简单的数学建模配方问题
- 格式:pdf
- 大小:1.01 MB
- 文档页数:3
数学建模食谱问题一、某公司饲养实验用的动物以供出售。
已知这些动物的生长对饲料中的三种营养成分:蛋白质、矿物质、维生素特别敏感,每个动物每天至少需要蛋白质70g,矿物质3g,维生素100mg,该公司能买到5种不同的饲料,每种饲料1kg的成本如表1所示,每种饲料1kg所含营养成分如表2所示,。
求既能满足动物生长需要又使总成本最低的饲料配方。
表1五种饲料单位质量(1kg)成本饲料A1A2A3A4A5成本(元)0.20.70.40.30.5表2五种饲料单位质量(1kg)所含营养成分饲料蛋白质(g)矿物质(g)维生素(g)A10.300.100.05A2 2.000.050.10A3 1.000.020.02A40.600.200.20A51.800.050.08解:设需要饲料A1,A2,A3,A4,A5的数量分别为x1、x2、x3、x4、x5。
可建立以下线性规划模型:55.043.034.027.012.0min x x x x x z++++=7058.146.032213.0≥++++x x x x x3505.042.0302.0205.011.0≥++++x x x x x 1.0508.042.0302.021.0105.0≥++++x x x x x0≥xi)5,4,3,2,1(=i根据线性规划用MATLAB求解:c=[0.20.70.40.30.5];A=[-0.3-2-1-0.6-1.8-0.1-0.05-0.02-0.2-0.05-0.05-0.1-0.02-0.2-0.08];b=[-70;-3;-0.1];Aeq=[];beq=[];vlb=[0;0;0;0;0;0];vub=[];[x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub)x=0.00000.00000.00005.757636.9697fval=20.2121结论:最优方案为需要A4饲料为 5.7576g,A5饲料为36.9697g.总成本为20.2121元二、某工厂生产四种不同型号的产品,而每件产品的生产要经过三个车间的加工,根据该厂现有设备和劳动力等生产条件,可以确定各车间每日的生产能力(我们把它们折合成有效工时数来表示)。
配方法例题嘿,咱今儿个就来讲讲配方法例题!配方法啊,就像是一把神奇的钥匙,能打开好多数学难题的大门呢!比如说有这么个式子 x²+6x+8,咱要怎么用配方法来搞定它呢?那就得想法子把它变成一个完全平方式。
先把 x²和 6x 挑出来,6x 不正好是 2 倍的 x 乘以 3 嘛,那咱就给它配上一个 3²,也就是 9,不过多出来的 9 得减掉,这样式子就变成了 x²+6x+9-9+8,整理一下就是(x+3)²-1。
咋样,是不是挺有意思的?再看这个例子,4x²-12x+7,还是用配方法,先把 4x²和-12x 拎出来,4x²可以看成是(2x)²,-12x 是 2 乘以 2x 乘以-3,那配上(-3)²也就是 9 啦,不过得乘以 4 呢,因为前面有个 4,那就是 36,多出来的 36 得减掉,式子就变成了 4x²-12x+9+7-36,进一步整理就是 4(x-3/2)²-22。
你想想,配方法就像是给式子做了个整形手术,把它变得规规矩矩的,好让我们一眼就能看穿它的秘密呀!就像我们走路,有时候遇到一条崎岖的小路,走起来很费劲,但要是给它铺上石板,修成平坦的大道,那走起来不就轻松多了嘛!配方法就是这样的石板呀,让我们在数学的道路上走得更顺畅。
还有啊,配方法可不只是在解方程的时候有用哦,在好多数学问题里都能派上大用场呢!它就像一个万能工具,啥时候需要就啥时候拿出来用。
你说,要是没有配方法,我们遇到那些复杂的式子该咋办呀?是不是会像无头苍蝇一样乱撞呢?所以说呀,配方法可真是我们数学学习中的好帮手呢!咱再来看个稍微有点难度的,x²+4xy+3y²。
哎呀,这可有点复杂了呢,但咱不怕呀!先把 x²和 4xy 挑出来,4xy 可以看成是 2x 乘以 2y,那配上(2y)²也就是 4y²,式子就变成了 x²+4xy+4y²-y²,整理一下就是(x+2y)²-y²。
数学建模合理下料问题某钢管零售商从钢管厂进货,然后将钢管按照顾客的要求切割后售出,从钢管厂进货时,每根钢管的长度都是19米①现在有一客户需要50根4米、20根6米、15根8米的钢管,应如何下料最节省?②零售商如果采用的不同切割方式太多,将会导致生产过程的复杂化,从而增加生产和管理成本,所以该零售商规定采用的不同切割方式不能超过3种。
此外,该客户除需要①中的三种钢管外,还需要10根5米的钢管,应如何下料最省?(一)模型假设:1,假设钢管可以任意分割一根钢管可以有以下7种分法:①②③④⑤⑥⑦4米 4 3 2 1 1 0 06米0 1 0 2 1 3 08米0 0 1 0 1 0 2余料 3 1 3 3 1 1 3符号说明:x1-x7,表示对应分割方法下4,6,8米钢管的根数w , 表示所用的19米钢管数h , 表示余料模型分析:要求下料最节省,也即是所用的19米钢管数w最少。
客户需要50根4米、20根6米、15根8米的钢管,可以得到以下方程式:4x1+3x2+2x3+x4+x5>=50x2+2x4+x5+3x6>=20x3+x5+x7>=15Min h=3x1+x2+3x3+3x4+x5+x6+3x7模型求解:上述问题属于线性规划,它可以用单纯形法方法求解,也可以用LINDO软件求解。
用LINDO求解如下:直接输入min 3x1+x2+3x3+3x4+x5+x6+3x7subject to4x1+3x2+2x3+x4+x5=50x2+2x4+x5+3x6=20x3+x5+x7=15end将文件存储并命名后,选择菜单“solve”,并对提示“DO RANGE(SENSITIVITY)ANALYSIS”回答“是”或“否”。
即可得输出结果。
LP OPTIMUM FOUND AT STEP 4OBJECTIVE FUNCTION V ALUE1) 35.00000VARIABLE V ALUE REDUCED COSTX1 0.000000 0.000000X2 10.000000 0.000000X3 5.000000 0.000000X4 0.000000 4.750000X5 10.000000 0.000000X6 0.000000 4.750000X7 0.000000 1.500000模型假设:一根钢管可以有以下15种分法:⑴⑵⑶⑷⑸⑹⑺⑻⑼⑽⑾⑿⒀⒁⒂44 3 3 2 2 2 1 1 1 0 0 0 0 0 0 米0 1 0 2 1 0 3 1 0 2 2 1 1 0 0 5米0 0 1 0 1 0 0 0 1 1 0 2 1 3 0 6米0 0 0 0 0 1 0 1 1 0 1 0 1 0 2 8米3 2 1 1 0 3 0 2 1 3 1 2 0 1 3 余料符号说明:x1-x15,表示对应分割方法下4,5,6,8米钢管的根数w , 表示所用的19米钢管数h , 表示余料模型分析:要求下料最节省,也即是所用的19米钢管数w最少。
对偶问题例题1:某养鸡场所用的混合饲料由n 种天然饲料配合而成。
要求在这批配合饲料中必须含有m 种不同的营养成分,且第i 种营养成分的含量不低于bi 。
已知第i 种营养成分在每单位第j 种天然饲料中的含量为a ij ,每单位第j 天然饲料的价格为c j 。
试问,应如何对这n 种饲料配方,使这批饲料的费用最小? 解 设x j 为第j 种天然饲料的用量。
显然,a ij x j 即为所用第j 种天然饲料中第i 种营养成分的含量,1nij j j a x =∑为这批混合饲料中第i 种营养成分的总含量;它不应低于bi 。
于是,我们得下列线性规划模型(1—1):1min nj jj f c x ==∑11,,..01,,nij j i j j a x b i m s t x j n=⎧≥=⎪⎨⎪≥=⎩∑现设想有一个饲料加工厂欲把这m 种营养成分分别制成m 种营养丸。
设第i 种营养丸的价格为ui(i =1,…,m)。
则养鸡场采购一个单位的第j 种天然饲料,就相当于对这m 种营养丸分别采购数量a 1j ,…a mj ,所化费用为1mij ii a u =∑养鸡场自然希望在用营养丸代替天然饲料时,在价格上能相对地比较便宜,故而饲料加工厂为了能与天然饲料供应者竞争,在制订价格时必然满足下述条件:11,,mij ij i a uc j n =≤=∑另一方面,养鸡场如果全部采购营养丸来代替天然饲料进行配料,则第i 种营养丸就需采购bi 个单位,所化费用为b i u i ,总费用为z=∑b i u i饲料加工厂面临的问题是:应把这m 种营养丸的单价ui(f=1,…,m)定为多少,才能使养鸡场乐意全部采用该厂生产的营养丸来取代这批天然饲料,且使本厂在竞争中得到最大收益。
为该问题建立数学模型,即得如下线性规划(1—2):1max mi i i z b u ==∑11,,..01,,mij i j i ia u c j n s t u i m =⎧≤=⎪⎨⎪≥=⎩∑我们称问题(1—2)为原有问题 (1—1)的对偶问题(记为(D))。
数学建模第三次作业下料问题摘要本文是针对如何对钢管进行下料问题,根据题目要求以及下料时有关问题进行建立切割费用最少以及切割总根数最少两个目标函数通过结果分析需要使用何种切割模式。
生产方式所花费的成本价格或多或少有所不同,如何选取合理的生产方式以节约成本成为了很多厂家的急需解决的问题。
这不仅仅关系到厂家的利益,也影响到一个国家甚至整个人类星球的可利用资源,人们的生活水平不断提高对物资的需求量也不断上升,制定有效合理的生产方式不仅可以为生产者节约成本也可以为社会节约资源,以达到资源利用最大化。
本文以用于切割钢管花费最省及切割总根数最少为优化目标,通过构建多元函数和建立线性整数规划模型,利用数学及相关方面的知识对钢管的切割方式进行优化求解最佳方案。
本文最大的特色在于通过求解出切割钢管花费最省及切割总根数最少时分别得出两种目标函数取最小值时的切割模式。
通过结果发现两种目标函数取最小值时所需切割根数都一样。
于是选择切割钢管花费最省为目标函数,此时的切割模式达到最少,这样既满足了总根数最小有满足了切割费用最小。
关键词:切割模式LINGO软件线性整数一、问题的提出某钢管零售商从钢管厂进货,将钢管按照顾客的要求切割后出售。
从钢管厂进货时得到的原料钢管的长度都是1850mm。
现有一客户需要15根290mm、28根315mm、21根350mm和30根455mm的钢管。
为了简化生产过程,规定所使用的切割模式的种类不能超过4种,使用频率最高的一种切割模式按照一根原料钢管价值的1/10增加费用,使用频率次之的切割模式按照一根原料钢管价值的2/10增加费用,依次类推,且每种切割模式下的切割次数不能太多(一根钢管最多生产5根产品)。
此外,为了减少余料浪费,每种切割模式下的余料不能超过100mm。
为了使总费用最小,应如何下料?二、基本假设1、假设所研究的每根钢管的长度均为1850mm的钢管。
2、假设每次切割都准确无误。
3、假设切割费用短时间内不会波动为固定值。