大物下知识点总结
- 格式:doc
- 大小:277.00 KB
- 文档页数:6
大学物理下册学院:姓名:班级:第一部分:气体动理论与热力学基础一、气体的状态参量:用来描述气体状态特征的物理量。
气体的宏观描述,状态参量:(1)压强p:从力学角度来描写状态。
垂直作用于容器器壁上单位面积上的力,是由分子与器壁碰撞产生的。
单位 Pa(2)体积V:从几何角度来描写状态。
分子无规则热运动所能达到的空间。
单位m 3(3)温度T:从热学的角度来描写状态。
表征气体分子热运动剧烈程度的物理量。
单位K。
二、理想气体压强公式的推导:三、理想气体状态方程:112212PV PV PVCT T T=→=;mPV RTM'=;P nkT=8.31JR k mol=g;231.3810Jk k-=⨯;2316.02210AN mol-=⨯;AR N k=g四、理想气体压强公式:23ktp nε=212ktmvε=分子平均平动动能五、理想气体温度公式:21322ktmv kTε==六、气体分子的平均平动动能与温度的关系:七、刚性气体分子自由度表八、能均分原理:1.自由度:确定一个物体在空间位置所需要的独立坐标数目。
2.运动自由度:确定运动物体在空间位置所需要的独立坐标数目,称为该物体的自由度(1)质点的自由度:在空间中:3个独立坐标在平面上:2 在直线上:1(2)直线的自由度:中心位置:3(平动自由度)直线方位:2(转动自由度)共5个3.气体分子的自由度单原子分子 (如氦、氖分子)3i=;刚性双原子分子5i=;刚性多原子分子6i=4.能均分原理:在温度为T的平衡状态下,气体分子每一自由度上具有的平均动都相等,其值为12kT推广:平衡态时,任何一种运动或能量都不比另一种运动或能量更占优势,在各个自由度上,运动的机会均等,且能量均分。
5.一个分子的平均动能为:2kikTε=五. 理想气体的内能(所有分子热运动动能之和)1.1mol理想气体2iE RT=5.一定量理想气体(2i mE RTMνν'==九、气体分子速率分布律(函数)速率分布曲线峰值对应的速率 v p 称为最可几速率,表征速率分布在 v p ~ v p + d v 中的分子数,比其它速率的都多,它可由对速率分布函数求极值而得。
大学物理大一下知识点总结大学物理是一门旨在培养学生科学思维和解决问题能力的基础课程。
下面是大学物理大一下学期的知识点总结。
1. 力学1.1 运动学运动学研究物体的运动规律,包括位移、速度、加速度等概念。
常用的运动方程有:- 位移公式:s = v0t + 1/2at^2- 速度公式:v = v0 + at- 加速度公式:v^2 = v0^2 + 2as1.2 动力学动力学研究物体的力和运动的关系,包括牛顿三定律、动量和冲量等概念。
- 牛顿第一定律:物体静止或匀速直线运动,当且仅当合外力为零- 牛顿第二定律:F = ma,力等于物体质量乘以加速度- 牛顿第三定律:作用力与反作用力大小相等、方向相反、作用于不同物体上- 动量:p = mv,物体的质量乘以速度- 冲量:J = FΔt,力在时间上的积分2. 热学2.1 温度和热量温度是物体内部微观粒子平均动能的度量,热量是物体与环境之间传递的能量。
- 摄氏度和开尔文温标的转换公式:K = °C + 273.15- 内能变化:ΔQ = mcΔT,物体的内能变化等于质量乘以热容量乘以温度变化2.2 热力学定律热力学定律包括热力学第一定律和第二定律,描述热能转化和能量守恒的规律。
- 热力学第一定律:ΔU = Q - W,内能变化等于吸热减去做功 - 热力学第二定律:熵增原理,自然界中熵总是增加的2.3 热传导热传导是热量通过物体内部传递的过程,通过导热系数计算。
- 热传导方程:ΔQ = kAΔT/Δx,热量传导等于导热系数乘以横截面积乘以温度梯度3. 电磁学3.1 静电学静电学研究电荷和电场的性质,包括库仑定律和高斯定律等。
- 库仑定律:F = k|q1q2|/r^2,带电粒子间的相互作用力- 高斯定律:Φ = ∮E·dA = Q/ε0,电场通量等于电荷除以真空介电常数3.2 电流和电阻电流是电荷通过导体单位时间内的流动,电阻是导体对电流的阻碍程度。
《大学物理》(下) 复习资料一、电磁感应与电磁场1. 感应电动势——总规律:法拉第电磁感应定律 dtd m i Φ-=ε , 多匝线圈dt d i ψ-=ε, m N Φ=ψ。
i ε方向即感应电流的方向,在电源内由负极指向正极。
由此可以根据计算结果判断一段导体中哪一端的电势高(正极)。
①对闭合回路,i ε方向由楞次定律判断; ②对一段导体,可以构建一个假想的回路(使添加的导线部分不产生i ε)(1) 动生电动势(B 不随t 变化,回路或导体L运动) 一般式:() d B v b ai ⋅⨯=ε⎰; 直导线:()⋅⨯=εB v i动生电动势的方向:B v ⨯方向,即正电荷所受的洛仑兹力方向。
(注意)一般取B v⨯方向为 d 方向。
如果B v ⊥,但导线方向与B v⨯不在一直线上(如习题十一填空2.2题),则上式写成标量式计算时要考虑洛仑兹力与线元方向的夹角。
(2) 感生电动势(回路或导体L不动,已知t /B ∂∂的值):⎰⋅∂∂-=s i s d t Bε,B与回路平面垂直时S t B i ⋅∂∂=ε 磁场的时变在空间激发涡旋电场i E :⎰⎰⋅∂∂-=⋅L s i s d t B d E(B增大时t B ∂∂[解题要点] 对电磁感应中的电动势问题,尽量采用法拉第定律求解——先求出t 时刻穿过回路的磁通量⎰⋅=ΦSm S d B ,再用dtd m i Φ-=ε求电动势,最后指出电动势的方向。
(不用法拉弟定律:①直导线切割磁力线;②L不动且已知t /B ∂∂的值)[注] ①此方法尤其适用动生、感生兼有的情况;②求m Φ时沿B 相同的方向取dS ,积分时t 作为常量;③长直电流r π2I μ=B r /;④i ε的结果是函数式时,根据“i ε>0即m Φ减小,感应电流的磁场方向与回路中原磁场同向,而i ε与感应电流同向”来表述电动势的方向:i ε>0时,沿回路的顺(或逆)时针方向。
2. 自感电动势dtdI Li -=ε,阻碍电流的变化.单匝:LI m=Φ;多匝线圈LI N =Φ=ψ;自感系数I N I L m Φ=ψ= 互感电动势dt dI M212-=ε,dtdIM 121-=ε。
大物下知识点总结### 大物知识点总结牛顿运动定律1. 牛顿第一定律(惯性定律):物体保持静止状态或匀速直线运动状态,直到受到外力作用。
2. 牛顿第二定律(力的定律):物体的加速度与作用在物体上的净外力成正比,与物体的质量成反比,加速度方向与力的方向相同。
3. 牛顿第三定律(作用与反作用定律):对于每一个作用力,总有一个大小相等、方向相反的反作用力。
能量守恒定律能量守恒定律表明,在一个封闭系统中,能量不能被创造或消灭,只能从一种形式转化为另一种形式,总量保持不变。
动量守恒定律在没有外力作用的系统中,系统的总动量保持不变。
这适用于碰撞问题等。
万有引力定律任何两个物体都相互吸引,吸引力与它们的质量的乘积成正比,与它们之间距离的平方成反比。
机械能守恒定律在没有非保守力(如摩擦力)作用的情况下,一个系统的总机械能(动能加势能)保持不变。
电磁学基础1. 库仑定律:两个点电荷之间的静电力与它们的电荷量的乘积成正比,与它们之间距离的平方成反比。
2. 安培力:电流在磁场中会受到力的作用,力的大小与电流、磁场强度和电流方向与磁场方向的正弦值成正比。
3. 法拉第电磁感应定律:变化的磁场会在导体中产生电动势,电动势的大小与磁通量变化率成正比。
波动光学1. 光的干涉:两个或多个相干光波相遇时,光强会相互加强或减弱,形成明暗相间的干涉条纹。
2. 光的衍射:光波遇到障碍物或通过狭缝时,会发生弯曲和扩散,形成衍射图样。
3. 光的偏振:光波的振动方向可以被限制在特定平面内,这种现象称为偏振。
量子力学简介1. 波函数:描述粒子在空间中的概率分布。
2. 测不准原理:粒子的位置和动量不能同时被精确测量。
3. 量子态叠加:一个量子系统可以同时处于多个可能状态的叠加。
热力学基础1. 热力学第一定律:能量守恒在热力学过程中的应用。
2. 热力学第二定律:自然过程是不可逆的,熵总是增加的。
3. 理想气体定律:描述理想气体状态的方程,\( PV = nRT \)。
大学物理下册基本概念定律归纳总结一.1. 电偶极子模型:是指电量为q、相距为d的一对正负点电荷组成的电结构,电偶极子的方向为从负电荷指向正电荷。
2. 电介质模型(木有)3. 电容器是装电的容器,是一种容纳电荷的器件。
4. 磁偶极子模型:磁偶极子是类比而建立的物理模型。
由于没有发现单独存在的磁单极子,因此磁偶极子的物理模型不是两个磁单极子,而是一段封闭回路电流。
磁偶极子模型能够很好地描述小尺度闭合电路元产生的磁场分布[1] 。
5. 抗磁质:磁介质中的磁感应强度由于磁介质的存在而削弱了,这类磁介质称为抗磁质。
顺磁质:磁介质中的磁感应强度由于磁介质的存在而增强了,这类磁介质称为顺磁质。
铁磁质:磁介质中的磁感应强度由于磁介质的存在而增强了成千上万倍,这类磁介质称为铁磁质。
6. 位移电流是电位移矢量随时间的变化率对曲面的积分。
7. 涡旋电场:涡旋电场是由变化的磁场所产生,既变化的磁场在其周围也会激发一电场,叫做感应电场或涡旋电场。
8. 霍尔效应:当电流垂直于外磁场方向通过导体时,在垂直于磁场和电流方向的导体的两个端面之间出现电势差的现象称为霍尔效应9. 光栅由大量等宽等间距的平行狭缝构成的光学器件称为光栅。
10. 偏振光:我们把光在与传播方向相垂直的平面内的各种振动状态称为光的偏振。
11. 光电子:光电子学是指光波波段,即、可见光、和软X射线波段的电子学。
(没有光电子)12. 德布罗意波:物质波,又称德布罗意波,是,指空间中某点某时刻可能出现的几率,其中概率的大小受波动规律的支配。
13. 量子力学波函数:指给定系统的能够完整描述该系统的,即描述该系统的全部可测量的物理量的具体情况,亦即该系统的能量、动量、角动量、位置等等物理量到底是多少乃至它们怎样随时间而变。
二.1. 电场:是电荷及变化周围空间里存在的一种特殊物质。
它是客观存在的,电场具有通常物质所具有的力和能量等客观属性。
2. 磁场的场强叠加原理:空间某一点的磁场是各个磁场源(电流或运动电荷)各自在该点产生的磁场的叠加(矢量和)3. 导体静电平衡条件:当感应电荷分布达到稳定状态时,导体内部的自由电子将不再有宏观运动,即导体在外电场中达到了静电平衡。
《大学物理下》重要知识点归纳第一部分一、简谐运动的运动方程: 振幅A : 取决于初始条件 角频率ω:反映振动快慢,系统属性。
初相位ϕ: 取决于初始条件二、简谐运动物体的合外力: (k : 比例系数) 简谐运动物体的位移:简谐运动物体的速度: 简谐运动物体的加速度: 三、旋转矢量法(旋转矢量端点在x 轴上投影作简谐振动)矢量转至一、二象限,速度为负矢量转至三、四象限,速度为正四、振动动能: 振动势能: 简谐振动总能量守恒.....: 五、平面简谐波波函数的几种标准形式:][)(cos o u x t A y ϕω+= ][2 cos o x t A ϕλπω+=0ϕ:坐标原点处质点的初相位 x 前正负号反映波的传播方向六、波的能量不守恒...! 任意时刻媒质中某质元的 动能 = 势能 !)(cos ϕω+=t A x202)(ωv x A +=Tπω2=mk =2ω)(cos ϕω+=t A x )(sin ϕωω+-==t A dtdxv )(cos 222ϕωω+-==t A dtx d a kxF -=221kx E p=)(cos 21 22 ϕω+=t A k pk E E E +=2 21A k =)(sin 2121 222ϕω+==t kA mv E ka,c,e,g 点: 能量最大! b,d,f 点: 能量最小!七、波的相干条件:1. 频率相同;2. 振动方向相同;3.相位差恒定。
八、驻波:是两列波干涉的结果波腹点:振幅最大的点 波节点:振幅最小的点相邻波腹(或波节)点的距离:2λ相邻波腹与波节的距离:λ九、光程:nr L = n:折射率 r :光的几何路程光程是一种折算..,把光在介质中走的路程折算成相同时间....光在真空中走的路程即光程,所以,与光程或光程差联系在一起的波长永远是真空..中的波长0λ。
十、光的干涉:光程差:),2,1,0(2)12(⋅⋅⋅=⎪⎩⎪⎨⎧→+±→±=∆k k k 干涉相消,暗纹干涉相长,明纹λλ十一、杨氏双缝干涉相邻两条明纹(或暗纹)的间距:λndd x '=∆ d ´: 缝与接收屏的距离 d : 双缝间距 λ:光源波长 n :介质的折射率十二、薄膜干涉中反射光2、3的光程差:*22122)2(sin 2λ+-=∆i n n dd : 膜的厚度等号右侧第二项*)2(λ由半波损失引起,当2n 在三种介质中最大或最小时, 有这一项,否则没有这一项。
大学物理(下)1简谐运动:1.1定义:物体运动位移(或角度)符合余弦函数规律,即:;1.2特征:回复力;=令;1.3简谐运动:=1.4描述简谐运动的物理量:I振幅A:物体离开平衡位置时的最大位移;II频率:是单位时间震动所做的次数(周期和频率仅与系统本身的弹性系数和质量有关);III相位:称为初相,相位决定物体的运动状态1.5常数A和的确定:I解析法:当已知t=0时x和v;II旋转矢量法(重点):运用参考圆半径的旋转表示;2单摆和复摆2.1复摆:任意形状的物体挂在光滑水平轴上作微小()的摆动。
I回复力矩;(是物体的转动惯量)II方程:;2.2单摆:单摆只是复摆的特殊情况所以推导方法相同,单摆的惯性矩3求简谐运动周期的方法(1) 建立坐标,取平衡位置为坐标原点;(2) 求振动物体在任一位置所受合力(或合力矩);(3) 根据牛顿第二定律(或转动定律)求出加速度与位移的关系式2a x ω=-4 简谐运动的能量:4.1 简谐运动的动能: ; 4.2 简谐运动的势能: ; 4.3 简谐运动的总能量: ;(说明:①简谐运动强度的标志是A ②振动动能和势能图像的周期为谐振动周期的一半) 5 简谐振动的合成5.1 解析法:①和振幅 ②5.2 旋转矢量法:①和振幅 ②由几何关系求出初相6 波6.1 定义:振动在空间的传播过程;分为横波 纵波;6.2 波传播时的特点:①沿波传播的方向各质点相位依次落后②各质点对应的相位以波速向后传播;6.3 描述波的物理量:I 波长(λ):相位相差2π的两质点之间的距离,反应了波的空间周期性;II 周期(T ):波前进一个波长所需要的时间(常用求解周期的方法 ); III 频率(ν):单位时间内通过某点周期的个数; IV 波速(u ):振动在空间中传播的速度;6.4 波的几何描述I 波线:波的传播方向;II 波面:相同相位的点连成的曲面。
特例—波前(面)6.5 平面简谐波的波动方程I 波方程常见形式一:(波沿x 轴正方向运动,若波沿X 轴反方向运动则把“-”改为“+”) II 波方程常见形式二: π ; III 平面简谐波的速度:; IV 平面简谐波的加速度:V 讨论:i 当x 一定时:某一特定质点---表示在x 处质点的振动方程; ii 当t 一定时: ---表示各点在t 时刻离开平衡位置的位移;iii 当x 和t 都变时:方程表示各个质点在所有位置和时间离开平衡位置时的位移6.6 波的能量I 波的动能等于势能,且在平衡位置时动能和势能最大 II 波的任何一个体积元都在不断地吸收和放出能量,由于是个开放的系统,能量并不守恒;6.7 波的能量密度w (描述能量的空间分布):单位体积中的平均能量密度2212w A ρω=; 6.8 能流P :单位时间内通过某面积S 的能量;平均能流 ;6.9 能流密度I (描述波能量的强弱):通过垂直于波传播方向的平均能流。
大学物理下学期知识点总结.docx恒定磁场一、基本公式1)毕奥-萨伐尔定律dB=2)磁场叠加原理3)磁场中高斯定理(S是闭合曲面)4)安培环路定律(真空中)(介质中)H=BrB=HH=B=r-真空磁导率(4_10-7N/A2)r介质磁导率5)安培定律dF=IdlBsin方向判断:右手四指由Idl的方向经小于角转向B的方向,右螺旋前进的方向即为dFma_的方向6)磁通量匀强磁场中通过平面:7)磁矩若多匝线圈8)磁力矩M=PmBsin=BISsin9)洛伦兹力公式带电粒子受电磁力10)运动电荷产生的磁场二、典型结果1、有限长载流直导线在距其为r的一点产生的磁场2、无限长载流直导线在距其为r的一点产生的磁场3、半限无长载流直导线在距其一端距离为r的一点产生的磁场4、载流圆环在环心产生的磁场5、载流圆弧(已知弧长L和圆心角)在弧心产生的磁场6、长直密绕螺线管内磁场第十一章电磁感应电磁场一、基本公式1)电动势定义2)法拉第电磁感应定律作用:计算闭合回路上的大小和方向方向的判断:首先确定回路绕行方向,如果dBdt0,0,则i=-ddt=-SdBdt0,则表明积分路径是沿着非静电性场强的方向进行的,因此B点电势比A点电势低。
4)感生电动势:产生根源(非静电力)为涡旋电场力或感生电场力公式5)自感:自感系数,若为长l,横截面为S,N匝,介质磁导率为的螺线管,B=NlI;L=N2V(其中V为螺线管体积)感生电动势6)互感:互感系数M,互感磁通量,互感电动势21=-d21dt=-MdI1dt12=-d12dt=-MdI2dt7)磁场能量密度磁场能量一个自感为L,通过电流为I的线圈,其中所储存的磁能为Wm=12LI2=12n2I2V(其中V表示长直螺线管的体积)第十二章机械振动1)谐振动方程:谐振子:,,的求解方法:解析法和旋转矢量法2)同方向同频率简谐振动的合成总位移,合振动解析法,3)振动总能量,振动势能振动动能Ek=12mv2=13kA2sin2(t+)第十章机械波1)若已知波源O点振动方程yo=Acos(t+),则该波的波动方程为2)体积元的能量平均能量密度平均能流密度(波动强度)(u 为波速)平均能流(V为介质体积,为介质长度,S为介质侧面积)3)波的干涉条件:振动方向相同,频率相同和位相差恒定=2干涉加强22r2-r1=2kk=0、1、2A=A1+A2干涉减弱22r2-r1=2k+1k=0、1、2A=A1-A24)驻波含义:振幅相同,沿同一直线上相向传播的两列相干波产生的干涉5)以丛波为例,设两列相干波的波动方程为6)相邻波节间各点位相相同,波节两侧点位相相反。
大物下公式总结一、牛顿运动定律牛顿运动定律是描述物体运动的基本法则,其中包括三个定律。
1.1 牛顿第一定律(惯性定律)牛顿第一定律也称为惯性定律,它描述了没有外力作用时物体的运动状态:若物体静止,则保持静止;若物体匀速直线运动,则保持匀速直线运动。
1.2 牛顿第二定律(运动定律)牛顿第二定律描述了物体运动受力的关系:物体所受合力等于其质量乘以加速度。
数学表达式:F = ma其中,F 表示物体所受合力,m 表示物体的质量,a 表示物体的加速度。
该定律说明了受力和物体的质量对物体加速度的影响,即力与加速度成正比,质量与加速度成反比。
1.3 牛顿第三定律(作用-反作用定律)牛顿第三定律描述了物体作用力和反作用力的关系:作用在物体 A 上的力与物体 A 对物体 B 施加的力大小相等,方向相反。
这是一个关于力的相互作用的定律,说明了力是成对出现的。
当物体 A 对物体B 施加力时,物体 B 同样会对物体 A 施加大小相等、方向相反的反作用力。
二、牛顿引力定律牛顿引力定律用于描述物体间的引力作用。
2.1 牛顿引力定律公式牛顿引力定律公式描述了两个物体间的引力:两个物体间的引力大小与物体质量的乘积成正比,与两物体间距离的平方成反比。
数学表达式:F = G * (m1 * m2) / r^2其中,F 表示引力大小,G 表示引力常数,m1 和 m2 分别表示两个物体的质量,r 表示两物体间的距离。
该定律说明了引力的大小与物体质量和距离的关系,质量越大、距离越近,引力越大。
2.2 引力与质量和距离的关系根据牛顿引力定律的公式,我们可以得出以下结论:•引力与物体质量的乘积成正比,质量越大,引力越大;•引力与两物体间距离的平方成反比,距离越近,引力越大。
三、动能定理动能定理是描述物体运动能量变化的定理。
3.1 动能定理公式动能定理公式描述了物体动能的变化:物体的净动能变化等于物体所受合力在物体运动方向上的作功。
数学表达式:ΔK = W其中,ΔK 表示物体的净动能变化,W 表示合力所作的功。
大物下知识点总结一、力学1. 力的概念及分类2. 牛顿定律3. 动量和动量守恒4. 能量和能量守恒5. 固体力学基础6. 流体力学基础7. 弹性碰撞和非弹性碰撞8. 运动学和动力学二、热学1. 热量和温度的概念2. 熔化和汽化3. 气体热力学基础4. 热传导、对流和辐射5. 热力学定律和循环三、电磁学1. 电荷、电场和电势2. 电流、电阻和电路3. 磁场和磁通量4. 静电场和静磁场5. 电磁感应和法拉第定律6. 电磁波和光波7. 电磁谱和电磁场的辐射与吸收四、光学1. 几何光学基础2. 光的波动理论和干涉、衍射3. 光的偏振和光的色散4. 特殊相对论和光的波粒二象性5. 光的量子力学五、声学1. 声的产生和传播2. 声的特性和吸收、衍射3. Doppler效应和声音的量子特性六、相对论1. 狭义相对论2. 广义相对论3. 引力波和黑洞七、量子力学1. 波粒二象性2. 波函数和薛定谔方程3. 观测原理和测不准原理4. 波函数坍缩和量子纠缠5. 量子力学应用于固体物理和粒子物理6. 量子力学与统计力学的联系八、统计力学1. 统计物理的基本概念2. 统计系综、统计力学中的经典和量子系综3. 热力学极限和统计力学的应用九、凝聚态物理学1. 固体的结构和晶格2. 电子结构和电子在固体中的运动3. 固体的导电性和磁性4. 半导体物理和器件应用5. 超导物理和超导电性十、核物理1. 原子核结构和射线现象2. 放射性衰变和核反应3. 核裂变和核聚变4. 射线与材料相互作用十一、宇宙学1. 宇宙演化和宇宙微波背景辐射2. 星系和星际物质3. 宇宙加速膨胀和暗物质、暗能量4. 宇宙射线及宇宙线与大气相互作用以上是大物下的知识点总结,希望对你有所帮助。
大学物理下册知识点【篇一:大学物理下册知识点】《大学物理》下册复习课复习提纲量子物理电磁学电磁场:b的定义,毕奥-萨伐尔定理,安培环路定理及其计算,高斯定理,载流线圈在均匀磁场中受到的磁力矩,安培力的功,洛仑兹力,带电粒子在均匀磁场中的运动,霍尔效应描述磁介质磁化强度的物理量,有磁介质存在时的安培环路定理,铁磁质电磁感应的基本定律,动生电动势,感生电动势和涡旋电流,自感和互感,磁场能量位移电流,麦克斯韦方程组磁感应强度的定义时,dfidl的方向。
b的另外两种定义方法:(1)运动电荷qv,受到的洛仑兹力:f=qvb (2)载流线圈在磁场中受到作用力的力矩:m=p idldf idl df sin回旋半径:vb,qb 和v无关!匀速直线运动。
应用:分析磁场对称性;选定适当的安培环路。
各电流的正、负: i与l呈右手螺旋时为正值;反之为负值。
对于真空中的稳恒磁场:磁通量通过面元:通过曲面:正法线方向由内向外。
对于闭合曲面,规定:磁场的高斯定理总结:描述稳恒磁场的两条基本定律(1)磁场的高斯定理(2)安培环路定理用安培环路定理计算磁场的条件和方法磁场是无源场(涡旋场)正负的确定:规定回路环形方向,由右手螺旋法则定出积分路径或与磁感线垂直,或与磁感线平行.特殊电流磁场(磁场的叠加、方向的判断) cos(cos方向:右手螺旋法则大小:圆心无限长载流圆柱导体已知:i、r 长直载流圆柱面已知:i、r rb bdl 长直载流螺线管已知:i、n 10.环行载流螺线管 r1r2 11.无限大载流导体薄板注意:电流与电流之间的作用力设有两根平行长直导线,分别通有电流i1和i2,二者间距为d,导线直径甚小于d,试求每根导线单位长度线段受另一根电流导线的磁场作用力。
电流i1在i2处产生的磁场为载有电流i2的导线单位长度线段受力为当i1和i2方向相同时,二者相吸;相反时,则相斥!同理,导线i1单位长度线段受电流i2的磁场作用力也等于这一数值电磁感应小结基本理论 1.理解法拉第电磁感应定律和楞次定律。
大学物理下知识点归纳大学物理是一门研究自然界基础规律的学科,它涉及到多个领域,如力学、电磁学、光学、热学、量子力学等。
在学习大学物理的过程中,有一些重要的知识点需要归纳总结,以下是一些关键的知识点:1.力学:力学是研究物体运动和受力的学科。
其中,牛顿三定律是力学中最基础的定律,包括惯性定律、运动方程和作用反作用定律。
此外,还有质点运动、力的合成与分解、摩擦力、弹性碰撞等内容。
2.电磁学:电磁学是研究电荷与电磁场相互作用的学科。
其中,库伦定律描述了静电场中的电荷相互作用,高斯定理、环路定理和安培定律描述了电场和磁场的分布和相互关系。
此外,静电场和稳恒电流产生的磁场、电磁感应等概念也是电磁学中的重要内容。
3.光学:光学是研究光的传播和光与物质相互作用的学科。
光的传播速度与介质折射率的关系、光的干涉、衍射和偏振等是光学中的重要知识点。
此外,光与物质相互作用产生的色散、吸收和发射也是光学中重要的内容。
4.热学:热学是研究物体和能量转化的学科。
热力学定律、热容量和热传导等是热学中的主要知识点。
此外,理想气体的状态方程、气体的内能和熵以及热机和热泵的工作原理也是热学的重要内容。
5.量子力学:量子力学是研究微观世界的学科。
波粒二象性和不确定性原理是量子力学的核心概念。
此外,玻尔模型、波函数和薛定谔方程、量子力学中的算符和测量等也是量子力学中的重要内容。
6.相对论:相对论是研究高速运动物体的物理学理论。
狭义相对论中的洛伦兹变换、时间膨胀和长度收缩等是相对论的主要知识点。
相对论还涉及到质能关系、黑洞和宇宙学等内容。
以上只是大学物理中的一部分知识点,每个知识点还有更加深入的内容和应用。
要全面掌握大学物理,需要理论与实践相结合,通过课堂学习和实验操作来加深对知识点的理解和应用能力。
同时,还需要通过习题和实验报告的完成来巩固知识点,培养解决问题的能力。
通过不断学习和实践,我们可以更好地理解自然界的规律,为未来的科学研究和技术发展做出贡献。
大学物理下知识点归纳大学物理下知识点归纳静电场知识点:◎掌握库仑定律,掌握电场强度及电场强度叠加原理,掌握点电荷的电场强度公式◎理解电通量的概念,掌握静电场的高斯定理及应用,能计算无限长带电直线、带点平面、带电球面及带电球的场强分布.◎理解静电力做功的特征,掌握电势及电势叠加原理,能计算一些简单电荷分布的电势◎理解电场强度与电势的关系,掌握静电场的环路定理◎理解导体的静电平衡条件,能计算一些简单导体上的电荷分布规律和周围的电场分布◎能进行简单电容器电容的计算(*平行板电容器电容)◎掌握各向同性电介质中D、E的关系及介质中的高斯定理◎掌握平行板电容器储存的静电能的计算重点:叠加原理求电场强度,静电场的高斯定理及应用,电势及电势的计算,静电场的环路定理,简单电容器电容的计算,介质中的高斯定理,电容器储存的静电能稳恒磁场知识点◎掌握毕奥萨伐尔定律,能计算直线电流、圆形电流的磁感应强度◎理解磁通量的概念,掌握稳恒磁场的高斯定理,掌握安培环路定理及其应用◎掌握洛仑兹力和安培力公式,能分析运动电荷在均匀磁场中的受力和运动,了解霍尔效应,掌握载流平面线圈在均匀磁场中的磁矩和力矩计算。
◎掌握磁场强度、各向同性磁介质中H、B的关系及介质中的安培环路定理重点:毕奥萨伐尔定律及计算,安培环路定理及其应用,安培定律及应用,磁力矩,磁介质中的安培环路定理电磁感应知识点:◎掌握法拉第电磁感应定律及应用◎掌握动生电动势及计算、理解感生电场与感生电动势,◎理解自感和互感,能进行简单的自感和互感系数的计算◎掌握磁场能量◎理解位移电流和全电流环路定理◎理解麦克斯韦方程组的积分形式及物理意义重点:法拉第电磁感应定律及应用,动生电动势及计算,磁场能量,麦克斯韦方程组的积分形式扩展阅读:大学物理知识点总结大学物理知识点总结第一章声现象知识归纳1.声音的发生:由物体的振动而产生。
振动停止,发声也停止。
2.声音的传播:声音靠介质传播。
真空不能传声。
大一大学物理下册知识点物理,作为一门自然科学,研究宇宙及其内部发生的规律和现象。
它以数学为工具,通过实验和理论推导,揭示了我们身处的世界的奥秘。
大一大学物理下册是继续探索这些规律和现象的重要阶段,涵盖了广泛而深入的知识。
1. 电磁场理论电磁场理论是大学物理下册中最为重要的内容之一。
它包括静电场和电动力学的理论与实践,解释了电荷如何相互作用,以及电磁场如何传播。
在这一章节中,学生将学习到库仑定律、电场强度、电势和高斯定理等基本概念,理解电荷和电场之间的相互关系。
2. 电磁感应与电磁波电磁感应是由动态的磁场引起的电场的形成。
通过这一章节的学习,学生将了解到法拉第电磁感应定律、楞次定律和旋涡电场的产生机制。
此外,学生还将学习电磁感应的应用,如电动机、发电机和变压器等。
电磁波是电磁场以波的形式传播的现象。
本章节将介绍电磁波的基本特性,包括波长、频率、相速度和群速度等概念。
此外,学生还将了解电磁波的传播性质以及光的本质。
3. 光学光学是研究光的传播和现象的科学。
在本章节中,学生将学习到光的干涉和衍射现象,了解弗罗涅尔衍射和菲涅尔衍射的原理。
此外,学生还将学习到透镜和镜片的光学成像原理,包括薄透镜成像公式和薄透镜组的成像规律。
4. 物质波与原子物理物质波理论是量子力学的基础之一,它描述微观粒子的波动性。
波粒二象性是物质波的核心概念,它揭示了粒子与波的本质统一。
在这一章节中,学生将学习到德布罗意假设,了解电子和中子等微观粒子的波动性质。
此外,学生还将学习到电子在原子中的运动和原子光谱等知识。
5. 核物理与粒子物理核物理是研究原子核的结构和性质的学科。
在本章节中,学生将学习到核强力和核稳定性的原理,揭示了核反应和核衰变的机制。
此外,学生还将学习到放射性同位素的应用,如碳测年法和医学核磁共振等。
粒子物理是研究基本粒子的性质和相互作用的领域。
学生将了解粒子物理学的基本知识,包括标准模型、强电弱相互作用和粒子探测器等。
大物下知识点总结
电磁学:
掌握磁场强度、各向同性磁介质中H、B的关系及介质中的安培环路定理。
理解并应用毕奥萨伐尔定律、安培环路定理、安培定律。
掌握磁力矩、磁介质中的安培环路定理。
理解并掌握法拉第电磁感应定律及其应用。
理解动生电动势的计算,感生电场与感生电动势的概念。
理解自感和互感现象,能进行简单的自感和互感系数的计算。
掌握磁场能量的概念。
理解位移电流和全电流环路定理。
理解麦克斯韦方程组的积分形式及物理意义。
电场与电势:
掌握电场强度的定义和计算方法,理解电场强度的方向和大小。
理解点电荷的电场分布特点。
掌握电势和电势差的定义及计算方法,理解等势面的概念。
理解电场力做功与电势能变化的关系。
电偶极子:
理解电偶极子的定义和性质。
掌握电偶极子在电场中的受力情况和电势分布。
波动光学:
理解光的干涉、衍射和偏振现象及其原理。
掌握光的干涉条纹和衍射图案的特点和解释。
理解光的偏振状态和偏振器件的工作原理。
量子力学基础:
理解量子力学的基本概念和原理,如波粒二象性、不确定性原理等。
掌握原子和分子的量子模型,理解其能级结构和跃迁过程。
了解固体物理中的量子力学应用,如能带理论等。
请注意,这只是一个大
致的总结,具体的知识点可能会因教材版本和授课教师的不同而有所差异。
为了更准确地掌握大学物理下册的知识点,建议直接参考所用教材的目录和具体内容,同时结合课堂讲解和课后习题进行学习和巩固。
大一下学期大物知识点笔记一、力学力学是研究物体受力和运动的学科,是物理学的一个重要分支。
本节主要介绍一些力学中的基本概念和理论。
1. 力和力矩力是改变物体运动状态的原因,用矢量表示,单位是牛顿(N)。
力矩是力对物体的转动效果,是力与力臂的乘积,方向垂直于力的平面,单位是牛顿·米(N·m)。
2. 牛顿三定律牛顿三定律分别是:第一定律(惯性定律)、第二定律(力的基本定律)和第三定律(作用-反作用原理)。
第一定律:物体如果没有外力作用,将保持静止或匀速直线运动。
第二定律:物体受力与加速度成正比,力与加速度的方向相同,力与质量的乘积等于物体的质量。
第三定律:任何一个物体对另一个物体施加力,必然会受到另一个物体对其施加的同大小、反向的力。
3. 动力学动力学是研究物体运动和受力关系的一门学科。
其中包括质点的直线运动和曲线运动、圆周运动以及万有引力等知识点。
4. 动能和功动能是物体由于运动而具有的能量,可以分为动能和势能两种形式。
动能的大小与物体的质量和速度的平方成正比。
功是力对物体所做的功率乘以力的作用时间。
功可以用于描述力对物体做功的大小和效果。
静力学研究物体受力情况下的平衡问题。
静力学中的重要概念包括力的分解、合力、平衡、杠杆原理等。
二、电磁学电磁学是研究电荷、电场、磁场以及它们之间相互作用的学科。
本节将介绍一些常见的电磁学知识点。
1. 静电学静电学研究静止电荷的性质和相互之间的相互作用。
其中主要包括电荷的原子粒子理论、库仑定律、电场、电势、电容等内容。
2. 电流学电流学研究电荷在导体中的流动以及与导体之间的相互作用。
其中主要包括电流、电阻、欧姆定律、功率和电路等内容。
磁学研究磁场和磁荷之间的相互作用。
其中主要包括磁场、磁感应强度、安培定律、洛伦兹力等内容。
4. 电磁感应电磁感应研究导体中的电流与磁场之间的相互转化关系。
其中主要包括法拉第电磁感应定律、自感、互感、变压器等内容。
三、热学热学是研究物体的热现象和能量传递的学科。