分式的基本性质
- 格式:doc
- 大小:135.00 KB
- 文档页数:6
初中数学《分式的基本性质》教案一、教学内容本节课选自初中数学教材第九章第二节,主要详细讲解分式的基本性质。
内容包括分式的定义、分式的基本性质、分式的简化以及分式在生活中的应用等。
二、教学目标1. 理解并掌握分式的定义,能够识别并运用分式的基本性质。
2. 学会简化分式,并能运用简化后的分式解决实际问题。
3. 培养学生的逻辑思维能力和解决问题的能力,激发学生对数学学习的兴趣。
三、教学难点与重点教学难点:分式的基本性质的理解与应用。
教学重点:分式的定义、简化分式的方法以及分式的实际应用。
四、教具与学具准备1. 教具:黑板、粉笔、教学课件。
2. 学具:学生用书、练习本、计算器。
五、教学过程1. 实践情景引入利用生活中的例子(如水果分配、时间计算等)引出分式的概念。
2. 知识讲解(1)分式的定义:讲解分式的构成,分子、分母、分数线等。
(2)分式的基本性质:讲解分式的分子分母同乘(除)一个不等于0的数,分式的值不变。
(3)简化分式:讲解如何将分式简化,并举例说明。
3. 例题讲解结合教材例题,详细讲解分式的简化过程。
4. 随堂练习(1)让学生独立完成练习题,巩固分式的简化方法。
(2)小组讨论,解决实际问题,培养学生的合作意识。
5. 课堂小结六、板书设计1. 分式的定义2. 分式的基本性质3. 简化分式的步骤4. 例题及解答七、作业设计1. 作业题目2x^2 / 4x, (x+1)^2 / (x+1), 6x^3 / 3x^2(2)运用分式的性质,解决实际问题。
2. 答案(1)简化后的分式分别为:x / 2, x+1, 2x(2)实际问题答案根据具体情况而定。
八、课后反思及拓展延伸2. 拓展延伸:引导学生探索分式在生活中的其他应用,提高学生的创新意识和应用能力。
重点和难点解析1. 分式的基本性质的理解与应用。
2. 简化分式的方法。
3. 实际问题的解决。
4. 板书设计。
5. 作业设计与答案。
一、分式的基本性质的理解与应用分式的分子分母同乘(除)一个不等于0的数,分式的值不变。
《分式的基本性质》知识清单一、分式的概念如果 A、B 表示两个整式,并且 B 中含有字母,那么式子 A/B 就叫做分式。
其中 A 叫做分子,B 叫做分母。
需要注意的是,分母 B 的值不能为 0,因为分母为 0 时,分式无意义。
例如:1/x ,(x + 1)/(x 2)都是分式,而 1/2 就不是分式,因为它的分母 2 不含字母。
二、分式有意义、无意义和值为 0 的条件1、分式有意义的条件:分母不为 0。
即当B ≠ 0 时,分式 A/B 有意义。
例如:对于分式 1/(x 1),当x 1 ≠ 0,即x ≠ 1 时,分式有意义。
2、分式无意义的条件:分母为 0。
即当 B = 0 时,分式 A/B 无意义。
比如:对于分式 2/(x + 3),当 x + 3 = 0,即 x =-3 时,分式无意义。
3、分式值为 0 的条件:分子为 0 且分母不为 0。
即当 A = 0 且B ≠ 0 时,分式 A/B 的值为 0。
举例来说,若分式(x 2)/(x + 5)的值为 0,则 x 2 = 0 且 x+5 ≠ 0,解得 x = 2。
三、分式的基本性质分式的分子与分母同乘(或除以)一个不等于 0 的整式,分式的值不变。
用式子表示为:A/B = A×C/B×C ,A/B = A÷C/B÷C (C ≠ 0)例如:分式2/3 ,分子分母同时乘以5 得到10/15 ,分式的值不变。
又如:分式 10/15 ,分子分母同时除以 5 又变回 2/3 。
四、约分1、定义:把一个分式的分子与分母的公因式约去,叫做分式的约分。
2、约分的关键:确定分子与分母的公因式。
公因式的确定方法:(1)系数:取分子和分母系数的最大公因数。
(2)字母:取分子和分母相同字母的最低次幂。
例如:对于分式 8x/12x²,系数的最大公因数是 4,相同字母 x 的最低次幂是 x,所以公因式是 4x ,约分后得到 2/3x 。
分式的基本性质与运算1. 分式的基本性质分式是数学中一种特殊的表示形式,由分子和分母组成,分子与分母之间用分数线分隔。
分式在代数运算中有着重要的地位,它具备以下基本性质:1.1. 分式的定义域分式的定义域是指使分式中的分母不为零的实数集合。
因为在分式运算中,分母为零的情况是不合法的,会导致分式无法计算。
所以在定义分式运算时,需要排除分母为零的情况。
1.2. 分式的约束条件分式的约束条件是指对分子和分母的进行约束,使分式保持在最简形式。
一个约束条件是分子与分母的最大公约数为1,即分子和分母没有共同的因子。
另一个约束条件是分式的分子没有负号,而负号只出现在分式的整体前面。
1.3. 分式的唯一性分式在满足定义域和约束条件的前提下,具备唯一性。
即给定一个分式,它的分子和分母确定后,分式的值也就确定了。
这个性质在分式的运算中是非常重要的,保证了分式的计算结果是确定的。
2. 分式的运算分式的运算包括加法、减法、乘法和除法四种基本运算。
下面分别对这四种运算进行讨论。
2.1. 分式的加法两个分式的加法可以通过通分的方式来实现。
通分是指使两个分式的分母相同,然后将它们的分子相加。
通分的方法是将两个分式的分母取最小公倍数,然后分别将分子乘以相应的倍数。
最后得到的分式就是它们的和。
2.2. 分式的减法分式的减法与加法类似,也可以通过通分来实现。
通分的方法与加法相同,只是将分子相减而不是相加。
最后得到的分式就是它们的差。
2.3. 分式的乘法分式的乘法可以通过将两个分式的分子相乘,分母相乘来实现。
最后得到的分式就是它们的乘积。
2.4. 分式的除法分式的除法可以通过将一个分式的分子乘以另一个分式的倒数来实现。
倒数是指将分子和分母交换位置得到的新的分式。
最后得到的分式就是它们的商。
3. 分式的简化与展开在分式的运算中,有时需要将分式进行简化来得到最简形式。
分式的简化可以通过约分来实现,即将分子和分母同时除以它们的最大公约数。
《分式的基本性质》知识清单一、分式的概念形如\(\frac{A}{B}\)(\(A\)、\(B\)是整式,且\(B\)中含有字母,\(B≠0\))的式子叫做分式。
其中\(A\)叫做分子,\(B\)叫做分母。
例如:\(\frac{x}{y}\),\(\frac{1}{x + 2}\),\(\frac{m 1}{m^2 + 1}\)等都是分式。
需要注意的是:1、分式的分母中必须含有字母。
2、分母的值不能为零,否则分式无意义。
二、分式有意义的条件分式有意义的条件是分母不为零。
例如,对于分式\(\frac{x}{y}\),当\(y≠0\)时,分式有意义。
对于分式\(\frac{1}{x + 2}\),当\(x +2≠0\),即\(x≠ 2\)时,分式有意义。
三、分式的值为零的条件分式的值为零,需要同时满足两个条件:1、分子为零。
2、分母不为零。
例如,对于分式\(\frac{x 1}{x + 1}\),当\(x 1 = 0\)且\(x +1≠0\)时,分式的值为零。
解得\(x = 1\)。
四、分式的基本性质分式的基本性质:分式的分子与分母乘(或除以)同一个不等于\(0\)的整式,分式的值不变。
用式子表示为:\(\frac{A}{B} =\frac{A×C}{B×C}\),\(\frac{A}{B} =\frac{A÷C}{B÷C}\)(\(C≠0\))例如:\(\frac{x}{y} =\frac{x×2}{y×2} =\frac{2x}{2y}\)五、约分约分是把一个分式的分子与分母的公因式约去。
约分的关键是确定分子和分母的公因式。
找公因式的方法:1、系数:取分子和分母系数的最大公因数。
2、字母:取相同字母的最低次幂。
例如:对分式\(\frac{6xy}{9x^2}\)进行约分。
先确定系数的最大公因数为\(3\),字母\(x\)的最低次幂为\(1\),\(y\)的最低次幂为\(1\)。
分式的基本性质一、分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变. 用式子表示是:MB MA B A M B M A B A ÷÷=⨯⨯=,(其中M 是不等于零的整式). 与分数类似,根据分式的基本性质,可以对分式进行约分和通分. 二、实践与探索例1、下列等式的右边是怎样从左边得到的?(1)22x xy x y x x ++=(2)1121122-++=-+y y y y y (y ≠—1). 特别提醒:对22x xy x yx x++=,由已知分式可以知道x 0≠,因此可以用x 去除以分式的分子、分母,因而并不特别需要强调0x ≠这个条件,再如1121122-++=-+y y y y y 是在已知分式的分子、分母都乘以y+1得到的,是在条件y+1≠0下才能进行的,所以,这个条件必须附加强调.例2:不改变分式的值,把下列各式的分子与分母中各项的系数都化为整数. (1)y x y x 32213221-+; (2)ba ba -+2.05.03.0.例3:约分(1)4322016xy y x -; (2)44422+--x x x说明:在进行分式约分时,若分子和分母都是多项式,则往往需要先把分子、分母分解因式(即化成乘积的形式),然后才能进行约分.约分后,分子与分母不再有公因式,我们把这样的分式称为最简分式.练习:约分:2232axyyax ; )(3)(2b a b b a a ++-; 32)()(a x x a --; y xy x 242+-; 2239m m m --; 299198-.分式的约分归结为:(1)因式分解;(2)分式基本性质;(3)分式中符号变换规律;约分的结果是,一般要求分子、分母不含“-”.三、分式的的变号法则例1.不改变分式的值,使下列分式的分子和分母都不含“—”号: (1)a b 65--;(2)y x 3-;(3)nm-2.例2.不改变分式的值,使下列分式的分子与分母的最高次项的系数是正数: (1)21x x -;(2)322+--x x .注意:(1)根据分式的意义,分数线代表除号,又起括号的作用.(2)当括号前添“+”号,括号内各项的符号不变;当括号前添“—”号,括号内各项都变号.例3.若x 、y 的值均扩大为原来的2倍,则分式232y x的值如何变化?若x 、y 的值均变为原来的一半呢?四、分式的通分 1.(1).把分数65,43,21通分.(2.)什么叫分数的通分?分式的通分:和分数通分类似,把几个异分母的分式化成与原来的分式相等的同分母的分式叫做分式的通分.通分的关键是确定几个分式的公分母. 2.讨论:(1)求分式4322361,41,21xy y x z y x 的(最简)公分母.(2)求分式2241x x -与412-x 的最简公分母.3.练习:填空: (1)()z y x z y x 43231221=; (2)()z y x y x 43321241=; (3)()zy x xy 4341261=.求下列各组分式的最简公分母: (1)22265,41,32bc c a ab ; (2);2)3(21,)3)(2(1,)2(31++--x x x x x (3)11,1,2222-++x x x x x4、通分(1)b a 21,21ab; (2)y x -1,y x +1;寻找最简公分母的方法:1.取各分式的分母中系数最小公倍数; 2.各分式的分母中所有字母或因式都要取到; 3.相同字母(或因式)的幂取指数最大的;4.所得的系数的最小公倍数与各字母(或因式)的最高次幂的积(其中系数都取正数)即为最简公分母. 分析:分式的通分,即要求把几个异分母的分式分别化为与原来的分式相等的同分母的分式.通分的关键是确定几个分式的公分母;要归纳出分式分式是多项式如何确定最简公分母,一般应先将各分母分解因式,然后按上述的方法确定分母.练习:通分: (1)231x ,xy 125;(2)x x +21,xx -21(3)4,)2(122—x x x -. 五、小结把几个异分母的分式,分别化成与原来分式相等的同分母的分式,叫做分式的通分.分式通分,是让原来分式的分子、分母同乘以一个适当的整式,根据分式基本性质,通分前后分式的值没有改变.通分的关键是确定几个分式的公分母,从而确定各分式的分子、分母要乘以什么样的“适当整式”,才能化成同一分母.确定公分母的方法,通常是取各分母所有因式的最高次幂的积做公分母,这样的公分母叫做最简公分母.练习巩固:1.分式的基本性质: 。
第一讲 分式的基本性质学习目标1.了解分式、有理式的概念.2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件3. 理解分式的基本性质.4.会用分式的基本性质进行通分、约分、化简一、知识回顾知识点1、与分式有关的条件①分式有意义:分母≠0②分式无意义:分母=0③分式值为0:⎩⎨⎧≠=00分母分子) ④分式值为正或大于0:分子分母同号(⎩⎨⎧>>00B A 或⎩⎨⎧<<00B A )⑤分式值为负或小于0:分子分母异号(⎩⎨⎧<>00B A 或⎩⎨⎧><00B A )知识点2分式的基本性质分式的分子和分母同乘(或除以)一个不等于0的整式,分式的值不变。
字母表示:C B C ∙∙=A B A ,CB C ÷÷=A B A ,其中A 、B 、C 是整式,C ≠0。
拓展:分式的符号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变, 即:BB A B B --=--=--=A A A 注意:在应用分式的基本性质时,要注意C ≠0这个限制条件和隐含条件B ≠0。
知识点3、分式的约分◆约分时。
分子分母公因式的确定方法:1)系数取分子、分母系数的最大公约数作为公因式的系数.2)取各个公因式的最低次幂作为公因式的因式. 3)如果分子、分母是多项式,则应先把分子、分母分解因式,然后判断公因式.知识点5、分式的通分◆通分时,最简公分母的确定方法:1.系数取各个分母系数的最小公倍数作为最简公分母的系数.2、取各个公因式的最高次幂作为最简公分母的因式课前热身.1.用式子表示分式的基本性质:____________________________.2.对于分式122x x -+(1)当________时,分式的值为0(2)当________时,分式的值为1(3)当________时,分式无意义(4)当________时,分式有意义3.填充分子,使等式成立;2)2()(22+=+-a a a4.x x x 3222+= ()3+x5.化简:233812a b c a bc =_______。
分式(一)分式的基本性质【知识要点】1.用A ,B 表示两个整式,A ÷B 就可以表示成A B 的形式,如果B 中含有字母,式子AB就叫做分式。
对分式的概念要注意以下两点:①分母中应含有字母;②分母的值不能为零,若为零,则该分式就没有意义。
2.整式和分式统称为有理式。
3.分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变。
用式子表示是,A A M A A MB B M B B M⨯÷==⨯÷(其中M 是不等于零的整式)。
4.分式的符号变换法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变。
【典型例题】例1 下列各式中,哪些是整式?哪些是分式?(1)1a ; (2)1x x +; (3)1()3x y +; (4)2212x y -; (5)x y x y +-;(6)5a ; (7)xπ; (8)0.3732a x y ++; (9)1323y x +-; (10)5(3)x y m x +-例2 x 取何值时,下列分式有意义?(1)132x x ++ (2)(1)(5)(1)(2)x x x x +--- (3)15x - (4)213x x -+例3 x 取何值时,下列分式没有意义? (1)261x x +; (2)2(2)(3)9x x x ---; (3)2111x-例4 x 取何值时,下列分式的值为零? (1)31x x + (2)55x x -+ (3)211x x +-例5 x为何值时,分式532xx-+的值为正?例6 不改变分式的值,把下列各式的分子与分母中的各项系数化为整数。
(1)0.030.20.080.5x yx y-+;(2)22110.32310.25x yx xy+++;(3)13225m nm n+-例7 不改变分式的值,使下列分式的分子与分母都不含有“-”号。
(1)23xy---;(2)2nm-(3)25ba-(4)21()nxy+---例8 不改变分式243422231253x x x xx x y xy x y+--+-++-的值,使分子与分母中的最高次项的系数为正数。
分式的基本性质
学习目标:
1.理解分式的基本性质。
2.了解运用分式的基本性质进行分式的变形。
3.通过类比分数的基本性质,探索分式的基本性质,初步掌握类比的思想方法。
4.通过研究解决问题的过程,培养学生合作交流意识与探究精神
重点:理解分式的基本性质。
难点:运用分式的基本性质进行分式化简
一.课前预习:
活动1 复习分数的基本性质
1. 观察下列等式的右边是怎样从左边得到的?你能用分数的基本性质解释吗?
(1)等式63=2
1的右边是怎样从左边得到的?( ) (2) 等式52=15
6--的右边是怎样从左边得到的?( )
2.分数的基本性质是什么?需要注意的是什么?
类比分数的基本性质,你能猜想出分式有什么性质?
分数的基本性质是______________________________________
______________________________________________
活动2 类比得到分式的基本性质
1.若a 、x 、y 都是不为0的数,将
x 1的分子与分母都乘以y ,得到xy
y 2.分式x 1与xy y 相等吗? 3.将分式
ax x 2的分子与分母都除以x ,得到a 2,分式ax x 2与a
2相等吗? 4.如何用语言和式子表示分式的基本性质?
分式的基本性质是______________________________________
___________________________________________( 请用“不同颜色”画出你认为的关键词.) 用式子表示是B A =())(••B A ; B A =)()(÷÷B A (其中M 是____________的整式)。
(2)应用分式的基本性质时需要注意什么?
活动3:合作探究
1.下列各式相等吗?为什么?
(1)xy x 2 = )(2xy ; (2)ab b a + =)()(b a ab +
【思考】 观察两个等式的分母是怎样由左边变换到右边的?解答这类分母变换,求分子怎样变换的题的一般方法是什么?
(3)
)(h =a h --; (4)x a 712=)(a 36 .
【思考】 观察两个等式的分子是怎样由右边变换到左边的?由左边变换到右边的?解答这类分子变换,求分母怎样变换的题的一般方法是什么?
二.预习检测
在下面的括号内填上适当的整式,使等式成立。
(1))(2
16ax =x a (2)1
12-+x x =)(1 (3)
q p 102=)(aq
5 三.活动4:探究分式的分子、分母及分式本身的符号的变号规律
1.不改变分式的值,使下列分式的分子与分母都不含“-”号。
A 组(1)a
b 65--; (2)y x 942--
归纳总结:(1) 当分子、分母都含有负号时,分子、分母应同____________,使分式的值不变,且分子分母都不含负号。
与同学交流自己的发现)
B 组(1)
n m -2 (1) b
a 2-
归纳:当分子或分母含有负号时,利用分式的基本性质及有关法则,把分子或分母的符号变为___________的符号。
(与同学交流自己的发现)
C 组
不改变分式的值,使下列分式的分子与分母的最高次项的系数是正数:
(1)
21x x -; (2)3
22+--x x .
归纳:当分式的分子与分母的最高次项的系数是负数时,利用分式的基本性质及有关法则,
活动5:约分
1)4322016xy y x -; (2)4
4422+--x x x
归纳:
四.课堂小结:
五.课堂检测
1 .不改变分式的值,使下列分式的分子和分母都不含“—”号:
(1)y x
3-; (2)n m
-2.
2.填空
22222-=-+=+x x x x y x x xy x b a a b a b
a a
b b
a 2222=-=+
六.学有余力
1.如果把分式x y
x 32-中的正数y x ,都扩大到原来的2倍,那么分式的值(
)
A 、不变
B 、扩大到原来的2倍
C 、缩小到原来的21
D 、缩小到原来的41
归纳:
2.不改变分式的值,将
y x y x 02.05.03.01.0-+的分子、分母中各项的系数都化为整数
归纳: 如有侵权请联系告知删除,感谢你们的配合!。