.(2013晋江市)﹣2013的绝对值是()A.2013 B.﹣2013 C.D.考点:绝对值.分析:根据负数的绝对值等于它的相反数解答.解答:解:﹣2013的绝对值是2013.故选A.点评:本题考查了绝对值的性质,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(2013晋江市)如图,已知直线a∥b,直线c与a、b分别交点于A、B,∠1=50°,则∠2=()A.40°B.50°C.100°D.130°考点:平行线的性质.分析:根据两直线平行,同位角相等可得∠1=∠2,进而得到∠2=50°.解答:解:∵a∥b,∴∠1=∠2,∵∠1=50°,∴∠2=50°,故选:B.点评:此题主要考查了平行线的性质,关键是掌握两直线平行,同位角相等.3.(2013晋江市)计算:2x3x2等于()A.2 B.x5C.2x5D.2x6考点:单项式乘单项式.分析:根据单项式乘单项式的法则进行计算即可.解答:解:2x3x2=2x5.故选C.点评:此题考查了单项式乘单项式,用到的知识点是单项式的乘法法则,是一道基础题,计算时要注意指数的变化.4.(2013晋江市)已知关于x的方程2x﹣a﹣5=0的解是x=﹣2,则a的值为()A.1 B.﹣1 C.9 D.﹣9考点:一元一次方程的解.专题:计算题.分析:将x=﹣2代入方程即可求出a的值.解答:解:将x=﹣2代入方程得:﹣4﹣a﹣5=0,解得:a=﹣9.故选D5.方茴说:“那时候我们不说爱,爱是多么遥远、多么沉重的字眼啊。
福建省泉州市2013年中考数学试卷
一、选择题(每小题3分,共21分):每小题有四个答案,其中有且只有一个答案是正确的,请在答题卡上相应题目的答题区域内作答,答对的得3分,答错或不答一律得0分. 1.(3分)4的相反数是( ) A . 4 B . ﹣4 C . D .
2.(3分)在△ABC 中,∠A=20
°,∠B=60°,则△ABC 的形状是( )
A . 等边三角形
B . 锐角三角形
C . 直角三角形
D . 钝角三角形 3.(3分)如图是由六个完全相同的正方体堆成的物体,则这一物体的正视图是( )
A .
B .
C .
D .
4.(3分)把不等式组的解集在数轴上表示出来,正确的是( )
A .
B .
C .
D .
5.(3分)甲、乙、丙、丁四位选手各射击10次,每人的平均成绩都是9.3环,方差如表: 选手 甲 乙 丙 丁
方差(环2
) 0.035
0.016 0.022 0.025 则这四个人种成绩发挥最稳定的是( ) A . 甲 B . 乙 C . 丙 D . 丁 6.(3分)已知⊙O 1与⊙O 2相交,它们的半径分别是4,7,则圆心距O 1O 2可能是( ) A . 2 B . 3 C . 6 D .
12 7.(3分)为了更好保护水资源,造福人类,某工厂计划建一个容积V (m 3
)一定的污水处理池,
池的底面积S (m 2
)与其深度h (m )满足关系式:V=Sh (V ≠0),则S 关于h 的函数图象大致是( ) A . B .
C .
D .
二、填空题(每小题4分,共40分):在答题卡上相应题目的答题区域内作答. 8.(4分)的立方根是 . 9.(4分)分解因式:1﹣x 2
= .
10.(4分)地球绕太阳每小时转动经过的路程约为110000千米,将110000用科学记数法表示为.11.(4分)如图,∠AOB=70°,QC⊥OA于C,QD⊥OB于D,若QC=QD,
则∠AOQ=°.
12.(4分)九边形的外角和为°.
13.(4分)计算:+=.
14.(4分)方程组的解是.
15.(4分)如图,顺次连结四边形ABCD四边的中点E、F、G、H,则四边形EFGH的形状一定是.
16.(4分)如图,菱形ABCD的周长为8,对角线AC和BD相交于点O,AC:BD=1:2,则AO:BO=,菱形ABCD的面积S=.
17.(4分)有一数值转换器,原理如图所示,若开始输入x的值是7,可发现第1次输出的结果是12,第2次输出的结果是6,第3次输出的结果是3,依次继续下去…,第2013次输出的结果是.
三、解答题(共89分):在答题卡上相应题目的答题区域内作答.
18.(9分)计算:(4﹣π)0+|﹣2|﹣16×4﹣1+÷.
20.(9分)如图,已知AD是△ABC的中线,分别过点B、C作BE⊥AD于点E,CF⊥AD交AD 的延长线于点F,求证:BE=CF.
21.(9分)四张小卡片上分别写有数字1、2、3、4,它们除数字外没有任何区别,现将它们放在盒子里搅匀.
(1)随机地从盒子里抽取一张,求抽到数字3的概率;
(2)随机地从盒子里抽取一张,将数字记为x,不放回再抽取第二张,将数字记为y,请你用画树状图或列表的方法表示所有等可能的结果,并求出点(x,y)在函数y=图象上的概率.
22.(9分)已知抛物线y=a(x﹣3)2+2经过点(1,﹣2).
(1)求a的值;
(2)若点A(m,y1)、B(n,y2)(m<n<3)都在该抛物线上,试比较y1与y2的大小.
23.(9分)某校开展“中国梦•泉州梦•我的梦”主题教育系列活动,设有征文、独唱、绘画、手抄报四个项目,该校共有800人次参加活动.下面是该校根据参加人次绘制的两幅不完整的统计图,请根据图中提供的信息,解答下面的问题.
(1)此次有200名同学参加绘画活动,扇形统计图中“独唱”部分的圆心角是36度.请你把条形统计图补充完整.
(2)经研究,决定拨给各项目活动经费,标准是:征文、独唱、绘画、手抄报每人次分别为10元、12元、15元、12元,请你帮学校计算开展本次活动共需多少经费?
24.(9分)某校为培育青少年科技创新能力,举办了动漫制作活动,小明设计了点做圆周运动的一个雏形,如图所示,甲、乙两点分别从直径的两端点A、B以顺时针、逆时针的方向同时沿圆周运
动,甲运动的路程l(cm)与时间t(s)满足关系:l=t2+t(t≥0),乙以4cm/s的速度匀速运动,
半圆的长度为21cm.
(1)甲运动4s后的路程是多少?
(2)甲、乙从开始运动到第一次相遇时,它们运动了多少时间?
(3)甲、乙从开始运动到第二次相遇时,它们运动了多少时间?
25.(12分)如图,直线y=﹣x+2分别与x、y轴交于点B、C,点A(﹣2,0),P是直线BC 上的动点.
(1)求∠ABC的大小;
(2)求点P的坐标,使∠APO=30°;
(3)在坐标平面内,平移直线BC,试探索:当BC在不同位置时,使∠APO=30°的点P的个数是否保持不变?若不变,指出点P的个数有几个?若改变,指出点P的个数情况,并简要说明理由.
26.(14分)如图1,在平面直角坐标系中,正方形OABC的顶点A(﹣6,0),过点E(﹣2,0)作EF∥AB,交BO于F;
(1)求EF的长;
(2)过点F作直线l分别与直线AO、直线BC交于点H、G;
①根据上述语句,在图1上画出图形,并证明=;
②过点G作直线GD∥AB,交x轴于点D,以圆O为圆心,OH长为半径在x轴上方作半圆(包括直径两端点),使它与GD有公共点P.如图2所示,当直线l绕点F旋转时,点P也随之运动,证
明:=,并通过操作、观察,直接写出BG长度的取值范围(不必说理);
(3)在(2)中,若点M(2,),探索2PO+PM的最小值.
四、附加题(共10分):在答题卡上相应题目的答题区域内作答.友情提示:请同学们做完上面考题后,再认真检查一遍,估计一下你的得分情况,如果你全卷得分低于90分(及格线),则本题的得分将计入全卷总分,但计入后全卷总分不超过90分;如果你全卷已经达到或超过90分,则本题的得分不计入全卷总分.
27.方程x+1=0的解是x=﹣1.
28.如图,∠AOB=90°,∠BOC=30°,则∠AOC=60°.。