1分式及分式的基本性质练习题.doc
- 格式:doc
- 大小:502.51 KB
- 文档页数:4
15.1 分式及分式的基本性质练习题型 1:分式概念的理解应用1. 下列各式 a , 1, 1 a 2 - b 2 x + y , , -3x 2 , 0 中, 是分式的有; 是整式的有π x + 1 5 .a - b题型 2:分式有无意义的条件的应用2.下列分式,当 x 取何值时有意义.2x + 13 + x 2 (1) ;(2) .3x + 22x - 33. 下列各式中,无论 x 取何值,分式都有意义的是() 1 x3x + 1 x 2A.B .C .D .4. 当 x2x + 1 2x + 1 x 2时,分式 2x + 1无意义. 3x - 42x 2 + 1题型 3:分式值为零的条件的应用x 2 - 15. 当 x 时,分式 x 2 + x - 2的值为零.6. 当 m =时,分式(m - 1)(m - 3) 的值为零.m 2 - 3m + 2 题型 4:分式值为±1 的条件的应用7. 当 x课后训练基础能力题时,分式 4x + 3的值为 1;当 x x - 5 时,分式 4x + 3 的值为-1 .x - 58. 分式 xx 2 - 4,当 x 时,分式有意义;当 x 时,分式的值为零.9.有理式① 2 ,② x + y,③ x 51 2 - a ,④ x - 1 中,是分式的有( )A .①②B .③④C .①③D .①②③④10. 分式 x + a中,当 x = -a 时,下列结论正确的是( )3x - 1A. 分式的值为零; B .分式无意义 C .若 a ≠ - 1 时,分式的值为零; D .若 a ≠ 1 3 3时,分式的值为零11. 当 x时,分式 1-x + 5的值为正;当 x时,分式 -4x 2 + 1的值为负.12. 下列各式中,可能取值为零的是()m 2 + 1m 2 - 1m + 1 m 2 + 1 A.B .C .D .m 2 - 1m + 1m 2 - 1m + 113. 使分式拓展创新题x| x | -1无意义,x 的取值是( ) A .0 B .1 C . -1 D . ±114. 已知 y =无意义.x - 12 - 3x, x 取哪些值时:(1) y 的值是正数;(2) y 的值是负数;(3) y 的值是零;(4)分式题型 1:分式基本性质的理解应用一、填空题:1. 写出等式中未知的分子或分母: y( )7xy 71a + b①=②=③=3x3x 2 y5x 2 y( )a -b ()2. 不改变分式的值,使分式的分子与分母都不含负号:- 5x ① - 2 ya = ;② -a (a -1) - a - 3b=.3. 等式 a +1 = a 2 -1成立的条件是 .二、选择1x - 1 y 4. 不改变分式的值,使分式5 10 的各项系数化为整数,分子、分母应乘以( )1 x + 1 y 3 9A .10B .9C .45D .905. 下列等式: ① -(a - b ) = - a - b ;② -x + y = x - y ;③ -a + b = - a + b ;④ -m - n = - m - n 中,成立的是c c -x x c c m m()A .①②B .③④C .①③D .②④2x6. 把分式中的 x 和 y 都扩大为原来的 5 倍,那么这个分式的值()2x - 3y1 5A. 扩大为原来的 5 倍 B .不变 C .缩小到原来的D .扩大为原来的 倍7. 使等式 7 =x + 27xx 2 + 2x52自左到右变形成立的条件是 ( ) A .x<0 B.x>0 C.x≠0 D.x≠0 且 x≠-22 - 3x 2 + x8. 不改变分式 的值,使分子、分母最高次项的系数为正数,正确的是( )-5x 3+ 2x - 3 3x 2+ x + 2 3x 2 - x + 2 3x 2 + x - 2 3x 2 - x - 2 A. B . C . D .5x 3 + 2x - 3 三、解答题:5x 3 + 2x - 3 5x 3 - 2x + 3 5x 3 - 2x + 39. 不改变分式的值,把下列各式的分子与分母中各项的系数都化为整数:1 x - 1y ① 35 2x + 1 y60.8x - 0.78 y② ③ 0.5x + 0.4 y a - 0.4b 2 0.6a + 3 b 410. 不改变分式的值,使分式的分子、分母中的首项的系数都不含 “-” 号:①2x - 1 - x + 1- x 2 + 2x - 1②x - 2③- x - 1 - x 2 - 3x + 1题型 2:分式的约分一、判断正误并改正:y 6 3(-a - b )2 a 2 - b 2 ① = y ( )② =-a -b ( )③ =a -b ( )y2(x + 2)(x - 3)a + bx + a xa - b(x + y ) + (x - y ) 1④ =-1( ) ⑤ =( )⑥ = ()(2 + x )(3 - x )二、选择题y + a y 2(x + y )(x - y ) 24 y + 3x x 2 - 1 x 2 - xy + y 2 a 2 + 2ab1. 分式 , , , 中是最简分式的有()4a x 4 - 1 x + y ab - 2b 2A .1 个B .2 个C .3 个D .4 个2.下列约分正确的是( )2(b + c ) 2(a - b )2a +b 2 x - y 1A. = a + 3(b + c ) a + 3B. = -1 (b - a )2C. = a 2 + b 2 a + bD. = 2xy - x 2 - y 2 y - x3. 下列变形不正确的是()A. 2 - a = a - 2B. 1 =x -1 (x≠1) C. x +1 = 1 D. 6x + 3 =2x +1 - a - 2 a + 2 x +1 x 2 -1x 2 + 2x +1 2 3y - 6 y - 24. 等式 a =a +1 a (b +1)(a +1)(b +1)成立的条件是( ) A.a≠0 且 b≠0 B.a≠1 且 b≠1 C.a≠-1 且 b≠-1 D.a 、b 为任意数5. 如果把分式 x + 2 y 中的x 和 y 都扩大 10 倍,那么分式的值( )x + y3 A.扩大 10 倍B.缩小 10 倍C.是原来的D.不变26. 不改变分式的值,使1- 2x- x 2 + 3x - 3的分子、分母中最高次项的系数都是正数,则此分式可化为()A. 2x -1 x 2 + 3x - 3B. 2x +1 x 2 + 3x + 3C. 2x +1 x 2 - 3x + 3D. 2x -1 x 2 - 3x + 37. 下面化简正确的是( )2a + 1(a - b )26 - 2xx 2 + y 2A .=0B. =-1C.=2D. =x+y2a + 1(b - a )2- x + 3x + yx1a + m a212 + xya 2 - 18.下列约分:①=②=③=④=1 ⑤=a -1- (x - y ) 3x 23x1b + m b2 + a 1 + a xy + 2 a + 1⑥=-其中正确的有()(x - y )2x - yA. 2 个B. 3 个C. 4 个D. 5 个三、解答题: 约分:1 - 36xy2 z3 m 2 -4 x 4 - 1 x 2 + 6x + 9①②③④6 yz 2a 2 - 4a + 42m + m 28 - 2m 1 - x 2m 2 - 3m + 2 x 2 - 93x 2 - 2 y 2⑤⑥⑦⑧ 23 a 2- 4m 2- 16m 2- m3 x 2 - 2 y 2 10 15题型 3:分式的通分1.通分:x y1-1 a - 1 6(1) , ;(2), ; (3) , .6ab 2 9a 2bcx 2 - x x 2 - 2x +1a 2 + 2a + 1 a 2 - 12. 先化简,再求值:a 2 - 8a + 16a 2 + ab① ,其中 a=5;②,其中 a=3b≠0.a 2- 16a 2+ 2ab + b 23.已 知 - 1 x y= 5 ,求分式- x + xy + y的值.4.已知 x= 2x + 7xy - 2 y2 y = z3 4xy + yz + zx,求x 2 + y 2 + z 2的值.y +1x +11 x 25.已知 x + y = -4, xy = -12 , 求 + 的值.6.已知 x + = 3 ,求 的值.x +1 y +1x x 4 + x 2+ 1。
分式知识点及例题一、分式的概念形如$\dfrac{A}{B}$($A$、$B$是整式,且$B$中含有字母,$B\neq 0$)的式子叫做分式。
其中,$A$叫做分子,$B$叫做分母。
例如:$\dfrac{x}{y}$,$\dfrac{2}{x + 1}$,$\dfrac{3x 1}{x^2 1}$等都是分式。
需要注意的是:(1)分式的分母中必须含有字母。
(2)分母的值不能为零,如果分母的值为零,那么分式就没有意义。
例如,在分式$\dfrac{x}{x 1}$中,当$x 1 = 0$,即$x = 1$时,分式没有意义。
二、分式的基本性质分式的分子与分母同乘(或除以)一个不等于$0$的整式,分式的值不变。
即:$\dfrac{A}{B} =\dfrac{A \times M}{B \times M}$,$\dfrac{A}{B} =\dfrac{A \div M}{B \div M}$($M$为不等于$0$的整式)例如:$\dfrac{x}{y} =\dfrac{x \times 2}{y \times 2} =\dfrac{2x}{2y}$三、分式的约分把一个分式的分子与分母的公因式约去,叫做分式的约分。
约分的关键是确定分子与分母的公因式。
确定公因式的方法:(1)系数:取分子、分母系数的最大公约数。
(2)字母:取分子、分母相同字母因式的最低次幂。
例如:\\begin{align}\dfrac{6xy}{9x^2y} &=\dfrac{2 \times 3 \times x \times y}{3 \times 3 \times x \times x \times y}\\&=\dfrac{2}{3x}\end{align}四、分式的通分把几个异分母的分式分别化成与原来的分式相等的同分母分式,叫做分式的通分。
通分的关键是确定几个分式的最简公分母。
确定最简公分母的方法:(1)取各分母系数的最小公倍数。
(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式。
分式基本性质练习题分式是数学中重要的概念之一,它在实际生活中有着广泛的应用。
本文将为大家提供一些分式基本性质的练习题,帮助读者巩固和深入理解分式的概念和运算规则。
练习题一:分式的乘法和除法1. 计算:$\frac{2}{3} \times \frac{4}{5}$2. 简化:$\frac{16}{24}$3. 计算:$\frac{5}{6} \div \frac{2}{3}$4. 简化:$\frac{12}{36}$练习题二:分式的加法和减法1. 计算:$\frac{1}{4} + \frac{3}{8}$2. 计算:$\frac{5}{6} - \frac{2}{3}$3. 计算:$\frac{2}{5} + \frac{3}{10}$4. 计算:$\frac{3}{4} - \frac{1}{6}$练习题三:分式的化简和换算1. 化简:$\frac{4x^2}{8x}$2. 化简:$\frac{10ab^2}{5a^2b}$3. 将小数$\frac{0.6}{1.2}$化成分数的形式。
4. 将百分数$75\%$化成分数的形式。
练习题四:分式的比较和大小关系1. 比较大小:$\frac{3}{4}$和$\frac{5}{8}$2. 比较大小:$\frac{2}{3}$和$\frac{4}{5}$3. 将分数$\frac{2}{9}$改写成百分数。
4. 将百分数$25\%$改写成分数。
练习题五:分式的应用1. 假设小明每小时工作5小时,小红每小时工作4小时,他们一起工作的效率是多少?2. 某项工程由甲、乙两人合作完成,甲单独完成需要10天,乙单独完成需要15天,他们一起工作多少天可以完成该项目?3. 假设一块土地上有甲、乙两家农场,甲家的土地面积是乙家的2倍,甲家每年产量为1000千克,乙家每年产量为800千克,问两家农场每年的平均产量是多少千克?以上是分式基本性质的练习题,希望读者朋友们通过这些练习能够提高对分式的理解和运用能力。
分式及分式的基本性质一. 选择题1. 在x 1、21、212+x 、πxy 3、y x +3、ma 1+中分式的个数有( )A 、2 B 、3 C 、4 D 、52. 要使分式1(1)(2)x x x ++-有意义,则x 应满足( )≠-1 ≠2 ≠±1 ≠-1且x ≠23. 下列约分正确的是( ) A 、326x x x =; B 、0=++y x y x ; C 、x xy x y x 12=++; D 、214222=y x xy 4. 化简2293mm m --的结果是( ) A 、3+m m B 、3+-m m C 、3-m m D 、m m-3 5. 下列分式中,最简分式是 ( ) A.a bb a -- B.22x y x y ++ C.242x x -- D.4422+++a a a6. 对分式2yx ,23x y,14xy 通分时, 最简公分母是( )A .B . C. D.7. 下列式子(1)y x y x y x -=--122;(2)ca ba a c ab --=--;(3)1-=--b a a b ;(4)y x y x y x y x +-=--+- 中正确个数有 ( ) A 、1个 B 、2 个 C 、 3 个 D 、 4 个8. 分式13-+x ax 中,当a x -=时,下列结论正确的是( ) A .分式的值为零 B.分式无意义 C. 若31-≠a 时,分式的值为零 D. 若31≠a 时,分式的值为零9. 如果分式x211-的值为负数,则的x 取值范围是( )A.21≤x B.21<x C.21≥x D.21>x10. 若分式1122+-a a 有意义,则( )。
A、a≠1 B、a≠-1 C、a≠±1 D、a为任何数11. 对于分式11-x ,永远成立的是( ) A .1211+=-x x B. 11112-+=-x x x C. 2)1(111--=-x x x D. 3111--=-x x 12. 下列各分式正确的是( )A.22a b a b =B. b a ba b a +=++22 C. a a a a -=-+-11122 D. x x xy y x 2168432=--13. 不改变分式的值,使分式115101139x yx y -+的各项系数化为整数,分子、分母应乘以(• ) A .10 B .9 C .45 D .9014. 不改变分式2323523x xx x -+-+-的值,使分子、分母最高次项的系数为正数,正确的是(• ) A .2332523x x x x +++- B .2332523x x x x -++- C .2332523x x x x +--+ D .2332523x x x x ---+15. 下列各式中,可能取值为零的是( ) A .2211m m +- B .211m m -+ C .211m m +- D .211m m ++16. 下列各式中,正确的是( )A .x y x y -+--=x y x y -+; B .x y x y -+-=x y x y ---; C .x y x y -+--=x y x y +-; D .x y x y -+-=x yx y-+ 17. 把分式yx x322-中的x 和y 都扩大为原来的5倍,那么这个分式的值 ( )A .扩大为原来的5倍B .不变C .缩小到原来的51 D .扩大为原来的25倍 二. 填空题18. 如果,那么= ____ 。
15.1.1 分式的基本性质 考点闯关 考点1:分式的基本性质 分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变. 用式子表示为:,(0),A AC A A C C B BC B B C÷==≠÷其中,,A B C 是整式。
1.下列各式从左至右的变形不正确的是( )A .2233y y -=-B .66y y x x -=-C .22xy y x y x =D .a a c b b c+=+ 2.若把分式5y x y+中的x 、y 都扩大5倍,那么分式的值( ) A .扩大5倍 B .不变 C .缩小5倍 D .缩小52倍 3.不改变分式的值,把1312x y x y -+的分子与分母中各项的系数都化为整数,结果为______. 4.已知113x y-=,求5352x xy y x xy y +---的值 考点2:分式的约分(1)约分:把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分;找公因式的方法:①当分子、分母都是单项式时,先找分子、分母系数的最大公约数,再找相同字母的最低次幂,它们的积就是公因式;②当分子、分母都是多项式时,将能因式分解的先因式分解。
(2)最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式,约分时,一般将一个分式化为最简分式.5.下列分式中,是最简分式的是( ).A .2xy xB .222x y -C .22x y x y +-D .22x x + 6.约分:322369a b c a b = ;24424x x x ++=+ . 7.将下列各式约分;22318(1)24a b a b c; 25(3)(2)2(3)a a ----; 2222(3)21a a a --+.8.先化简,再求值:222(1),4x y x y +- 其中35,;2x y ==2223(2),96x xy x xy y --+ 其中32,.43x y ==-题型3:最简公分母与分式的通分通分:异分母的分式可以化成同分母的分式,这一过程叫做通分.最简公分母:各分母的所有因式的最高次幂的积叫做最简公分母通分的关键是准确找出各分式的最简公分母最简公分母的确定方法⑴当各分母的系数都是整数时,取它们的系数的最小公倍数作为最简公分母的系数;⑵所有分式的分母中凡出现的以字母(或含有字母的式子)为底的幂的因式都要取;⑶相同字母(或式子)的幂的因式取指数最高的;⑷当分母是多项式时,一般应将能分解因式的多项式分解因式。
第5章 分式5.2 分式的基本性质 第1课时 分式的基本性质知识点1 分式的基本性质分式的分子与分母都乘(或除以)同一个不等于零的整式,分式的值不变.A B =A ×M B ×M ,A B =A ÷M B ÷M(其中M 是不等于零的整式). 1.下列分式的变形正确的是( )A.a b =a 2abB.a +1a -1=a 2+2a +1a 2-1C.a b =ab b2 D.b +1a =ab +1a2 知识点2 分式的约分把一个分式的分子和分母的公因式约去,叫做分式的约分.约分要约去分子、分母所有的公因式.分子、分母没有公因式的分式叫做最简分式.约分方法:(1)系数:约去分子、分母中各项系数的最大公约数; (2)字母:约去分子、分母中相同字母的最低次幂; (3)若分子与分母是多项式,应先分解因式再约分.2.化简:(1)10a 3b4ab =________;(2)x 2-1x -1=________;(3)a 2-4a 2+4a +4=________. 3.在下列分式中,表示最简分式的是( ) A .a 2-a a 2-1 B .a 2+a a 2-1 C .a 2+1a 2-1 D .a 2-a a 2+a一 尝试把非整数系数化为整数系数教材做一做第1题变式题不改变分式的值,把下列各式的分子、分母中的各项系数都化为整数,且使分子与分母不含公因式.(1)12a +13b 23a -14b ; (2)45x +0.25y 12x -0.6y .二 尝试把最高次项的系数化为正数教材做一做第2题变式题不改变分式的值,使分式的分子、分母中最高次项的系数化为正数. (1)1+x +x 21+x -x 2; (2)-1+a -a 2-1-a 2-a 3.三 综合运用所学知识,进行分式的约分教材例1变式题把下列各式约分:(1)-16x 2y 320xy 4; (2)27a n +3b 26a n b 3;(3)-6x (a -x )2-24(x -a )3y ; (4)a 2+6a +9a 2-9.[归纳总结] 分式的约分就是约去分子与分母中的公因式.找公因式的方法:(1)若分子与分母的系数都是整数,取分子与分母中各项系数的最大公约数;(2)取分子与分母中相同字母的最低次幂;(3)如果分子与分母是多项式,应先分解因式,再找公因式.注意约分的最后结果应是整式或最简分式.[反思] 约分:(1)6y 24xy ;(2)15n (m -n )2-25(n -m ).解:(1)6y 24xy =6y4x;(2)15n (m -n )2-25(n -m )=5(n -m )·3n(n -m )5(n -m )·(-5)=3n (n -m )-5=-3n 2-3mn 5. 上面两道题的约分是否正确?如果不正确,错在哪里?怎样改正?一、选择题1.下列各式中,成立的是( ) A .x y =x 2y 2 B .x y =xy x +yC .x y =x +a y +a D .x y =x +axy +ay(a≠-1)2.若分式2a a +b中a ,b 的值同时扩大为原来的10倍,则此分式的值( )A .是原来的20倍B .是原来的10倍C .是原来的110D .不变3.计算x 2-9x -3的结果是( )A .x -3B .x +3C .x -93 D .x +3x4.不改变分式0.5x -10.3x +2的值,把它的分子和分母中各项的系数都化为整数,则所得的结果为( )A .5x -13x +2B .5x -103x +20 C .2x -13x +2 D .x -23x +205.有下列分式:12x 2y 3x ,x -y x 2-y 2,x 2+y 22(x +y ),y -2x 2x -y ,a 2-2a +11-a2,其中最简分式有( ) A .1个 B .2个C .3个D .4个二、填空题6.填空:(1)1a +1=a +1;(2)a 2-4a 2+4a +4=a -2. 7.2016·南充计算:xy2xy =________.8.2016·无锡化简2x +6x -9得________.9.化简:()x +22-()x -22x=________.三、解答题10.下列各式正确吗?如果不正确,请写出正确结果. (1)a 2-2a +11-a =1-a(a≠1);(2)3x -4y 8xy -6x 2=12x ⎝ ⎛⎭⎪⎫x≠0且x≠43y .11.约分:(1)15xy 225y 3z ; (2)12xy 2+9xyz 3x 2y ;(3)m 3-m 4m +4; (4)9a 2+24ab +16b 23a +4b .12.2016·广州已知A =(a +b )2-4abab (a -b )2(a≠0,b ≠0且a≠b),化简A.13.今年某厂的生产总值逐月增长,每月的增长率都为p.求今年3月该厂的生产总值与1,2月份这两个月生产总值之和的比.若p =5%,这个比值是多少?综合运用光明中学有两块边长为x米的正方形空地,现设想按两种方式种植草皮,方式一:如图5-2-1①,在正方形空地上留两条宽为2m米的路;方式二:如图②,在正方形空地四周各留一块边长为m米的正方形空地植树,其余种植草皮.学校准备两种方式各用5000元购进草皮.图5-2-1(1)写出按图①,②两种方式购买草皮的单价;(2)当x=14,m=2时,求按两种方式购买草皮的单价各是多少.(结果均保留整数)详解详析【预习效果检测】1.C [解析] 发现题目中隐含的条件是解本题的关键.a b成立已隐含着条件b ≠0,当分子、分母同乘a ,必须附加条件a ≠0,因此A 项不一定成立,而C 项成立.a +1a -1中隐含着a -1≠0,但等号右边的式子中分子、分母同乘(a +1),若要等式成立,则必须附加条件a +1≠0.D 项中分子应为ab +a .故选C.2.(1)5a 22b (2)x +1 (3)a -2a +2[解析] (1)原式=2ab ·5a 22ab ·2b =5a 22b .(2)原式=()x +1(x -1)x -1=x +1. (3)原式=()a +2(a -2)()a +22=a -2a +2.3.C【重难互动探究】例1 解:(1)原式=⎝ ⎛⎭⎪⎫12a +13b ×12⎝ ⎛⎭⎪⎫2a 3-14b ×12=6a +4b 8a -3b .(2)原式=⎝ ⎛⎭⎪⎫45x +0.25y ×20⎝ ⎛⎭⎪⎫12x -0.6y ×20=16x +5y 10x -12y .例2 解:(1)1+x +x 21+x -x 2=1+x +x 2-(x 2-x -1)=-1+x +x2x 2-x -1. (2)-1+a -a 2-1-a 2-a 3=-(1-a +a 2)-(1+a 2+a 3)=1-a +a21+a 2+a 3. 例3 解:(1)原式=-4xy 3·4x 4xy 3·5y =-4x5y .(2)原式=3a n b 2·9a 33a n b 2·2b =9a32b.(3)原式=6(x -a )2·x 6(x -a )2·4y (x -a )=x4y (x -a ). (4)原式=(a +3)2(a +3)(a -3)=a +3a -3.【课堂总结反思】[反思] 两个都不正确.(1)约分不彻底;(2)最后一步符号错误. 改正:(1)6y 24xy =2y·3y 2y·2x =3y2x.(2)15n (m -n )2-25(n -m )=5(n -m )·3n(n -m )5(n -m )·(-5)=3n (n -m )-5=3mn -3n 25. 【作业高效训练】 [课堂达标] 1.D 2.D3.[解析] B x 2-9x -3=(x +3)(x -3)x -3=x +3.4.B 5.A6.[答案] (1)a 2+2a +1或(a +1)2(2)a +2[解析] 根据分式的基本性质求解.比较等式两边分子和分母的变化,再将待填的分母或分子作相应的变形即可.(1)中分子由1到a +1,显然是由1乘(a +1)得到的,相应地,分母a +1也应乘(a +1),得(a +1)(a +1)=a 2+2a +1,故填a 2+2a +1;(2)中分子a 2-4=(a +2)(a -2),分子由(a +2)(a -2)到a -2,显然是除以了(a +2),相应地,分母也应除以(a +2),故填a +2.7.[答案] y8.[答案]2x -39.[答案] 8[解析] 根据完全平方公式,可得原式=x 2+4x +4-x 2+4x -4x =8xx =8.10.解:(1)正确.(2)不正确,正确的结果为3x -4y 8xy -6x 2=-12x ⎝ ⎛⎭⎪⎫x≠0且x≠43y . 11.解:(1)15xy 225y 3z =5y 2·3x 5y 2·5yz =3x5yz .(2)12xy 2+9xyz 3x 2y =3xy (4y +3z )3xy·x =4y +3z x . (3)m 3-m 4m +4=m (m +1)(m -1)4(m +1)=m (m -1)4.(4)9a 2+24ab +16b 23a +4b =(3a +4b )23a +4b=3a +4b.[点评] 分式约分的关键是找出分子与分母的公因式.如果分式的分子、分母是几个因式的积的形式,要约去系数的最大公约数及相同因式的最低次幂;如果分子、分母是多项式,要先对分子、分母进行因式分解,然后再约分.12.解:A =a 2-2ab +b 2ab (a -b )2=1ab. 13.解: 设1月份的生产总值为a ,则2月份的生产总值a(1+p),3月份的生产总值为a(1+p)2. 故今年3月份该厂的生产总值与1,2月份这两个月生产总值之和的比为a (1+p )2a +a (1+p )=(1+p )22+p .当p =5%时,(1+p )22+p =441820.[数学活动]解:(1)图①种植草皮的面积为(x -2m)2,图②种植草皮的面积为x 2-4m 2.按图①方式购买草皮的单价为5000(x -2m )2元/米2;图②方式购买草皮的单价为5000x 2-4m2元/米2.(2)12x =14,m =2时,按方式一购买草皮的单价是50元/米2,按方式二购买草皮的单价是28元/米2.。
分式知识点及典型例题一、分式的定义如果 A、B 表示两个整式,并且 B 中含有字母,那么式子 A/B 就叫做分式。
其中 A 叫做分子,B 叫做分母。
需要注意的是:分式的分母不能为 0,因为分母为 0 时,分式无意义。
例如:1/x ,(x + 1)/(x 2)都是分式,而 1/2 就不是分式,因为它的分母 2 不含字母。
二、分式有意义的条件分式有意义的条件是分母不为 0。
即:对于分式 A/B,B ≠ 0 时,分式有意义。
例如:对于分式 1/(x 1) ,要使其有意义,则x 1 ≠ 0,即x ≠ 1。
三、分式的值为 0 的条件分式的值为 0 时,要同时满足两个条件:1、分子为 0 ,即 A = 0 。
2、分母不为 0 ,即B ≠ 0 。
例如:若分式(x 1)/(x + 2)的值为 0,则 x 1 = 0 且 x +2 ≠0 ,解得 x = 1 。
四、分式的基本性质分式的分子和分母同时乘以(或除以)同一个不为 0 的整式,分式的值不变。
即:A/B =(A×C)/(B×C), A/B =(A÷C)/(B÷C)(C ≠ 0 )例如:将分式 2x/3y 的分子分母同时乘以 2 ,得到 4x/6y ,分式的值不变。
五、约分把一个分式的分子和分母的公因式约去,叫做约分。
约分的关键是确定分子和分母的公因式。
确定公因式的方法:1、系数:取分子和分母系数的最大公因数。
2、字母:取相同字母的最低次幂。
例如:对分式(6xy)/(9x²y)进行约分,分子分母的系数 6 和 9 的最大公因数是 3 ,字母部分 x 的最低次幂是 1 ,y 的最低次幂是 1 ,所以公因式是 3xy ,约分后得到 2/(3x) 。
六、通分把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做通分。
通分的关键是确定几个分式的最简公分母。
确定最简公分母的方法:1、取各分母系数的最小公倍数。
2、凡单独出现的字母连同它的指数作为最简公分母的一个因式。
分式和它的基本性质练习题1.有理式①2x,②5x y +,③12a -,④1x π-中,是分式的有( ) A .①② B .③④ C .①③ D .①②③④ 2.分式31x a x +-中,当x=-a 时,下列结论正确的是( )A .分式的值为零;B .分式无意义C .若a ≠-13时,分式的值为零; D .若a ≠13时,分式的值为零3.当x_______时,分式15x -+的值为正;当x______时,分式241x -+的值为负. 4.下列各式中,可能取值为零的是( ) A .2211m m +- B .211m m -+ C .211m m +- D .211m m ++5.使分式||1x x -无意义,x 的取值是( ) A .0 B .1 C .-1 D .±1 6.根据分式的基本性质,分式a a b--可变形为( ) A .a a b-- B .a a b+ C .-aa b - D .aa b+7.下列各式中,正确的是( )A .x y x y-+--=x y x y -+; B .x y x y -+-=x y x y---; C .x y x y-+--=x y x y+-; D .x y x y-+-=x y x y-+8.下列各式中,正确的是( )A .a m a b mb+=+ B .a b a b++=0 C .1111ab b ac c --=-- D .221x y x y x y-=-+9、下列各式aπ,11x +,15x+y ,22a b a b--,-3x 2,0•中,是分式的有______;是整式的有______;10.当x_______时,分式2212x x x -+-的值为零.11.当x______时,分式435x x +-的值为1;当x_______时,分式435x x +-的值为-1.12.分式24x x -,当x_______时,分式有意义;当x_______时,分式的值为零. 13.当m=________时,分式2(1)(3)32m m m m ---+的值为零.14.若a=23,则2223712a a a a ---+的值等于_______.15.约分:(1)22699x x x ++-; (2)2232m m m m-+-.16.通分:(1)26x ab ,29y a bc ; (2)2121a a a -++,261a -.17.已知1x-1y=3,求5352x xy y x xy y+---的值18.已知y=123x x--,x 取哪些值时:(1)y 的值是正数;(2)y 的值是负数;(•3)y 的值是零;(4)分式无意义.19、已知a 2-4a+9b 2+6b+5=0,求1a -1b的值.一、填空题1.不改变分式的值,使分式的分子与分母的第一项的系数都是正的(1) 56x y -= ;(2) 2761x y --+= ;(3) 5938x x ---= ; (4) 22165x x x x -+---+= 。
2019备战中考数学基础必练-分式的基本性质(含解析)一、单选题1.如果把分式中的m和n都扩大3倍,那么分式的值()A.不变B.扩大3倍C.缩小3倍D.扩大9倍2.把分式(x0,y0)中的分子、分母的x、y同时扩大2倍,那么分式的值()A.扩大为原来的2倍B.缩小为原来的C.缩小为原来的D.不改变3.将中的a、b都扩大4倍,则分式的值()A.不变B.扩大4倍C.扩大8倍D.扩大16倍4.下列计算正确的是()A. B. C. D.5.不改变分式的值,把它的分子和分母中的各项系数都化为整数,则所得的结果为()A. B. C. D.6.如果把中的x和y都扩大10倍,那么分式的值()A.不变B.扩大10倍C.缩小10倍D.扩大20倍7.已知,则的值等于A.6B.C.D.8.若将分式中的a与b的值都扩大为原来的2倍,则这个分式的值将()A.扩大为原来的2倍B.分式的值不变C.缩小为原来的D.缩小为原来的9.如果把中的x与y都扩大为原来的10倍,那么这个代数式的值()A.不变B.扩大为原来的5倍C.扩大为原来的10倍D.缩小为原来的10.若把分式的x、y同时缩小12倍,则分式的值()A.扩大12倍B.缩小12倍C.不变D.缩小6倍二、填空题11.约分:=________.12.在括号内填上适当地整式,使下列等式成立:(1);________(2)= .________13.把分式约分得________14.若a≠0,则=________15.不改变分式的值,把下列各式的分子、分母中各项系数都化为整数:(1)= ________;(2)= ________.16.不改变分式的值,把它的分式和分母中的各项的系数都化为整数,则所得结果为________17.已知,则的值是________三、计算题18.通分:2 x x + 3 +1= 7 2 x + 6 。
(1),(2),.19.约分:四、解答题20.在分式中,字母m,n,p的值分别扩大为原来的2倍,则分式的值会如何变化.21.已知,求和的值.22.不改变分式的值,使分式的分子与分母的最高次项的系数是整数答案解析部分一、单选题1.【答案】C【考点】分式的基本性质【解析】【解答】解:把分式中的m和n都扩大3倍,得=×.故选:C.【分析】根据分式的性质,可得答案.2.【答案】D【考点】分式的基本性质【解析】【分析】根据题目中分子、分母的x、y同时扩大2倍,得到了分子和分母同时扩大2倍,根据分式的基本性质即可判断.【解答】分子、分母的x、y同时扩大2倍,即,根据分式的基本性质,则分式的值不变.故选D.【点评】此题考查了分式的基本性质.3.【答案】B【考点】分式的基本性质【解析】【分析】根据分式的分子分母都乘乘以同一个不为0的整式,分式的值不变,可得答案.【解答】根据题意,可得=4×,故选:B.【点评】本题考查了分式的性质,分式的分子分母都乘乘以同一个不为0的整式,分式的值不变.4.【答案】A【考点】分式的基本性质【解析】【解答】A、,A符合题意;B、,B不符合题意;C、不能化简,C不符合题意;D、没有意义,D不符合题意.故答案为:A.【分析】对于A,依据分式的基本性质,分式的分子和分母同时扩大2倍即可;对于B,依据负整数指数幂的性质进行计算即可;对于C,依据分式的基本性质进行判断即可;对于D,依据零指数幂的性质a0=1,(a≠0)进行判断即可.5.【答案】B【考点】分式的基本性质【解析】【分析】分式的基本性质:分式的分子和分母同乘以或除以一个不为0的数(或式),分式的值不变.题目中的分子分母应该同时扩大10倍.故选B.【点评】本题属于基础应用题,只需学生熟练掌握分式的基本性质,即可完成。
分式的基本性质练习题一 选择题1.据分式的基本性质,分式a a b--可变形为( )A .a a b-- B .b a a - C .b a a -- D .a a b+ 2.下列各式中,正确的是( ) A x y x y-+--=x y x y-+ B x y x y -+-=x y x y--- C x y x y -+--=x y x y +- D x y x y -+-=x y x y-+ 3.下面式子:c b a cba --=+-,c b a c b a --=--,cb ac b a +-=+-,正确的是( )个 A 0 B 1 C 2 D 34.对于分式1/(x —1),永远成立的是( ) A .1211+=-x x B 。
11112-+=-x x x C 。
2)1(111--=-x x x D.3111--=-x x 5.下列各分式正确的是( )A 。
22ab a b = B 。
b a ba b a +=++22 C 。
a a a a -=-+-11122 D 。
x xxy y x 2168432=--6.下列各式中,正确的是( )A .a mab mb+=+ B .a b a b++=0 C .1111ab b ac c --=-- D .221x y x y x y-=-+7.下列等式成立的是( )A 22m n m n = B)0(≠++=a a m a n m n C )0(≠--=a a m a n m n D )0(≠=a manam n 8.下列等式成立的是( ) A cb ba cb ba -+=--+- Bb a ba b a +=++22 Cxy xyy x xy 22-=-- Dcb ac b a --=--9.式子1/(x —3)=(x+2)/(x-3)(x+2)成立,则( )A x+2>0 B x+2=0 C x+2<0 D x+2≠010.已知3x /(x 2—3x)=3/(x —3)成立,则( )A x >0 B x <0 C x ≠3 D x ≠0且x ≠3 11.化简(x -1∕y )∕(y -1∕x )=( )A 1 B y ∕x C x ∕y D x ∕y -y ∕x12.分式434y x a+,2411x x --,22x xy y x y-++,2222a ab ab b +-中是最简分式的有( )A 1个 B 2个 C 3个 D 4个13.下列各题所求的最简公分母,错误的是( )A .1/3x 与a /6x 2最简公分母是6x 2B. 3231b a 与cb a 3231最简公分母是3a 2b 3c C.nm +1与nm -1的最简公分母是m 2—n 2D 。
分式的基本性质培优 姓名一.选择题1.在代数式22221323252,,,,,,33423x x xy x x x x π+-+中,分式共有( ). A.2个B.3个C.4个D.5个 2.使分式5+x x 值为0的x 值是( ) A .0 B .5C .-5D .x ≠-5 3. 下列判断错误..的是( ) A .当23x ≠时,分式231-+x x 有意义 B .当a b ≠时,分式22ab a b -有意义 C .当21-=x 时,分式214x x+值为0 D .当x y ≠时,分式22x y y x --有意义 4.x 为任何实数时,下列分式中一定有意义的是( )A .21x x+ B .211x x -- C .11x x -+ D .211x x -+ 5.如果把分式yx y x ++2中的x 和y 都扩到原来的10倍,那么分式的值( ) A .扩大10倍B .缩小10倍C .是原来的32 D .不变 6.下列各式中,正确的是( )A .a m a b m b +=+B .0a b a b+=+ C .1111ab b ac c +-=-- D .221x y x y x y -=-+ 二.填空题7.当x =______时,分式632-x x 无意义. 8.若分式67x--的值为正数,则x 满足______. 9.(1)112()x x x --=- (2).y x xy x 22353)(= 10.(1)22)(1y x y x -=+ (2)⋅-=--24)(21y y x 11.分式2214a b 与36x ab c的最简公分母是_________. 12. 化简分式:(1)3()x y y x -=-_____;(2)22996x x x -=-+_____.三.解答题13.当x 为何值时,下列分式有意义?(1)12x x +-;(2)1041x x -+;(3)211x x -+;(4)2211x x ---.14.已知分式,y a y b-+当y =-3时无意义,当y =2时分式的值为0,求当y =-7时分式的值.15.不改变分式的值,使分子、分母中次数最高的项的系数都化为正数.(1)22x x y --= (2)2ba a --=(3)2211x x x x ---+= (4)2231m m m ---=16、已知x yz 3460==≠,求x y zx y z +--+的值。
分式的基本性质专项练习30题(有答案)ok1.如果将分式中的x、y都扩大到原来的10倍,分式的值会扩大10倍。
2.如果将分式中的x和y都扩大3倍,分式的值不变。
3.将分子、分母中各项系数化为整数不改变分式的值。
4.正确的是A。
5.正确的是B。
6.与分式的值相等的是B。
7.与分式的值相等的是D。
8.化简为9.化简为10.若x在(0,2)之间,化简后的结果为B。
11.正确的是C。
12.不改变分式13.正确的个数为B。
14.分子和分母的系数化为整数后,正确的变形有A、C、D。
15.不改变分式的值,使分子和分母的最高次项的系数为正数。
16.略17.不改变分式的值,将分式化简为18.若,则x的取值范围是19.分子与分母的各项系数化为整数为20.(1) 分式的乘法法则,(a≠)。
(2) 分式的除法法则,(1)除以一个数等于乘以它的倒数,(2)21.设22.略23.依次填入。
24.若x:y:z=1:2:1,则25.若 $a=b$,则 $a^2=ab$。
解析:对 $a^2=ab$ 两边同时减去 $b^2$,得到 $a^2-b^2=ab-b^2$,即 $(a-b)(a+b)=b(a-b)$,由于 $a=b$,所以 $a-b=0$,分母不能为 $0$,因此原等式不成立。
26.不改变分式的值,使分子、分母都不含负号:$\frac{-3x}{2y}$。
解析:将分子、分母同时乘以 $-1$,即可得到$\frac{3x}{-2y}$,化简后为 $\frac{-3x}{2y}$。
27.已知 $\frac{a}{b}=\frac{c}{d}$,则$\frac{a+b}{b}=\frac{c+d}{d}$。
解析:将 $\frac{a+b}{b}$ 和 $\frac{c+d}{d}$ 分别化简,可得到 $\frac{a}{b}+1=\frac{c}{d}+1$,即$\frac{a}{b}=\frac{c}{d}$,由已知条件可知其成立。
一、要点梳理1.一般地,如果A 、B 表示两个整式,并且B 中含有_________,那么代数式B A 叫做分式,其中A 是分式的______,B 是分式的________.2.分式有意义的条件是___________.3.分式值为零的条件是__________________.二、例题精选例1.在x 3,3y x +,13212-x ,x 3,3x ,x 1,x ,y x -2,π2x ,mm 2中,分式有( ) A .2个 B .3个 C .1个 D .4个例2.当x __________时,分式x -13有意义. 例3.若分式11--x x 的值为零,则x 的值等于__________.分式的基本性质一、要点梳理1.分式的分子和分母都乘(或除以)一个______________,分式的值_____.用式子表示就是__________________.2.根据分式的_______,把一个分式的分子和分母分别___________,叫做分式的约分.3.分子与分母_________的分式叫做最简分式,约分通常要将分式化成________或_______.4.根据分式的_________,把几个异分母的分式化成_________的分式叫做通分.5.求最简公分母的一般步骤:(1)取各分母系数的__________;(2)相同底的幂的因式取__________;(3)取所有____________;(4)将以上所取的因式________.二、例题精选例1.在括号内填入适当的代数式,使下列等式成立. (1)222) (2y x xy =; (2)) (22212222b a b a b a +=++. 不改变分式的值,把下列分式的分子与分母中各项的系数都化为整数. (1)y x y x 32213221-+; (2)ba b a -+2.05.03.0. 例2.不改变分式的值,使下列分式的分子与分母的最高次项的系数是正数. (1)222+-a a ; (2)3222x x x x -- 不改变分式的值,使下列分式的分子与分母都不含“-”. (1)yx 52- (2)n m 310-- (3)b a 73--一、选择题1.下列式子:(1)x 3-,(2)y x ,(3)π3y x +,(4)y+53,(5)x x 2中,分式有( )个 A .1 B .2 C .3 D .42.函数11+=x y 的自变量x 的取值范围是( ) A .x >1- B .x <1- C .1-≠x D .1≠x3.当x 为任意实数时,下列分式一定有意义的是( )A .xx 1+ B .21x x + C .112++x x D .412-+x x 4.当分式21-x 没有意义时,x 的值是( ) A .2 B .1 C .0 D .2-5.若分式32122---b b b 的值为0,则b 的值是( ) A .1 B .1- C .1± D .26.下列等式成立的是( )A .22ab a b = B .)0(≠=c ac bc a b C .d a d b a b --= D .)0(≠++=c c a c b a b 7.将分式b a b a 31214131-+的分子与分母的各项系数都化为整数为( ) A .b a b a 2334-+ B .b a b a 4634-+ C .b a b a 3446+- D .ba b a 3643-+ 8.把分式yx x +中的x 和y 都扩大3倍,那么分式的值( ) A .扩大3倍 B .不变 C .缩小3倍 D .无法确定9.分式2232ba c 与bc a 4的最简公分母( ) A .abc 12 B .cb a 2212 C .c b a 227 D .bc a 21210.下列分式a c b 4122、x y y x ++2)(5、)(322b a b a ++、b a b a --2422、a b b a --中,最简分式的个数是( ) A .1个 B .2个 C .3个 D .4个二、填空题11. 当=x 时,分式12-x 没有意义. 12. 已知02=+b a ,则222222b ab a b ab a ++-+=___________. 13.已知公式21111R R R +=)(21R R ≠,则表示1R 的公式是( )14.在括号内填上适当代数式,使等式成立:b a b a +=-1) (22. 15.已知432z y x ==,则222zy x zx yz xy ++++=_____________. 16.当m = 时,等式)27)(12()23)(3(123m x m x x x --++=-+成立. 17.化简:=---+-11222y x y xy x . 18.已知113x y -=,则代数式21422x xy y x xy y----的值为 . 19.若)3)(2(5332+++=+++x x x x B x A ,则A =_________,B =________. 20.一水池有甲乙两个进水管,若单独开甲、乙管各需要a 小时、b 小时可注满空池;现两管同时打开,那么注满空池的时间是____________.三、解答题21.(1)当x 为何值时,分式235+-x x 的值是正数?(2)当3=x 时,分式ax x -+32没有意义,求a 的值.21.不改变分式的值,把下列分式的分子与分母的最高次项的系数化为正整数. (1)241315.01a a -- (2)3223.02.0a a a a --22.不改变分式的值,使下列分式的分子与分母的最高次项的系数是正数. (1)231x x -- (2)223221a a a --+.23.约分. (1)n m n m 32284-- (2)44422-+-x x x (3)22244abb a ab a ++24.通分. (1)xy z ,yz x ,xzy ; (2)m a -1,2)1(-m b ; (3)b a 631-,2244b ab a a +-.25.现有三个不为零的式子:42-x ,x x 22-,442+-x x .(1)任选两个你喜欢的式子组成一个分式是 ;(2)请把(1)的分式化简.26.若412=+xx ,求221x x +的值.27.若分式1222-+a a 的值为整数,求整数a 的值.28.先化简,再求值:12122++-x x x ,其中3=x .29.先化简,再求值:22323444abb a a ab a +--,请选择你喜欢的a ,b 的值代入求值.。
分式知识点及典型例题正文:分式,又称有理数,是数学中的一个重要概念,它由分子和分母组成,表示两个数的比值关系。
在分式的运算中,我们需要了解一些基本知识点,并且通过典型的例题来加深理解。
一、分式的定义和基本性质分式可以用“a/b”的形式表示,其中a为分子,b为分母。
分子和分母都可以是整数、小数或者其他分式。
分式也可以是正数、负数或者零。
分式的基本性质有:1. 当分子为0时,分式的值为0,即0/b=0。
2. 当分母为1时,分式的值等于分子本身,即a/1=a。
3. 当分子和分母互为相反数时,分式的值为-1,即(-a)/a=-1。
二、分式的运算1. 分式的加减运算分式的加减运算遵循相同分母则分子相加减的原则。
具体步骤如下:(1)将两个分式的分母化为相同的分母;(2)将两个分式的分子按照相同分母相加减;(3)将结果化简为最简形式。
例如:计算1/3 + 1/4 - 1/6。
解:首先将三个分式的分母化为12,得到4/12 + 3/12 - 2/12,再将分子相加减,得到5/12。
2. 分式的乘除运算分式的乘除运算遵循分子相乘除,分母相乘除的原则。
具体步骤如下:(1)将两个分式的分子相乘或相除;(2)将两个分式的分母相乘或相除;(3)将结果化简为最简形式。
例如:计算2/3 × 5/8 ÷ 4/5。
解:根据乘除法的原则,分子相乘得到10,分母相乘得到24,再将结果化简为最简形式,得到5/12。
三、分式的简化分式的简化是将分子和分母的公因式约去,使其达到最简形式。
具体步骤如下:(1)求分子和分母的最大公因数;(2)将分子和分母分别除以最大公因数。
例如:将12/18简化为最简分式。
解:求12和18的最大公因数为6,将分子和分母都除以6,得到最简分式2/3。
四、分式的应用举例1. 问题:小明爸爸买了一块布长3米,要均分给他和他妹妹,他分到几分之几的布?解:设小明分到的布的长度为x米,他妹妹分到的布的长度为y米,则由题意可得分式x/y=3/2。
分式的基本性质练习题分式的基本性质练习题分式是数学中常见的一种表示形式,它可以帮助我们更好地理解和解决问题。
在学习分式的过程中,我们需要掌握一些基本的性质和运算规则。
下面,我将通过一些练习题来帮助大家巩固对分式的理解。
练习题一:简化分式1. 将分式$\frac{12}{18}$化简为最简形式。
解答:首先,我们可以将分子和分母同时除以它们的最大公约数,即12和18的最大公约数为6。
所以,$\frac{12}{18}$可以化简为$\frac{2}{3}$。
2. 将分式$\frac{24}{48}$化简为最简形式。
解答:同样地,我们可以将分子和分母同时除以它们的最大公约数,即24和48的最大公约数为24。
所以,$\frac{24}{48}$可以化简为$\frac{1}{2}$。
练习题二:分式的乘法和除法1. 计算$\frac{2}{3} \times \frac{4}{5}$。
解答:分式的乘法可以通过将分子相乘,分母相乘来完成。
所以,$\frac{2}{3} \times \frac{4}{5} = \frac{2 \times 4}{3 \times 5} = \frac{8}{15}$。
2. 计算$\frac{3}{4} \div \frac{2}{5}$。
解答:分式的除法可以通过将除数取倒数,然后与被除数进行乘法来完成。
所以,$\frac{3}{4} \div \frac{2}{5} = \frac{3}{4} \times \frac{5}{2} = \frac{15}{8}$。
练习题三:分式的加法和减法1. 计算$\frac{1}{3} + \frac{2}{5}$。
解答:分式的加法需要找到它们的公共分母,然后将分子相加。
所以,$\frac{1}{3} + \frac{2}{5} = \frac{5}{15} + \frac{6}{15} = \frac{11}{15}$。
2. 计算$\frac{3}{4} - \frac{1}{2}$。
经典例题:题型一:考查分式的定义例1、下列代数式中:y x yx y x y x ba b a y x x -++-+--1,,,21,22π,分式有: 个。
题型二:考查分式有意义的条件 例2、当x 有何值时,下列分式有意义 (1)44+-x x (2)122-x (3)xx 11-(4)232+x x (5)3||6--x x题型三:考查分式的值为0的条件 例3、当x 取何值时,下列分式的值为0. (1)31+-x x(2)42||2--x x (3)653222----x x x x题型四:考查分式的值为正、负的条件 例4、(1)当x 时,分式x-84为正;(2)当x 时,分式2)1(35-+-x x 为负;题型五:化分数系数、小数系数为整数系数例5、不改变分式的值,把分子、分母的系数化为整数. (1)y x y x 41313221+- (2)b a b a +-04.003.02.0(3)b a ba 10141534.0-+题型六:分数的系数变号例6、不改变分式的值,把下列分式的分子、分母的首项的符号变为正号. (1)yx y x --+-(2)ba a---(3)b a---(4)1312+----x x x题型七:约分例7、将下列各式 化为最简分式:(1)c ab bc a 2321525-(2)96922++-x x x 3)yx y xy x 33612622-+-题型八:通分 例8、(1)cb ac a b ab c 225,3,2--; (2)a b b b a a 22,--; 题型九:化简求值题 例9、已知:511=+y x ,求y xy x yxy x +++-2232的值.例10、(1)1616822-+-a a a ,其中5=a ; (2)244412222+-÷⎪⎭⎫ ⎝⎛++--+-a a a a a a a a ,其中a=-1例11、若0)32(|1|2=-++-x y x ,求yx 241-的值.变式训练:若0106222=+-++b b a a ,求ba ba 532+-的值.2分式和它的基本性质练习题1.分式31x ax +-中,当a x -=时,下列结论正确的是 A.分式的值为零; B.分式无意义 C.若31-≠a ,分式的值为零 D.若31≠a 时,分式的值为零 2.使分式||1xx -无意义,x 的取值是( )A .0B .1C .-1D .±1 3.下列各式中,正确的是( )A .x y x y -+--=x y x y -+; B .x y x y -+-=x y x y ---; C .x yx y -+--=x y x y +-; D .x y x y -+-=x y x y-+ 4.下列各式中,正确的是( )A.a m a b m b +=+B.a b a b ++=0C.1111ab b ac c --=-- D.221x y x y x y-=-+ 5.把分式yx x322-中的x 和y 都扩大为原来的5倍,那么这个分式的值 ( ) A.扩大为原来的5倍 B.不变C.缩小到原来的51 D.扩大为原来的25倍 6.不改变分式27132-+-+-x x x 的值,使分式的分子、分母中x 的最高次数式的系数都是正数,应该是( ) A.27132+-+x x x B.27132+++x x x C.27132---x x x D.27132+--x x x7.下列约分:①23x x =x31 ②m b m a ++=b a③a +22=a +11 ④22++xy xy=1 ⑤112+-a a =a -1 ⑥2)()(y x y x --- =-y x -1其中正确的有( ) A.2个 B.3个 C.4个 D.5个8.下列2x ,5x y +,12a -,1x π-,15x+y,22a b a b--,-3x2中,是分式的有_ _____;是整式的有___ __;9.当x_______时,分式2212x x x -+-的值为零. 当x_______时,分式15x -+的值为正.10.若32=a ,则2223712a a a a ---+的值等于_______.11.若把x 克食盐溶入b 克水中,从其中取出m 克食盐溶液,其中含纯盐________.12.李丽从家到学校的路程为s ,无风时她以平均a 米/•秒的速度骑车,便能按时到达,当风速为b 米/秒时,她若顶风按时到校,请用代数式表示她必须提前_______出发. 13.不改变分式的值,把下列各式的分子与分母中各项的系数都化为整数: ① yx y x 6125131+- ba b a436.04.02+-14.不改变分式的值,使分式的分子、分母中的首项的系数都不含 “-” 号:①112+--x x ②2122--+-x x x 15.约分:(1)232636yzz xy -(2)2224m m m +-aa a a a a a a 2144122222--⨯+--÷-。
分式及分式的基本性质练习题型 1:分式概念的理解应用 1 .下列各式 a ,1, 1xy ,a 22b , 3x 2 ,0?中,是分式的有 ___ __;是整式的有 _____.π x 1 5a b题型 2:分式有无意义的条件的应用2 .下列分式,当 x 取何值时有意义.(2) 3 x 2( 1)2x1 ;.3x 22x 33 .下列各式中,无论 x 取何值,分式都有意义的是( )2C . 3x 1A . 1B . xD .x 12x 12 x 1 x 22 x 2 4 .当 x ______时,分式 2 x 1无意义.3x 4题型 3:分式值为零的条件的应用25 .当 x _______时,分式x 1 的值为零.x 2 x 26 .当 m ________时,分式 (m 1)(m3)的值为零. m 2 3m 2题型 4:分式值为 1 的条件的应用7 .当 x ______时,分式4x 3的值为 1;当 x _______时,分式4x3的值为1 .x5 x 5课后训练基础能力题8 .分式 x ,当 x _______时,分式有意义;当 x _______时,分式的值为零.2x 4 9 .有理式① 2 ,②x y,③ 1,④ x中,是分式的有()x52 a1A .①②B .③④C .①③D .①②③④10.分式x a中,当 xa 时,下列结论正确的是()3 x 1A .分式的值为零;B .分式无意义C .若 a ≠1时,分式的值为零; D .若 a ≠1时,分式的值为零3311.当 x _______时,分式1的值为正;当 x ______时,分式4的值为负.x 5 2x112.下列各式中,可能取值为零的是()m 2 1B . m 2 1C .m 1D .m 2 1A . 2 1 m 121m 1mm13.使分式 x 无意义, x 的取值是()A . 0B . 1C . 1D . 1| x| 1拓展创新题14.已知 yx 1, x 取哪些值时:( 1) y 的值是正数;( 2 ) y 的值是负数;( 3) y 的值是零;( 4)分式2 3 x无意义.题型 1:分式基本性质的理解应用一、填空题:1. 写出等式中未知的分子或分母:y=7xy 71 a b①2 y ②2 y =③)3x3x5xa b (2. 不改变分式的值,使分式的分子与分母都不含负号:5x ①2 yaa(a 1)3.等式a 1a 21;②a .3b成立的条件是 ________.二、选择11x y4 .不改变分式的值,使分式510的各项系数化为整数,分子、分母应乘以(?)11xy39A .10B . 9C . 45D . 905 .下列等式:①(a b) ab;② x y x y ;③ a ba b ;④ m nm n中 ,成立的是()cc x x c cmmA .①②B .③④C .①③D .②④6. 把分式2x中的 x 和 y 都扩大为原来的 5 倍,那么这个分式的值()3y2xA .扩大为原来的 5 倍B .不变C .缩小到原来的1D .扩大为原来的5 倍527. 7=x 2 7 x自左到右变形成立的条件是( )使等式 x 22 xA . x<0>0C.x ≠ 0≠0且 x ≠- 228 .不改变分式 2 3x x 的值,使分子、分母最高次项的系数为正数,正确的是(? ) 5x 3 2 x 32 2 22A .3xx 2 B . 3x x 2 C . 3x x 2 D .3xx 25x 32 x 35x 3 2 x 35 x 3 2 x 35 x 32 x 3三、解答题 :9. 不改变分式的值 ,把下列各式的分子与分母中各项的系数都化为整数:1 x 1 y②0.8x 0.78 y ③ a 0.4b ① 3 50.5x0.4y2 32 x 1 y0.6a b6410. 不改变分式的值 ,使分式的分子、分母中的首项的系数都不含“- ” 号:2 x 1 x 2 2x 1 ③x 1 ①1②223x 1xxx题型 2:分式的约分一、判断正误并改正:① y6y 3 ( ) ② ( a b)2=- a - b ()③ a2b 2 =a - b ( )y 2a ba b④ ( x 2)( x 3) =- 1()⑤x a=x( )⑥ ( x y) ( x y) = 1()y a( 2 x)(3 x)y2( xy)( xy) 2二、选择题1 .分式4 y21 , x 2xy y 2, a 2 2ab2中是最简分式的有(3x, x4)4ax1 x yab 2bA .1 个B .2 个C .3 个D .4 个2.下列约分正确的是 ()A.2(b c)2(a b) 21C. a b2D. x y 1a 3(bc) a3B.a) 2a 2b2 abx 2y 2 y x(b2xy 3.下列变形不正确的是 ()A. 2a a 2B. 1 x 1(x ≠ 1)C.2 x1 =1D. 6x 32x 1a 2 a 2 x 1 x 2 1x2x 1 23y 6 y 24.等式 aa(b 1) 成立的条件是 ()a 1( a1)(b 1)≠ 0 且 b ≠ 0 ≠ 1 且 b ≠ 1C.a ≠- 1 且 b ≠- 1 、 b 为任意数5.如果把分式 x2y中的 x 和 y 都扩大10 倍,那么分式的值 ()x yA.扩大 10 倍B.缩小 10 倍C.是原来的 3D.不变212x6.不改变分式的值,使的分子、分母中最高次项的系数都是正数,则此分式可化为()x23x3A. 2x 1B. 2 2x 1C. 2x 1D. 2 x 1x 2 3x 33x 32 3 x 3 2 3x 3xx x7.下面化简正确的是()A .2a1 =0B.(ab)2=- 1C. 6 x 2x =2D. x 2y 2 =x+y2a 1(b a)23x yx1a m a212 xya 2 18.下列约分 :① 3x 2=3x② bm =b③ 2 a =1 a④ xy 2 =1⑤ a 1 =a - 1⑥ (xy) =- 1其中正确的有 ()y) 2xy( xA. 2 个B. 3 个C.4 个D.5个三、解答题: 约分:① 36xy 2 z 3②m 2 4③x 4 1④ x26 x96yz 22m m21x2x 29223 2 2 2a4a482m3m 2xy ⑤⑥⑦ m⑧3a24m216m 2 m23 x 22 y 210 15题型 3:分式的通分1 .通分:1 1( 1) x, y;( 2)x , x 2; 6ab 2 9a 2bc x 22x 12. 先化简 ,再求值 :(3)a 1, 2 6.22a 1aa1① a28a 16a 2 aba 216 ,其中 a=5;② a 22ab b 2,其中 a=3b ≠0.3.已知 11 5 ,求分式x xy y 的值. 4.已知xyz,求 xy yz zx 的值.x y 2x 7xy 2 y23 4x 2 y 2 z 25.已知 x y4, xy 12 y 1 x 1 1 3,求 4x 2的值. , 求1 y 1的值 .6.已知 x2xxxx1。