人教版,五年级下册,数学概念及公式归纳及全册精典讲义,精品系列
- 格式:doc
- 大小:1.42 MB
- 文档页数:52
五年级下册数学复习资料第二单元:因数与倍数1、为了方便,在研究因数和倍数的时候,我们所说的数指的是整数(一般不包括0)2、一个数的最小因数是1,最大的因数是本身。
一个数的因数的个数是有限的。
3、一个数的最小倍数是本身,没有最大的倍数。
一个数的倍数的个数是无限的。
4、一个数的最大因数和最小倍数是相等的,都是它本身。
5、完全数:6的因数有1,2,3,6,这几个因数的关系是:1+2+3=6,像6这样的数叫完全数,也叫完美数。
完全数较小的有6,28,496,8128……6、个位上是0,2,4,6,8的数都是2的倍数。
7、自然数中,是2的倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数。
自然数中的数不是奇数就是偶数。
8、奇数+偶数=奇数奇数+奇数=偶数偶数+偶数=偶数偶数±偶数=偶数奇数±奇数=偶数奇数±偶数=奇数偶数个偶数相加是偶数,奇数个奇数相加是奇数。
偶数×偶数=偶数奇数×奇数=奇数奇数×偶数=偶数相临两个自然数之和为奇数,相邻自然数之积为偶数。
如果乘式中有一个数为偶数,那么乘积一定是偶数。
9、个位上是0或5的数是5的倍数。
10、一个数各位上的数的和是3的倍数,这个数就是3的倍数。
11、3, 5的倍数的特征:个位是0或者5的并且各个数位上的数字之和能被3整除的数。
12、2, 3的倍数的特征:个位是0、2、4、6、8并且各个数位上的数字之和能被3整除的数。
13、2, 3,5的倍数的特征:个位是0并且各个数位上的数字之和能被3整除的数。
14、一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)。
如2,3,5,7都是质数。
15、一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。
如4,6,8,9,10都是合数。
16、1既不是质数,也不是合数。
自然数包括0,1,质数和合数。
17、以内的质数:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、9718、质因数:如果一个质数是某个数的因数,那么这个质数就是这个数的质因数。
五年级下册总复习基本概念和公式2、因数和倍数:如:5×6=30,我们就可以说5和6是30的因数,30是5和6 的倍数。
①一个数的因数个数是有限的。
一个数最小的因数是1,最大的因数是它本身, ②一个数的倍数的个数是无限的。
一个数最小的倍数是它本身,没有最大的倍数,3、公因数:两个或几个数的共同有的因数叫公因数,最大的那个叫最大公因数。
公倍数:两个或几个数的共同有的倍数叫公倍数,最小的那个叫最小公倍数。
4、2的倍数特征:个位上是0、2、4、6、8的数都是2的倍数。
5的倍数特征:个位上是0或5的数都是5的倍数。
3的倍数特征:各个数位上的数的和是3的倍数,这个数就是3的倍数。
5、偶数:是2的倍数的数叫偶数。
“0”也是偶数。
奇数:不是2的倍数的数叫奇数。
6、质数:一个自然数,只有1和它本身两个因数的数叫质数,或叫素数。
合数:一个自然数,除了1和它本身还有别的因数的数叫合数。
1既不是质数也不是合数,最小的质数是2,最小的合数是4。
100以内的质数表:2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,7、把单位“1”平均分成若干份,表示其中一份或几份的数叫分数。
如:73表示把单位“1”平均分成(7)份,表示其中(3)份的数,73的分数单位是(71),有(3)这样的分数单位。
把3米长的绳子平均分成5份,每份占全长的(51),每段长(53)米。
8、1米的53等于3米的(51) 9、分数与除法的关系: BA =(A )÷(B),分数的分子相单于被除数,分数线相单于除号,分母相单于除数,分数值相单于商。
10、真分数:分子(小于)分母的数叫真分数。
假分数:分子(大于)或者(等于)分母的分数叫假分数。
最简分数:分子和分母只有公因数(1)的分数叫最简分数。
11、分数的基本性质:分数的分子和分母同时(乘上)或(除以)相同的数(0除外),分数的大小不变,这叫做分数的基本性质。
人教版五年级数学下册概念与公式汇总Prepared on 21 November 2021前言:相信不少五年级的孩子都开始对于五年级数学中大量出现的公式与概念感到应接不瑕,而不少家长们也开始发现孩子对于概念和公式的记忆出现了一定的混乱,现将五年级数学下册中出现的一些概念与公式整理如下,希望家长们循序渐进,让孩子们先将概念与公式记牢后,再开始做题加深印象。
第一单元《观察物体三》1、不同角度观察一个物体,看到的面都是两个或三个相邻的面。
2、不可能一次看到长方体或正方体相对的面。
第二单元因数和倍数一、因数和倍数。
在整数除法中,如果商是整数而没有余数,我们就说被除数是除数的倍数,除数是被除数的余数.又如整数a能被b整除(a÷b=c),那么a就是b的倍数,b就是a的因数。
因数和倍数是相互依存的,不能单独存在。
因数:一个数的因数的个数是有限的,最小的因数是1,最大的因数是它本身。
一个数的因数的求法:成对地按顺序找,或用除法找。
倍数:一个数的倍数的个数是无限的,最小的倍数是它本身。
一个数的倍数的求法:依次乘自然数。
二、自然数按能不能被2整除分为:奇数偶数奇数:不是2的倍数的数叫做奇数。
偶数:是2的倍数的数叫做偶数。
最小的奇数是1,最小的偶数是0。
2、3、5倍数的特征:个位上是0,2,4,6,8的数都是2的倍数。
个位上是0或5的数,是5的倍数。
一个数各位上的数的和是3的倍数,这个数就是3的倍数。
如果一个数同时是2和5的倍数,那它的个位上的数字一定是0。
同时是2、3、5的倍数,个位上是0并且各位上的数的和是3的倍数,这个数就同时是2、3、5的倍数。
最大的两位数是90,最小的两位数是30,最小的三位数是120。
三、自然数按因数的个数来分:质数、合数、1.质数:一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)。
如2,3,5,7,11,13,17,19……都是质数。
合数:一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。
最全面人教版数学五年级下册知识点归纳总结五年级下册数学内容涵盖了面积、容积、数的认识和计算、时间、图形的认识和运用等多个方面的内容。
以下是对人教版数学五年级下册的知识点进行归纳总结:一、面积1. 长方形的面积计算公式:面积 = 长 ×宽2. 正方形的面积计算公式:面积 = 边长 ×边长3. 三角形的面积计算公式:面积 = 底边长 ×高 ÷ 24. 平行四边形的面积计算公式:面积 = 底边长 ×高5. 长方体的表面积计算公式:表面积 = 2 ×长 ×宽 + 2 ×长 ×高 + 2 ×宽 ×高二、容积1. 直接用长宽高相乘得到的数字,就是长方体的容积(即体积)。
2. 立方体的容积计算公式:容积 = 边长 ×边长 ×边长三、数的认识和计算1. 整数:包括正整数、负整数和零。
2. 加法和减法:掌握多位数的加减法计算方法,注意进位和借位。
3. 乘法:会进行大位数的乘法计算,理解乘法的意义。
4. 除法:会进行大位数的除法计算,理解除法的意义。
5. 分数:能够简单的进行分数的加减运算,理解分数的大小比较。
6. 小数:能够进行小数的四则运算。
7. 千分数:能够进行千分数的简单计算,理解千分数的大小比较。
8. 序数词:知道如何用序数词表示年份或名次。
四、时间1. 分钟和小时:能够用时钟读出准确的时间。
2. 日历:能够根据日历进行简单的日期计算。
3. 时间的计算:能够计算时间间隔,如计算一天之前或之后的日期。
五、图形的认识和运用1. 二维图形:熟悉正方形、长方形、三角形、平行四边形、菱形、圆形等基本的图形,并了解它们的性质。
2. 三维图形:熟悉长方体、正方体、圆柱体、圆锥体、球体等基本的立体图形,并了解它们的性质。
3. 坐标系:能够在二维坐标系中表示点的位置,并进行简单的坐标计算。
总结:人教版数学五年级下册的知识点非常广泛,涉及了面积、容积、数的认识和计算、时间、图形的认识和运用等多个方面。
人教版五年级数学下册概念与公式汇总整理 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】前言:相信不少五年级的孩子都开始对于五年级数学中大量出现的公式与概念感到应接不瑕,而不少家长们也开始发现孩子对于概念和公式的记忆出现了一定的混乱,现将五年级数学下册中出现的一些概念与公式整理如下,希望家长们循序渐进,让孩子们先将概念与公式记牢后,再开始做题加深印象。
第一单元《观察物体三》1、不同角度观察一个物体,看到的面都是两个或三个相邻的面。
2、不可能一次看到长方体或正方体相对的面。
第二单元因数和倍数一、因数和倍数。
在整数除法中,如果商是整数而没有余数,我们就说被除数是除数的倍数,除数是被除数的余数.又如整数a能被b整除(a÷b=c),那么a就是b的倍数,b就是a的因数。
因数和倍数是相互依存的,不能单独存在。
因数:一个数的因数的个数是有限的,最小的因数是1,最大的因数是它本身。
一个数的因数的求法:成对地按顺序找,或用除法找。
倍数:一个数的倍数的个数是无限的,最小的倍数是它本身。
一个数的倍数的求法:依次乘自然数。
二、自然数按能不能被2整除分为:奇数偶数奇数:不是2的倍数的数叫做奇数。
偶数:是2的倍数的数叫做偶数。
最小的奇数是1,最小的偶数是0。
2、3、5倍数的特征:个位上是0,2,4,6,8的数都是2的倍数。
个位上是0或5的数,是5的倍数。
一个数各位上的数的和是3的倍数,这个数就是3的倍数。
如果一个数同时是2和5的倍数,那它的个位上的数字一定是0。
同时是2、3、5的倍数,个位上是0并且各位上的数的和是3的倍数,这个数就同时是2、3、5的倍数。
最大的两位数是90,最小的两位数是30,最小的三位数是120。
三、自然数按因数的个数来分:质数、合数、1.质数:一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)。
如2,3,5,7,11,13,17,19……都是质数。
努力的你,将来可期!五年级下册数学观点二、长方体和正方体1、由6个长方形(特别状况有两个相对的面是正方形)围成的立体图形叫做长方体。
在一个长方体中,相对面完好同样,相对的棱长度相等。
2、两个面订交的边叫做棱。
三条棱订交的点叫做极点。
订交于一个极点的三条棱的长度分别叫做长方体的长、宽、高。
3、由6个完好同样的正方形围成的立体图形叫做正方体(也叫做立方体)。
正方体有12条棱,它们的长度都相等,全部的面都完好同样。
4、长方体和正方体的面、棱和极点的数量都同样,不过正方体的棱长都相等,正方体能够说是长、宽、高都相等的长方体,它是一种特别的长方体。
5、长方体有6个面,8个极点,12条棱,相对的面的面积相等,相对的棱的长度相等。
一个长方体最多有6个面是长方形,最罕有4个面是长方形,最多有2个面是正方形。
正方体有6个面,每个面都是正方形,每个面的面积都相等,有12条棱,每条的棱的长度都相等。
长方体的棱长总和=(长+宽+高)×4L=(a+b+h)×4长=棱长总和÷4-宽-高a=L÷4-b-h宽=棱长总和÷4-长-高b=L÷4-a-h高=棱长总和÷4-长-宽h=L÷4-a-b正方体的棱长总和=棱长×12L=a×12正方体的棱长=棱长总和÷12a=L÷126、长方体或正方体6个面和总面积叫做它的表面积。
长方体的表面积=(长×宽+长×高+宽×高)×2S=2(ab+ah+bh)拼搏的你,背影很美!努力的你,将来可期! 无底(或无盖)长方体表面积=长×宽+(长×高+宽×高)×2S=2(ab+ah+bh)-abS=2(ah+bh)+ab无底又无盖长方体表面积=(长×高+宽×高)×2S=2(ah+bh)正方体的表面积=棱长×棱长×6S=a×a×66、物体所占空间的大小叫做物体的体积。
五年级数学下册概念公式一、旋转、平移时针旋转1小时就是30度二、因数与倍数1、如果a×b=c(a、b、c都就是不为0的整数),那么a、b就就是c得因数,c就就是a、b的倍数。
2、一个数的因数个数就是有限的,其中最小的因数就是1,最大的因数就是它本身。
一个数的倍数就是无限的,其中最小的倍数就是它本身,没有最大倍数。
3、奇数与偶数:自然数中,就是2的倍数的数叫做偶数(0也就是偶数),不就是2的倍数的数叫做奇数。
偶数:个位就是0,2,4,6,8的数。
奇数:个位不就是0,2,4,6,8的数。
4、倍数特征:2的倍数的特征:各位就是0,2,4,6,8。
3(或9)的倍数的特征:各个数位上的数之与就是3(或9)的倍数。
5的倍数的特征:各位就是0,5。
5、质数与合数:质数:一个数,如果只有1与它本身两个约数,这样的数叫做质数(或素数)。
合数:一个数,如果除了1与它本身还有别的约数,这样的数叫做合数。
1不就是质数,也不就是合数。
1既不就是质数也不就是合数。
6、奇数与偶数的运算规律偶数+偶数=偶数奇数+奇数=奇数奇数+偶数=奇数偶数-偶数=偶数奇数-奇数=奇数奇数-偶数=奇数偶数个偶数相加就是偶数, 奇数个奇数相加就是奇数。
偶数×偶数=偶数奇数×奇数=奇数奇数×偶数=偶数7、质因数:如果一个质数就是某个数的因数,那么这个质数就就是这个数的质因数。
8、分解质因数:把一个合数用质因数相成的方式表示出来叫做分解质因数。
9、100以内的质数表:2、 3、 5、 7、 11、 13、17、1923、29、31、 37、 41、 43、47、5359、61、67、71、 73、 79、83、89、97三、长方体的认识、表面积、体积与容积1、长方体有6个面,一般都就是长方形(特殊情况有两个相对的面就是正方形),相对的面面积相等;有8个顶点,12条棱,12条棱可以分为三组:4条长,4条宽,4条高。
欢迎下载可编辑可修改五年级数学下册概念公式一、旋转、平移时针旋转1小时是30度二、因数与倍数1、如果a×b=c(a、b、c都是不为0的整数),那么a、b就是c得因数,c就是a、b的倍数。
2、一个数的因数个数是有限的,其中最小的因数是1,最大的因数是它本身。
一个数的倍数是无限的,其中最小的倍数是它本身,没有最大倍数。
3、奇数与偶数:自然数中,是2的倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数。
偶数:个位是0,2,4,6,8的数。
奇数:个位不是0,2,4,6,8的数。
4、倍数特征:2的倍数的特征:各位是0,2,4,6,8。
3(或9)的倍数的特征:各个数位上的数之和是3(或9)的倍数。
5的倍数的特征:各位是0,5。
5、质数与合数:质数:一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。
合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。
1不是质数,也不是合数。
1既不是质数也不是合数。
6、奇数与偶数的运算规律偶数+偶数=偶数奇数+奇数=奇数奇数+偶数=奇数偶数-偶数=偶数奇数-奇数=奇数奇数-偶数=奇数偶数个偶数相加是偶数,奇数个奇数相加是奇数。
偶数×偶数=偶数奇数×奇数=奇数奇数×偶数=偶数7、质因数:如果一个质数是某个数的因数,那么这个质数就是这个数的质因数。
8、分解质因数:把一个合数用质因数相成的方式表示出来叫做分解质因数。
9、100以内的质数表:2、 3、 5、 7、 11、 13、17、1923、29、31、 37、 41、 43、47、5359、61、67、71、 73、 79、83、89、97三、长方体的认识、表面积、体积和容积1. 长方体有6个面,一般都是长方形(特殊情况有两个相对的面是正方形),相对的面面积相等;有8个顶点,12条棱,12条棱可以分为三组:4条长,4条宽,4条高。
2. 正方体有6个面,都是面积相等的正方形;有8个顶点,12条棱,每条棱的长度都相等。
第一单元图形的变换1、轴对称图形沿着对称轴重叠后,图形两边可以完全重合。
2、平形四边形不是轴对称图形。
长方形有2条对称轴,正方形有4条对称轴,等腰三角形有1条对称轴,正(等边)三角形有3条对称轴,圆有无数条对称轴,半圆有一条对称轴。
3、轴对称图形沿着对称轴的交点至少旋转(360÷对称轴的条数)=度,可以与原来的图形完全重合。
长方形沿着对称轴的交点至少旋转360÷2=180(度)正方形沿着对称轴的交点至少旋转360÷4=90(度)等腰三角形沿着对称轴的交点至少旋转360÷1=360(度)等边(正)三角形方形沿着对称轴的交点至少旋转360÷3=120(度),形沿着对称轴的交点至少旋转360÷360=1(度)半圆沿着对称轴的交点至少旋转360÷1=360(度)与原来的图形完全重合。
4、我们学过的图形的变换有轴对称、平移、旋转。
第二单元因数和倍数1、我们说的因数和倍数指的是整数,不包括0,也不能说小数。
2、因数和倍数是相对的,不能单独说因数和倍数。
3、一个数的因数的个数是有限的,最小的因数是1,最大的因数是它本身。
一个数的倍数的个数有无限的,最小的倍数是它本身,没有最大的倍数。
一个数的最大因数=它最小倍数=它本身。
4、a÷b=c(a、b、c都是整数),我们就可以说,a能被b整除,也可以说b能整除a.,a是b的倍数,b是a的因数(例10÷2=5,可以说10能被2整除,2能整除10)5、2的倍数特征:个位上是0、2、4、6、8的数都是2的倍数。
5的倍数特征:个位上是0或5的数都是5的倍数。
3的倍数特征:一个数各位上的数的和是3的倍数,这个数就是3的倍数。
2和5的倍数特征:个位上是0的数,既是2的倍数又是5的倍数。
判断奇数和偶数的依据是:是否是2的倍数。
自然数不是奇数就是偶数。
奇数:不是2的倍数的数叫奇数。
(就是我们生活中常说的单数) 偶数:是2 的倍数的数叫偶数。
人教版小学五年级下册概念及公式全集第二单元因数与倍数1. 在研究因数和倍数的时候,我们所说的数一般指的是整数(不包括0)。
2•因数和倍数:如:3X 4=12,即3和4是12的因数,12是3和4的倍数。
①一个数最小的因数是1,最大的因数是它本身,因数的个数是有限的。
②一个数最小的倍数是它本身, 没有最大的倍数, 倍数的个数是无限的。
3.公因数:两个或几个数的共同有的因数叫这两个或几个数的公因数,最大的那个因数叫最大公因数。
4. 公倍数:两个或几个数的共同有的倍数叫这两个或几个数的公倍数,最小的那个倍数叫最小公倍数。
5. 一个数的最大因数,等于其他因数相加(除最大因数而外) ,这样的数叫做完全数(也叫完美数)。
6.2的倍数特征:个位上是0、2、4、6、8的数都是2的倍数。
5 的倍数特征:个位上是0 或5的数都是5的倍数。
3 的倍数特征: 各个数位上的数的和是3 的倍数,这个数就是3的倍数。
既是2的倍数又是5的倍数的特征:个位上必须是0的数。
既是2的倍数又是3的倍数的特征:个位上必须是0, 2, 4, 6,7.且各个位上的数的和是3 的倍数。
既是2、5,又是3 的倍数的特征:个位上必须是0,且各个位上的数的和是3 的倍数。
8.偶数:是2的倍数的数叫偶数(0也是偶数)。
奇数:不是2 的倍数的数叫奇数。
自然数的个数是无限的,偶数的个数也是无限的,没有最大的偶数,最小的偶数是0。
奇数的个数也是无限的,没有最大的奇数,最小的奇数是1。
奇数和偶数的运算性质:奇数+奇数=偶数奇数-奇数=偶数偶数+偶数=偶数偶数-偶数=偶数奇数X奇数=奇数偶数X偶数=偶数偶数X奇数=偶数9.质数:只有1 和它本身两个因数的数叫质数(或叫素数)。
合数:除了1 和它本身还有别的因数的数叫合数。
1 不是质数也不是合数,最小的质数是2,最小的合数是4。
分解质因数:一个合数表示成几个质数的积。
如:30 = 2X 3X 100 以内的质数:2,3,5,7,11,13,17,19,23,29,31,37,39,41,43,47,53,59,61,67,71,73,79,83,89,97 第三单元长方体和正方体1. 我们周围许多物体的形状都是长方体或正方体(正方体也叫立方体)2. 面:围成长方体的长方形叫做长方体的面。
人教版,五年级下册,数学概念及公式归纳第一单元图形的变换1、轴对称图形沿着对称轴重叠后,图形两边可以完全重合。
2、平形四边形不是轴对称图形。
长方形有2条对称轴,正方形有4条对称轴,等腰三角形有1条对称轴,正(等边)三角形有3条对称轴,圆有无数条对称轴,半圆有一条对称轴。
3、轴对称图形沿着对称轴的交点至少旋转(360÷对称轴的条数)=度,可以与原来的图形完全重合。
长方形沿着对称轴的交点至少旋转360÷2=180(度)正方形沿着对称轴的交点至少旋转360÷4=90(度)等腰三角形沿着对称轴的交点至少旋转360÷1=360(度)等边(正)三角形方形沿着对称轴的交点至少旋转360÷3=120(度),形沿着对称轴的交点至少旋转360÷360=1(度)半圆沿着对称轴的交点至少旋转360÷1=360(度)与原来的图形完全重合。
4、我们学过的图形的变换有轴对称、平移、旋转。
第二单元因数和倍数1、我们说的因数和倍数指的是整数,不包括0,也不能说小数。
2、因数和倍数是相对的,不能单独说因数和倍数。
3、一个数的因数的个数是有限的,最小的因数是1,最大的因数是它本身。
一个数的倍数的个数有无限的,最小的倍数是它本身,没有最大的倍数。
一个数的最大因数=最小倍数=它本身。
4、a÷b=c(a、b、c都是整数),我们就可以说,能被b整除,也可以说b 能整除a.(例10÷2=5,可以说10能被2整除,2能整除10)。
5、2的倍数特征:个位上是0、2、4、6、8的数都是2的倍数。
5的倍数特征:个位上是0或5的数都是5的倍数。
3的倍数特征:一个数各位上的数的和是3的倍数,这个数就是3的倍数。
2和5的倍数特征:个位上是0的数,既是2的倍数又是5的倍数。
判断奇数和偶数的依据是:是否是2的倍数。
自然数不是奇数就是偶数。
奇数:不是2的倍数的数叫奇数。
(就是我们生活中常说的单数)偶数:是2 的倍数的数叫偶数。
(就是我们生活中常说的双数)6、质数:一个数,如果只有1和它本身两个因数,这样的数叫质数(或素数)。
合数:一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。
判断质数和合数的依据是:根据因数的个数。
一个质数只有两个因数,一个合数至少有两个因数。
7、1既不是质数也不是合数。
一个自然数除了质数还有合数,还有1。
8、既是质数又是偶数的一位数是2,既是奇数又是偶数的最小的一位数是9,最小的两位数是15。
第三单元长方体的正方体第一部分长方体和正方体的认识1、长方体是由六个长方形,特殊情况下(由两个相对面是正方形)围成的立体图形。
正方体是由六个完全相同的正方形围成的立体图形。
2、长方体和正方体都有6个面,12条棱,8个顶点。
长方体相对的2个面的面积相等,相对的4条棱的长度相等。
正方体的6个面完全相同,12条棱长度都相等。
正方体可以看成是长、宽、高都相等的长方体。
正方体是特殊的长方体。
3、长方体中最少有2个面完全相同,最多有4个面完全相同。
长方体最少有4条棱长度相等,最多有8条棱长度相等。
4、计算长方体或正方体的棱长总和就用长度单位:米、分米、厘米。
每相邻两个长度单位之间的进率是10。
长方体的棱长总和=长×4+宽×4+高×4长方体的棱长总和 =(长+宽+高)×4长+宽+高=棱长总和÷4 长方体的长=棱长总和÷4 -(宽+高)长方体的宽=棱长总和÷4-(长+高) 长方体的高=棱长总和÷4 -(长+宽)5、正方体的棱长总和=棱长×12 正方体的棱长=棱长总和÷12第二部分长方体和正方体的表面积1、长方体和正方体6个面的总面积叫做它们的表面积。
计算表面积也用面积单位:平方米、平方分米、平方厘米。
每相邻两个面积单位之间的进率是100。
2、长方体上(下)面的面积=长×宽长方体左(右)面的面积=宽×高长方体前(后)面的面积=长×高长方体的表面积=长×宽×2+长×高×2+宽×高×2长方体的表面积=(长×宽+长×高+宽×高) ×2正方体的表面积=棱长×棱长×6正方体一个面的面积=正方体的表面积÷6第三部分长方体或正方体的体积和容积1、物体所占空间的大小叫做物体的体积。
2、常用的体积单位有立方厘米、立方分米、立方米。
每相邻两个体积单位之间的进率是1000。
3、棱长1米的正方体,体积是1立方米。
用3根1米长的木条做成一个互成直角的架子,放在墙角,是1立方米。
棱长1分米的正方体,体积是1立方分米。
一个粉笔盒的体积接近1立方分米。
棱长1厘米的正方体,体积是1立方厘米。
一个手指尖的体积大约是1立方厘米。
4、长方体的体积=长×宽×高 V= abh长方体的长= 长方体的体积÷宽÷高长方体的宽=长方体的体积÷长÷高长方体的高=长方体的体积÷长÷宽正方体的体积= 棱长×棱长×棱长 V=a×a×a=a5、长方体或正方体底面的面积叫做底面积。
长方体(或正方体的体积)=底面积×高 V=sh6、一个正方体的棱长扩大a倍,棱长总和扩大a倍,表面积扩大a×a倍,体积扩大a× a× a倍。
7、计算不规则物体的体积可以用排水法。
水中物体的体积(不规则物体的体积)=容器的底面积×水面上升(或下降)的高度。
水面上升(或下降)的高度=水中物体的体积(不规则物体的体积)÷容器的底面积。
8、容器所能容纳物体的体积叫做它们的容积。
计量容积,一般就用体积单位。
计量液体的体积,常用容积单位升或毫升,也可以写成L或ml。
1ml=1cm lL=1dm 1L=1000ml9、长方体和正方体的容积计算方法,跟体积的计算方法相同。
但是容积要从容器里面量出长、宽、高。
物体的容积一般都小于物体的体积。
只是,为了计算方便,我们把厚度忽略不计。
第四单元分数的意义和性质第一部分分数的意义1、分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。
例(1)58表示把单位“1”平均分成8份,表示其中5份的数。
或者表示把5平均分成8份,表示其中1份的数。
例(2)58吨表示把1吨平均分成8份,表示其中5份的数。
或者表示把5吨平均分成8份,表示其中1份的数。
2、把单位“1”平均分成若干份,表示这样的一份的数,叫做分数单位。
3、解决分数应用题。
带单位与不带单位的区别。
⑴如果问题中不带单位,用问题开始的那个单位÷条件中同样的单位的数。
⑵如果问题中带单位,用问题后面的单位÷前边的单位。
最后要带上单位。
如果问题中每份长?重?也要按带单位的处理,要自觉带上单位。
4、分数与除法的关系:被除数÷除数=被除数除数a ÷b=ab(b不等于0)第二部分真分数和假分数1、分子比分母小的分数叫做真分数。
真分数小于1。
2、分子比分母大或者分子和分母相等的分数叫做假分数。
假分数大于或等于1。
3、最小的假分数就是分子和分母相等的分数。
4、由一个整数和一个真分数合成的分数叫做带分数。
带分数都大于1。
5、把假分数化成整数或带分数,用分数的分子除以分母,商是带分数的整数部分,余数是带分数的分子,分母不变。
第三部分分数的基本性质、约分、通分1、分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
这叫做分数的基本性质。
2、几个数公有的因数,叫做它们的公因数。
其中,最大的公因数叫做它们的最大公因数。
3、两个数的公因数是最大公因数的因数。
已知最大公因数,求出最大公因数的所有因数,就是这两个数的所有公因数。
4、分解质因数法求两个数的最大公因数:24=2×2×2×3 36=2×2×3×3 24和36的最大公因数=2×2×3=12 5、两个不同质数一定是互质数,但互质的两个数不一定都是质数。
公因数只有1的两个数,叫做互质数。
6、任意两个相邻的自然数是互质数。
1与任何自然数是互质数。
任意两个不同质数的是互质数。
7、任意两个相邻的自然数的公因数是1,最大公因数是1。
1与任何自然数的公因数是1,最大公因数是1。
任意两个不同质数的公因数是1,最大公因数是1。
8、分子和分母只有公因数1,像这样的分数叫做最简分数。
9、把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。
10、约分时通常用分子和分母的最大公因数约分比较简便。
约分的结果必须是最简分数。
11、约分和通分的依据都是分数的基本性质。
12、两个数或几个数公有的倍数叫做这几个数的公倍数。
其中最小的一个公倍数叫做它们的最小公倍数。
13、公倍数是最小公倍数的倍数。
14、如果两个数是因数和倍数关系,那么它们的最大公因数是较小数,最小公倍数是较大数。
如果两个数是互质数,那么它们最大公因数是1,最小公倍数是它们的乘积。
15、把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。
通分时通常选用两个分母的最小公倍数做公分母比较简便。
16、分母相同的两个分数,分子大的分数就大。
分子相同的两个分数,分母小的分数就大。
第四部分分数与小数的互化1、把分数化成小数:把分数化为小数,直接用分子除以分母。
(除不尽的根据需要按“四舍五入”法保留一定的小数位数。
)2、把小数化成分数:看小数部分有几位小数,就在1后面写几个0作分母,将原来的小数去掉小数点作分子,再把分数化成最简分数。
3、如何判断一个分数能否化成有限小数。
先看看这个分数是不是最简分数,如果不是最简分数,先把它化为最简分数。
再把分数的分母分解质因数,如果分母中除了2和5以外,不含有其他质因数,这个分数就能化成有限小数。
如果分母中含有2和5以外的质因数,这个分数就不能化成有限小数。
第五单元分数的加法和减法1、同分母分数相加减,分母不变,只把分子相加减。
结果能约分的要化成最简分数。
2、异分母分数不能直接相加减,因为分母不同,就是分数单位不同;要先通分,把它们转化成分母相同的分数,再相加减。
3、分数加减法的验算方法与整数加减法的验算方法相同。
整数加法的交换律、结合律对分数加法同样适用。
第六单元、第七单元1、一组数据中,出现次数最多的数,叫做这组数据的众数。
众数能够反映一组数据的集中情况。
2、在一组数据中,众数可能不止一个,也可能没有众数。
下一分钟通知到的人数=上一分钟通知的人数×2+1单位换算的方法:大化小×进率小化大÷进率长度单位:大小千米、米、分米、厘米、毫米1公里=1千米1千米=1000米1米=10分米1分米=10厘米1厘米=10毫米面积单位:大小平方千米、公顷、平方米、平方分米、平方厘米、平方毫米1平方千米=100公顷1公顷=10000平方米1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米体积单位:大小立方米、立方分米、立方厘米1立方米=1方1立方米=1000立方分米1立方分米=1000立方厘米容积单位:大小升、毫升1升=1000毫升1升=1立方分米1毫升=1立方厘米重量单位:大小吨、千克、克1吨=1000 千克1千克=1000克1千克=1公斤人民币单位换算:大小元、角、分1元=10角1角=10分1元=100分时间单位换算: 大小年、月、日、时、分、秒1年=12个月1日=24小时1时=60分1分=60秒人教版,五年级下册,数学全册精典讲义第一单元分数乘法知识点总结1.分数乘整数意义:分数乘整数与整数乘法的意义相同,都是求几个相同加数的和的简便运算。