数据结构实验七
- 格式:doc
- 大小:63.00 KB
- 文档页数:3
苏州科技学院数据结构(C语言版)实验报告专业班级测绘1011学号10201151姓名XX实习地点C1 机房指导教师史守正目录封面 (1)目录 (2)实验一线性表 (3)一、程序设计的基本思想,原理和算法描述 (3)二、源程序及注释(打包上传) (3)三、运行输出结果 (4)四、调试和运行程序过程中产生的问题及采取的措施 (6)五、对算法的程序的讨论、分析,改进设想,其它经验教训 (6)实验二栈和队列 (7)一、程序设计的基本思想,原理和算法描述 (8)二、源程序及注释(打包上传) (8)三、运行输出结果 (8)四、调试和运行程序过程中产生的问题及采取的措施 (10)五、对算法的程序的讨论、分析,改进设想,其它经验教训 (10)实验三树和二叉树 (11)一、程序设计的基本思想,原理和算法描述 (11)二、源程序及注释(打包上传) (12)三、运行输出结果 (12)四、调试和运行程序过程中产生的问题及采取的措施 (12)五、对算法的程序的讨论、分析,改进设想,其它经验教训 (12)实验四图 (13)一、程序设计的基本思想,原理和算法描述 (13)二、源程序及注释(打包上传) (14)三、运行输出结果 (14)四、调试和运行程序过程中产生的问题及采取的措施 (15)五、对算法的程序的讨论、分析,改进设想,其它经验教训 (16)实验五查找 (17)一、程序设计的基本思想,原理和算法描述 (17)二、源程序及注释(打包上传) (18)三、运行输出结果 (18)四、调试和运行程序过程中产生的问题及采取的措施 (19)五、对算法的程序的讨论、分析,改进设想,其它经验教训 (19)实验六排序 (20)一、程序设计的基本思想,原理和算法描述 (20)二、源程序及注释(打包上传) (21)三、运行输出结果 (21)四、调试和运行程序过程中产生的问题及采取的措施 (24)五、对算法的程序的讨论、分析,改进设想,其它经验教训 (24)实验一线性表一、程序设计的基本思想,原理和算法描述:程序的主要分为自定义函数、主函数。
数据结构实验报告想必学计算机专业的同学都知道数据结构是一门比较重要的课程,那么,下面是小编给大家整理收集的数据结构实验报告,供大家阅读参考。
数据结构实验报告1一、实验目的及要求1)掌握栈和队列这两种特殊的线性表,熟悉它们的特性,在实际问题背景下灵活运用它们。
本实验训练的要点是“栈”和“队列”的观点;二、实验内容1) 利用栈,实现数制转换。
2) 利用栈,实现任一个表达式中的语法检查(选做)。
3) 编程实现队列在两种存储结构中的基本操作(队列的初始化、判队列空、入队列、出队列);三、实验流程、操作步骤或核心代码、算法片段顺序栈:Status InitStack(SqStack &S){S.base=(ElemType*)malloc(STACK_INIT_SIZE*sizeof(ElemTyp e));if(!S.base)return ERROR;S.top=S.base;S.stacksize=STACK_INIT_SIZE;return OK;}Status DestoryStack(SqStack &S){free(S.base);return OK;}Status ClearStack(SqStack &S){S.top=S.base;return OK;}Status StackEmpty(SqStack S){if(S.base==S.top)return OK;return ERROR;}int StackLength(SqStack S){return S.top-S.base;}Status GetTop(SqStack S,ElemType &e){if(S.top-S.base>=S.stacksize){S.base=(ElemType*)realloc(S.base,(S.stacksize+STACKINCREMENT)*sizeof(ElemTyp e));if(!S.base) return ERROR;S.top=S.base+S.stacksize;S.stacksize+=STACKINCREMENT;}*S.top++=e;return OK;Status Push(SqStack &S,ElemType e){if(S.top-S.base>=S.stacksize){S.base=(ElemType*)realloc(S.base,(S.stacksize+STACKINCREMENT)*sizeof(ElemTyp e));if(!S.base)return ERROR;S.top=S.base+S.stacksize;S.stacksize+=STACKINCREMENT;}*S.top++=e;return OK;}Status Pop(SqStack &S,ElemType &e){if(S.top==S.base)return ERROR;e=*--S.top;return OK;}Status StackTraverse(SqStack S){ElemType *p;p=(ElemType *)malloc(sizeof(ElemType));if(!p) return ERROR;p=S.top;while(p!=S.base)//S.top上面一个...p--;printf("%d ",*p);}return OK;}Status Compare(SqStack &S){int flag,TURE=OK,FALSE=ERROR; ElemType e,x;InitStack(S);flag=OK;printf("请输入要进栈或出栈的元素:"); while((x= getchar)!='#'&&flag) {switch (x){case '(':case '[':case '{':if(Push(S,x)==OK)printf("括号匹配成功!\n\n"); break;case ')':if(Pop(S,e)==ERROR || e!='('){printf("没有满足条件\n");flag=FALSE;}break;case ']':if ( Pop(S,e)==ERROR || e!='[')flag=FALSE;break;case '}':if ( Pop(S,e)==ERROR || e!='{')flag=FALSE;break;}}if (flag && x=='#' && StackEmpty(S)) return OK;elsereturn ERROR;}链队列:Status InitQueue(LinkQueue &Q) {Q.front =Q.rear=(QueuePtr)malloc(sizeof(QNode));if (!Q.front) return ERROR;Q.front->next = NULL;return OK;}Status DestoryQueue(LinkQueue &Q) {while(Q.front){Q.rear=Q.front->next;free(Q.front);Q.front=Q.rear;}return OK;}Status QueueEmpty(LinkQueue &Q){if(Q.front->next==NULL)return OK;return ERROR;}Status QueueLength(LinkQueue Q){int i=0;QueuePtr p,q;p=Q.front;while(p->next){i++;p=Q.front;q=p->next;p=q;}return i;}Status GetHead(LinkQueue Q,ElemType &e) {QueuePtr p;p=Q.front->next;if(!p)return ERROR;e=p->data;return e;}Status ClearQueue(LinkQueue &Q){QueuePtr p;while(Q.front->next ){p=Q.front->next;free(Q.front);Q.front=p;}Q.front->next=NULL;Q.rear->next=NULL;return OK;}Status EnQueue(LinkQueue &Q,ElemType e) {QueuePtr p;p=(QueuePtr)malloc(sizeof (QNode));if(!p)return ERROR;p->data=e;p->next=NULL;Q.rear->next = p;Q.rear=p; //p->next 为空return OK;}Status DeQueue(LinkQueue &Q,ElemType &e) {QueuePtr p;if (Q.front == Q.rear)return ERROR;p = Q.front->next;e = p->data;Q.front->next = p->next;if (Q.rear == p)Q.rear = Q.front; //只有一个元素时(不存在指向尾指针) free (p);return OK;}Status QueueTraverse(LinkQueue Q){QueuePtr p,q;if( QueueEmpty(Q)==OK){printf("这是一个空队列!\n");return ERROR;}p=Q.front->next;while(p){q=p;printf("%d<-\n",q->data);q=p->next;p=q;}return OK;}循环队列:Status InitQueue(SqQueue &Q){Q.base=(QElemType*)malloc(MAXQSIZE*sizeof(QElemType)); if(!Q.base)exit(OWERFLOW);Q.front=Q.rear=0;return OK;}Status EnQueue(SqQueue &Q,QElemType e){if((Q.rear+1)%MAXQSIZE==Q.front)return ERROR;Q.base[Q.rear]=e;Q.rear=(Q.rear+1)%MAXQSIZE;return OK;}Status DeQueue(SqQueue &Q,QElemType &e){if(Q.front==Q.rear)return ERROR;e=Q.base[Q.front];Q.front=(Q.front+1)%MAXQSIZE;return OK;}int QueueLength(SqQueue Q){return(Q.rear-Q.front+MAXQSIZE)%MAXQSIZE;}Status DestoryQueue(SqQueue &Q){free(Q.base);return OK;}Status QueueEmpty(SqQueue Q) //判空{if(Q.front ==Q.rear)return OK;return ERROR;}Status QueueTraverse(SqQueue Q){if(Q.front==Q.rear)printf("这是一个空队列!");while(Q.front%MAXQSIZE!=Q.rear){printf("%d<- ",Q.base[Q.front]);Q.front++;}return OK;}数据结构实验报告2一.实验内容:实现哈夫曼编码的生成算法。
数据结构图的实验报告数据结构图的实验报告引言:数据结构图是计算机科学中重要的概念之一。
它是一种用图形表示数据元素之间关系的数据结构,广泛应用于算法设计、程序开发和系统优化等领域。
本实验报告旨在介绍数据结构图的基本原理、实验过程和结果分析。
一、实验目的本次实验的主要目的是掌握数据结构图的基本概念和操作方法,以及通过实验验证其在解决实际问题中的有效性。
具体而言,我们将通过构建一个社交网络关系图,实现对用户关系的管理和分析。
二、实验方法1. 确定数据结构在本次实验中,我们选择了无向图作为数据结构图的基础。
无向图由顶点集和边集组成,每条边连接两个顶点,且没有方向性。
2. 数据输入为了模拟真实的社交网络,我们首先需要输入一组用户的基本信息,如姓名、年龄、性别等。
然后,根据用户之间的关系建立边,表示用户之间的交流和联系。
3. 数据操作基于构建好的数据结构图,我们可以进行多种操作,如添加用户、删除用户、查询用户关系等。
这些操作将通过图的遍历、搜索和排序等算法实现。
三、实验过程1. 数据输入我们首先创建一个空的无向图,并通过用户输入的方式逐步添加用户和用户关系。
例如,我们可以输入用户A和用户B的姓名、年龄和性别,并建立一条边连接这两个用户。
2. 数据操作在构建好数据结构图后,我们可以进行多种操作。
例如,我们可以通过深度优先搜索算法遍历整个图,查找与某个用户具有特定关系的用户。
我们也可以通过广度优先搜索算法计算某个用户的社交网络影响力,即与该用户直接或间接相连的其他用户数量。
3. 结果分析通过实验,我们可以观察到数据结构图在管理和分析用户关系方面的优势。
它能够快速地找到用户之间的关系,帮助我们了解用户的社交网络结构和影响力。
同时,数据结构图也为我们提供了一种可视化的方式来展示用户之间的关系,使得分析更加直观和易于理解。
四、实验结果通过实验,我们成功构建了一个社交网络关系图,并实现了多种数据操作。
我们可以根据用户的姓名、年龄和性别等信息进行查询,也可以根据用户之间的关系进行遍历和排序。
数据结构(第4版)习题及实验参考答案数据结构复习资料完整版(c语言版)数据结构基础及深入及考试习题及实验参考答案见附录结论1、数据的逻辑结构是指数据元素之间的逻辑关系。
即从逻辑关系上描述数据,它与数据的存储无关,是独立于计算机的。
2、数据的物理结构亦称存储结构,是数据的逻辑结构在计算机存储器内的表示(或映像)。
它依赖于计算机。
存储结构可分为4大类:顺序、链式、索引、散列3、抽象数据类型:由用户定义,用以表示应用问题的数据模型。
它由基本的数据类型构成,并包括一组相关的服务(或称操作)。
它与数据类型实质上是一个概念,但其特征是使用与实现分离,实行封装和信息隐蔽(独立于计算机)。
4、算法:是对特定问题求解步骤的一种描述,它是指令的有限序列,是一系列输入转换为输出的计算步骤。
5、在数据结构中,从逻辑上可以把数据结构分成(C)A、动态结构和表态结构B、紧凑结构和非紧凑结构C、线性结构和非线性结构D、内部结构和外部结构6、算法的时间复杂度取决于(A)A、问题的规模B、待处理数据的初态C、问题的规模和待处理数据的初态线性表1、线性表的存储结构包括顺序存储结构和链式存储结构两种。
2、表长为n的顺序存储的线性表,当在任何位置上插入或删除一个元素的概率相等时,插入一个元素所需移动元素的平均次数为(E),删除一个元素需要移动的元素的个数为(A)。
A、(n-1)/2B、nC、n+1D、n-1E、n/2F、(n+1)/2G、(n-2)/23、“线性表的逻辑顺序与存储顺序总是一致的。
”这个结论是(B)A、正确的B、错误的C、不一定,与具体的结构有关4、线性表采用链式存储结构时,要求内存中可用存储单元的地址(D)A、必须是连续的B、部分地址必须是连续的C一定是不连续的D连续或不连续都可以5、带头结点的单链表为空的判定条件是(B)A、head==NULLB、head->ne某t==NULLC、head->ne某t=headD、head!=NULL6、不带头结点的单链表head为空的判定条件是(A)A、head==NULLB、head->ne某t==NULLC、head->ne某t=headD、head!=NULL7、非空的循环单链表head的尾结点P满足(C)A、p->ne某t==NULLB、p==NULLC、p->ne某t==headD、p==head8、在一个具有n个结点的有序单链表中插入一个新结点并仍然有序的时间复杂度是(B)A、O(1)B、O(n)C、O(n2)D、O(nlog2n)数据结构(第4版)习题及实验参考答案9、在一个单链表中,若删除p所指结点的后继结点,则执行(A)A、p->ne某t=p->ne某t->ne某t;B、p=p->ne某t;p->ne某t=p->ne某t->ne某t;C、p->ne某t=p->ne某t;D、p=p->ne某t->ne某t;10、在一个单链表中,若在p所指结点之后插入所指结点,则执行(B)A、->ne某t=p;p->ne某t=;B、->ne某t=p->ne某t;p->ne某t=;C、->ne某t=p->ne某t;p=;D、p->ne某t=;->ne某t=p;11、在一个单链表中,已知q是p的前趋结点,若在q和p之间插入结点,则执行(C)A、->ne某t=p->ne某t;p->ne某t=;B、p->ne某t=->ne某t;->ne某t=p;C、q->ne某t=;->ne某t=p;D、p->ne某t=;->ne某t=q;12、在线性结构中,第一个结点没有前趋结点,其余每个结点有且只有1个前趋结点。
数据结构实验数据结构实验是计算机科学与技术专业的重要课程之一。
通过对这门课程的学习和实验,可以让学生深入了解数据结构在计算机科学中的重要性和应用。
一、实验的目的与意义数据结构实验的主要目的是帮助学生更深入地理解数据结构在计算机科学中的应用。
在实验中,学生可以通过编写代码和执行各种数据结构算法来更好地理解数据结构的实现原理。
通过实验,学生可以更清楚地了解算法的效率、时间复杂度和空间复杂度等概念。
此外,数据结构实验也有助于提高学生的编程能力。
在实验中,学生需要编写具有规范的代码,确保算法的正确性,同时还需要处理大量的数据,这可以提高学生的编程能力和耐心。
二、实验内容简介数据结构实验通常包括以下几个方面的内容:1.线性结构:顺序存储和链式存储线性表、栈、队列等。
2.非线性结构:数组、链表、二叉树等。
3.查找算法:顺序查找、二分查找、哈希查找等。
4.排序算法:插入排序、选择排序、归并排序、堆排序等。
5.图论算法:图的遍历、最短路径、最小生成树等。
6.字符串算法:KMP算法、BM算法等。
三、实验中的具体操作实验中的具体操作是根据具体的算法和数据结构来进行的。
以下是一个简单的例子:线性表的实验假设学生已经学习了顺序存储结构和链式存储结构的操作,以下是在实验中需要进行的具体操作:1.顺序存储结构创建一个空的顺序表插入一个元素到指定位置删除一个元素查找指定元素的位置输出顺序表的所有元素2.链式存储结构创建一个空的链表插入一个元素到指定位置删除一个元素查找指定元素的位置输出链表的所有元素在实验中,学生需要将这些操作封装成具体的函数,并且通过调用这些函数来实现对线性表的操作。
同时,学生还需要进行大量的测试和调试,以保证代码的正确性和实验的效果。
四、实验中的注意事项在进行数据结构实验时,学生需要注意以下几个方面:1.理论和实验相结合:不仅要理解理论知识,还要进行实验操作,才能更好地掌握数据结构。
2.代码规范:要写出规范、可读性强的代码,让他人容易理解。
一、实验背景数据结构是计算机科学中一个重要的基础学科,它研究如何有效地组织和存储数据,并实现对数据的检索、插入、删除等操作。
为了更好地理解数据结构的概念和原理,我们进行了一次数据结构实训实验,通过实际操作来加深对数据结构的认识。
二、实验目的1. 掌握常见数据结构(如线性表、栈、队列、树、图等)的定义、特点及操作方法。
2. 熟练运用数据结构解决实际问题,提高算法设计能力。
3. 培养团队合作精神,提高实验报告撰写能力。
三、实验内容本次实验主要包括以下内容:1. 线性表(1)实现线性表的顺序存储和链式存储。
(2)实现线性表的插入、删除、查找等操作。
2. 栈与队列(1)实现栈的顺序存储和链式存储。
(2)实现栈的入栈、出栈、判断栈空等操作。
(3)实现队列的顺序存储和链式存储。
(4)实现队列的入队、出队、判断队空等操作。
3. 树与图(1)实现二叉树的顺序存储和链式存储。
(2)实现二叉树的遍历、查找、插入、删除等操作。
(3)实现图的邻接矩阵和邻接表存储。
(4)实现图的深度优先遍历和广度优先遍历。
4. 算法设计与应用(1)实现冒泡排序、选择排序、插入排序等基本排序算法。
(2)实现二分查找算法。
(3)设计并实现一个简单的学生成绩管理系统。
四、实验步骤1. 熟悉实验要求,明确实验目的和内容。
2. 编写代码实现实验内容,对每个数据结构进行测试。
3. 对实验结果进行分析,总结实验过程中的问题和经验。
4. 撰写实验报告,包括实验目的、内容、步骤、结果分析等。
五、实验结果与分析1. 线性表(1)顺序存储的线性表实现简单,但插入和删除操作效率较低。
(2)链式存储的线性表插入和删除操作效率较高,但存储空间占用较大。
2. 栈与队列(1)栈和队列的顺序存储和链式存储实现简单,但顺序存储空间利用率较低。
(2)栈和队列的入栈、出队、判断空等操作实现简单,但需要考虑数据结构的边界条件。
3. 树与图(1)二叉树和图的存储结构实现复杂,但能够有效地表示和处理数据。
第7章树和森林树形结构是一类重要的非线性结构。
树形结构的特点是结点之间具有层次关系。
本章介绍树的定义、存储结构、树的遍历方法、树和森林与二叉树之间的转换以及树的应用等内容。
重点提示:●树的存储结构●树的遍历●树和森林与二叉树之间的转换7-1 重点难点指导7-1-1 相关术语1.树的定义:树是n(n>=0)个结点的有限集T,T为空时称为空树,否则它满足如下两个条件:①有且仅有一个特定的称为根的结点;②其余的结点可分为m(m>=0)个互不相交的子集T1,T2,…,T m,其中每个子集本身又是一棵树,并称为根的子树。
要点:树是一种递归的数据结构。
2.结点的度:一个结点拥有的子树数称为该结点的度。
3.树的度:一棵树的度指该树中结点的最大度数。
如图7-1所示的树为3度树。
4.分支结点:度大于0的结点为分支结点或非终端结点。
如结点a、b、c、d。
5.叶子结点:度为0的结点为叶子结点或终端结点。
如e、f、g、h、i。
6.结点的层数:树是一种层次结构,根结点为第一层,根结点的孩子结点为第二层,…依次类推,可得到每一结点的层次。
7.兄弟结点:具有同一父亲的结点为兄弟结点。
如b、c、d;e、f;h、i。
8.树的深度:树中结点的最大层数称为树的深度或高度。
9.有序树:若将树中每个结点的子树看成从左到右有次序的(即不能互换),则称该树为有序树,否则称为无序树。
10.森林:是m棵互不相交的树的集合。
7-1-2 树的存储结构1.双亲链表表示法以图7-1所示的树为例。
(1)存储思想:因为树中每个元素的双亲是惟一的,因此对每个元素,将其值和一个指向双亲的指针parent构成一个元素的结点,再将这些结点存储在向量中。
(2)存储示意图:-1 data:parent:(3)注意: Parrent域存储其双亲结点的存储下标,而不是存放结点值。
下面的存储是不正确的:-1 data:parent:2.孩子链表表示法(1)存储思想:将每个数据元素的孩子拉成一个链表,链表的头指针与该元素的值存储为一个结点,树中各结点顺序存储起来,一般根结点的存储号为0。
数据结构串实验报告数据结构串实验报告引言:数据结构是计算机科学中的重要概念之一,它研究如何组织和存储数据,以便能够高效地访问和操作。
串是一种特殊的数据结构,它由一系列字符组成,可以用来表示文本、字符串等信息。
本实验旨在通过实现串的基本操作,深入理解数据结构的原理和应用。
一、实验目的本实验的主要目的是掌握串的基本操作,包括串的初始化、插入、删除、查找等。
通过实际编程实现这些操作,可以加深对数据结构的理解,并提高编程能力。
二、实验环境本实验使用C语言进行编程,需要在计算机上安装相应的开发环境,如GCC编译器等。
三、实验内容1. 串的初始化串的初始化是指将一个空串创建出来,并为其分配内存空间。
在实验中,可以使用字符数组来表示串,并通过赋值操作将空串初始化。
2. 串的插入串的插入是指在指定位置插入一个或多个字符。
在实验中,可以通过遍历数组,将插入位置之后的字符依次后移,然后将待插入的字符放入指定位置。
3. 串的删除串的删除是指删除指定位置的一个或多个字符。
在实验中,可以通过遍历数组,将删除位置之后的字符依次前移,覆盖待删除的字符。
4. 串的查找串的查找是指在串中查找指定字符或子串,并返回其位置。
在实验中,可以通过遍历数组,逐个比较字符或子串,找到匹配的位置。
五、实验步骤1. 初始化串首先,创建一个字符数组,并将其初始化为空串。
2. 插入字符在指定位置插入一个字符,可以通过遍历数组,将插入位置之后的字符依次后移,然后将待插入的字符放入指定位置。
3. 删除字符删除指定位置的一个字符,可以通过遍历数组,将删除位置之后的字符依次前移,覆盖待删除的字符。
4. 查找字符在串中查找指定字符,可以通过遍历数组,逐个比较字符,找到匹配的位置。
六、实验结果经过实验,我们成功实现了串的初始化、插入、删除和查找等基本操作。
通过不断调试和优化,我们的程序能够高效地处理大量的字符操作,具有较好的性能和稳定性。
七、实验总结通过本次实验,我们深入理解了数据结构中串的原理和应用。
数据结构实验报告一、实验目的本实验旨在通过对数据结构的学习和实践,掌握基本的数据结构概念、原理及其应用,培养学生的问题分析与解决能力,提升编程实践能力。
二、实验背景数据结构是计算机科学中的重要基础,它研究数据的存储方式和组织形式,以及数据之间的关系和操作方法。
在软件开发过程中,合理选用和使用数据结构,能够提高算法效率,优化内存利用,提升软件系统的性能和稳定性。
三、实验内容本次实验主要涉及以下几个方面的内容:1.线性表的基本操作:包括线性表的创建、插入、删除、查找、修改等操作。
通过编程实现不同线性表的操作,掌握它们的原理和实现方法。
2.栈和队列的应用:栈和队列是常用的数据结构,通过实现栈和队列的基本操作,学会如何解决实际问题。
例如,利用栈实现括号匹配,利用队列实现银行排队等。
3.递归和回溯算法:递归和回溯是解决很多求解问题的常用方法。
通过编程实现递归和回溯算法,理解它们的思想和应用场景。
4.树和二叉树的遍历:学习树和二叉树的遍历方法,包括前序、中序和后序遍历。
通过编程实现这些遍历算法,加深对树结构的理解。
5.图的基本算法:学习图的基本存储结构和算法,包括图的遍历、最短路径、最小生成树等。
通过编程实现这些算法,掌握图的基本操作和应用。
四、实验过程1.具体实验内容安排:根据实验要求,准备好所需的编程环境和工具。
根据实验要求逐步完成实验任务,注意记录并整理实验过程中遇到的问题和解决方法。
2.实验数据采集和处理:对于每个实验任务,根据要求采集并整理测试数据,进行相应的数据处理和分析。
记录实验过程中的数据和结果。
3.实验结果展示和分析:将实验结果进行适当的展示,例如表格、图形等形式,分析实验结果的特点和规律。
4.实验总结与反思:总结实验过程和结果,回顾实验中的收获和不足,提出改进意见和建议。
五、实验结果与分析根据实验步骤和要求完成实验任务后,得到了相应的实验结果。
对于每个实验任务,根据实验结果进行适当的分析。
(*ht)[i].RChild = 0;
}
for(i=n+1;i<=m;i++){
(*ht)[i].weight = 0;
(*ht)[i].LChild = 0;
(*ht)[i].parent = 0;
(*ht)[i].RChild = 0;
}
for(i=n+1;i<=m;i++){
YLX_select(ht,i-1,&s1,&s2);
(*ht)[s1].parent=i;
(*ht)[s2].parent=i;
(*ht)[i].LChild=s1;
(*ht)[i].RChild=s2;
(*ht)[i].weight=(*ht)[s1].weight+(*ht)[s2].weight ;
}
}
void YLX_outputHuffman(HuffmanTree HT, int m){
if(m!=0){
YLX_outputHuffman(HT,HT[m].LChild);
if(!HT[m].LChild&&!HT[m].RChild)printf("%c \t", HT[m].data);
YLX_outputHuffman(HT,HT[m].RChild);
}
}
void YLX_CrtHuffmanCode(HuffmanTree *ht, HuffmanCode *hc, int n){
char *cd;
int i;
unsigned int c;
int start;
int p;
hc=(HuffmanCode
*)malloc((n+1)*sizeof(char *));
cd=(char * )malloc(n * sizeof(char ));
cd[n-1]='\0';
for(i=1;i<=n;i++){
start=n-1;
for(c=i,p=(*ht)[i].parent; p!=0; c=p,p=(*ht)[p].parent)
if( (*ht)[p].LChild == c)
cd[--start]='0';
else
cd[--start]='1';
hc[i]=(char *)malloc((n-start)*sizeof(char));
strcpy(hc[i],&cd[start]);
}
free(cd);
for(i=1;i<=n;i++)
printf("%c编码为%s\n",(*ht)[i].data,hc[i]);
}
void main() {
HuffmanTree HT;
HuffmanCode HC;
int n;
int m;
printf("*******袁丽湘*******");
printf("\n");
printf("输入叶子节点的个数:" );
scanf("%d",&n);
YLX_CrtHuffmanTree(&HT,n);
m=2*n-1;printf("中序输出哈夫曼树叶子节点:\n");
YLX_outputHuffman(HT,m);
printf("\n");
YLX_CrtHuffmanCode(&HT,&HC,n);
}
六、运行结果截图
七、实验总结与体会
本次实验需要我们进一步掌握二叉树的存储结构和相应算法,掌握霍夫曼树的创建和霍夫曼编码。
在本次实验中我觉得对于二叉树的延伸上存在着一些问题,比较难理解。