高中数学第一章常用逻辑用语阶段复习课课件新人教A版选修1_1
- 格式:ppt
- 大小:9.70 MB
- 文档页数:20
复习课(一) 常用逻辑用语命题及其关系通过选择题、填空题的方式设置一些多知识点、知识跨度大的试题,考查命题及其关系,以及对命题真假的判断.[考点精要]四种命题的相互改写交换原命题的条件和结论,所得的命题是原命题的逆命题;同时否定原命题的条件和结论,所得的命题是原命题的否命题;交换原命题的条件和结论,并且同时否定,所得的命题是原命题的逆否命题.[注意] 互为逆否命题的两个命题,它们具有相同的真假性.[典例] 将下列命题改写成“若p,则q”的形式,并写出它的逆命题、否命题和逆否命题并判断它们的真假.(1)垂直于同一平面的两条直线平行;(2)当mn<0时,方程mx2-x+n=0有实数根.[解] (1)将命题写成“若p,则q”的形式为:若两条直线垂直于同一个平面,则这两条直线平行.它的逆命题、否命题和逆否命题如下:逆命题:若两条直线平行,则这两条直线垂直于同一个平面.(假命题)否命题:若两条直线不垂直于同一个平面,则这两条直线不平行.(假命题)逆否命题:若两条直线不平行,则这两条直线不垂直于同一个平面.(真命题)(2)将命题写成“若p,则q”的形式为:若mn<0,则方程mx2-x+n=0有实数根.它的逆命题、否命题和逆否命题如下:逆命题:若方程mx2-x+n=0有实数根,则mn<0.(假命题)否命题:若mn≥0,则方程mx2-x+n=0没有实数根.(假命题)逆否命题:若方程mx2-x+n=0没有实数根,则mn≥0.(真命题)[类题通法]简单命题真假的判断方法[题组训练]1.命题“若函数f (x )=x 2-ax +3在[1,+∞)上是增函数,则a ≤2”的否命题( ) A .与原命题同为假命题 B .与原命题一真一假 C .为假命题D .为真命题解析:选D 原命题显然为真,原命题的否命题为“若函数f (x )=x 2-ax +3在[1,+∞)上不是增函数,则a >2”,为真命题,故选D.2.下列命题中为真命题的是( ) A .命题“若a >b ,则3a >3b”的逆命题 B .命题“若x 2≤1,则x ≤1”的否命题 C .命题“若x =1,则x 2-x =0”的否命题 D .命题“若a >b ,则1a <1b”的逆否命题解析:选A 对于A ,逆命题是“若3a >3b,则a >b ”,是真命题;对于B ,否命题是“若x 2>1,则x >1”,是假命题,因为x 2>1⇔x >1或x <-1;对于C ,否命题是“若x ≠1,则x 2-x ≠0”,是假命题,因为当x =0时,x 2-x =0;对于D ,逆否命题是“若1a ≥1b,则a ≤b ”,是假命题,如a =1,b =-1.故选A.3.下列说法中错误的个数是( )①命题“余弦函数是周期函数”的否命题是“余弦函数不是周期函数” ②命题“若x >1,则x -1>0”的否命题是“若x ≤1,则x -1≤0” ③命题“两个正数的和为正数”的否命题是“两个负数的和为负数”④命题“x =-4是方程x 2+3x -4=0的根”的否命题是“x =-4不是方程x 2+3x -4=0的根”A .1B .2C .3D .4解析:选C ①错误,否命题是“若一个函数不是余弦函数,则它不是周期函数”;②正确;③错误,否命题是“若两个数不全为正数,则它们的和不为正数”;④错误,否命题是“若一个数不是-4,则它不是方程x 2+3x -4=0的根”.充分条件与必要条件充要条件是数学的重要概念之一,在数学中有着非常广泛的应用,在高考中有着较高的考查频率,其特点是以高中数学的其他知识为载体考查充分条件、必要条件、充要条件的判断.[考点精要]充分条件、必要条件与充要条件(1)如果p ⇒q ,则p 是q 的充分条件,q 是p 的必要条件; (2)如果p ⇒q ,q ⇒p ,则p 是q 的充要条件.[典例] (1)(2017·某某高考)已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4+S 6>2S 5”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件(2)(2017·某某高考)设θ∈R ,则“⎪⎪⎪⎪⎪⎪θ-π12<π12”是“sin θ<12”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件[解析] (1)因为{a n }为等差数列,所以S 4+S 6=4a 1+6d +6a 1+15d =10a 1+21d,2S 5=10a 1+20d ,S 4+S 6-2S 5=d ,所以d >0⇔S 4+S 6>2S 5.(2)法一:由⎪⎪⎪⎪⎪⎪θ-π12<π12,得0<θ<π6,故sin θ<12.由sin θ<12,得-7π6+2k π<θ<π6+2k π,k ∈Z ,推不出“⎪⎪⎪⎪⎪⎪θ-π12<π12”.故“⎪⎪⎪⎪⎪⎪θ-π12<π12”是“sin θ<12”的充分而不必要条件.法二:⎪⎪⎪⎪⎪⎪θ-π12<π12⇒0<θ<π6⇒sin θ<12,而当sin θ<12时,取θ=-π6,⎪⎪⎪⎪⎪⎪-π6-π12=π4>π12. 故“⎪⎪⎪⎪⎪⎪θ-π12<π12”是“sin θ<12”的充分而不必要条件. [答案] (1)C (2)A [类题通法]充要关系的判断方法(1)定义法:直接判断若p则q,若q则p的真假.(2)等价法:利用A⇒B与綈B⇒綈A,B⇒A与綈A⇒綈B,A⇔B与綈B⇔綈A的等价关系,对于条件或结论是否定式的命题,一般运用等价法.(3)利用集合间的包含关系判断:若A⊆B,则A是B的充分条件或B是A的必要条件;若A=B,则A是B的充要条件.[题组训练]1.设四边形ABCD的两条对角线为AC,BD,则“四边形ABCD为菱形”是“AC⊥BD”的( )A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件解析:选A 若四边形ABCD为菱形,则AC⊥BD,反之,若AC⊥BD,则四边形ABCD不一定是菱形,故选A.2.设α,β是两个不同的平面,m是直线且m⊂α,“m∥β”是“α∥β”的( ) A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件解析:选B 当m∥β时,过m的平面α与β可能平行也可能相交,因而m∥β⇒/ α∥β;当α∥β时,α内任一直线与β平行,因为m⊂α,所以m∥β.综上知,“m∥β”是“α∥β”的必要不充分条件.3.对于任意实数x,〈x〉表示不小于x的最小整数,例如〈1.1〉=2,〈-1.1〉=-1,那么“|x-y|<1”是“〈x〉=〈y〉”的( )A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件解析:选B 当x=1.8,y=0.9时,满足|x-y|<1,但〈1.8〉=2,〈0.9〉=1,即〈x〉≠〈y〉;当〈x〉=〈y〉时,必有|x-y|<1,所以“|x-y|<1”是“〈x〉=〈y〉”的必要不充分条件,故选B.含有逻辑联结词、量词的命题的真假,以及全称命题,特称命题的否定.[考点精要]1.含有逻辑联结词的命题与集合之间的关系2.全称命题、特称命题的否定全称命题“∀x ∈M ,p (x )”的否定是“∃x 0∈M ,綈p (x 0)”,特称命题“∃x 0∈M ,p (x 0)”的否定是“∀x ∈M ,綈p (x )”.[典例] (1)已知命题p :∀x 1,x 2∈R ,[f (x 2)-f (x 1)](x 2-x 1)≥0,则綈p 是( ) A .∃x 1,x 2∈R ,[f (x 2)-f (x 1)](x 2-x 1)≤0 B .∀x 1,x 2∈R ,[f (x 2)-f (x 1)](x 2-x 1)≤0 C .∃x 1,x 2∈R ,[f (x 2)-f (x 1)](x 2-x 1)<0 D .∀x 1,x 2∈R ,[f (x 2)-f (x 1)](x 2-x 1)<0(2)已知a 与b 均为单位向量,其夹角为θ,有下列四个命题:p 1:|a +b |>1⇔θ∈⎣⎢⎡⎭⎪⎫0,2π3; p 2:|a +b |>1⇔θ∈⎝⎛⎦⎥⎤2π3,π;p 3:|a -b |>1⇔θ∈⎣⎢⎡⎭⎪⎫0,π3;p 4:|a -b |>1⇔θ∈⎝ ⎛⎦⎥⎤π3,π.其中的真命题是( ) A .p 1,p 4 B .p 1,p 3 C .p 2,p 3D .p 2,p 4[解析] (1)已知全称命题p :∀x 1,x 2∈R ,[f (x 2)-f (x 1)]·(x 2-x 1)≥0,则綈p :∃x 1,x 2∈R ,[f (x 2)-f (x 1)](x 2-x 1)<0,故选C.(2)由|a +b |>1可得:a 2+2a ·b +b 2>1,∵|a |=1,|b |=1,∴a ·b >-12.故θ∈⎣⎢⎡⎭⎪⎫0,2π3.当θ∈⎣⎢⎡⎭⎪⎫0,2π3时,a ·b >-12,|a +b |2=a 2+2a ·b +b 2>1,即|a +b |>1;由|a -b |>1可得:a 2-2a ·b +b 2>1,∵|a |=1,|b |=1,∴a ·b <12.故θ∈⎝ ⎛⎦⎥⎤π3,π,反之也成立.[答案] (1)C (2)A [类题通法]1.判断含有逻辑联结词的命题真假的方法 (1)先确定简单命题p ,q .(2)分别确定简单命题p ,q 的真假. (3)利用真值表判断所给命题的真假. 2.判断含有量词的命题真假的方法(1)全称命题的真假判定:要判定一个全称命题为真,必须对限定集合M 中每一个x 验证 p (x )成立,一般用代数推理的方法加以证明;要判定一个全称命题为假,只需举出一个反例即可.(2)特称命题的真假判定:要判定一个特称命题为真,只要在限定集合M 中,能找到一个x =x 0,使p (x 0)成立即可;否则,这一特称命题为假.(3)全称命题的否定一定是特称命题,特称命题的否定一定是全称命题.首先改变量词,把全称量词改为存在量词,把存在量词改为全称量词,然后把判断词加以否定.[题组训练]1.设命题p :函数y =sin 2x 的最小正周期为π2;命题q :函数y =cos x 的图象关于直线x =π2对称,则下列判断正确的是( )A .p 为真B .綈q 为假C .p ∧q 为假D .p ∨q 为真解析:选C 由题意p 与q 均为假命题,故p ∧q 为假.2.命题“存在x ∈R ,使得x 2+2x +5=0”的否定是________________.解析:这里给出的是一个特称命题,其否定是一个全称命题.等于的否定是不等于. 答案:对任意的x ∈R ,都有x 2+2x +5≠03.已知p :点M (2,3)在直线ax -y +1=0上,q :方程x 2+y 2+x +y +a =0表示圆,p ∨q 是假命题,某某数a 的取值X 围.解:当p 是真命题时,2a -3+1=0,即a =1, 所以当p 是假命题时,a ≠1;当q 是真命题时,1+1-4a >0,即a <12,所以当q 是假命题时,a ≥12.又p ∨q 是假命题,所以p ,q 均为假命题, 所以a ≥12且a ≠1,所以实数a 的取值X 围是⎣⎢⎡⎭⎪⎫12,1∪(1,+∞).1.设x ∈Z ,集合A 是奇数集,集合B 是偶数集.若命题p :∀x ∈A,2x ∈B ,则( ) A .綈p :∃x ∈A,2x ∈B B .綈p :∃x ∉A,2x ∈B C .綈p :∃x ∈A,2x ∉BD .綈p :∀x ∉A,2x ∉B解析:选C 命题p 是全称命题:∀x ∈M ,p (x ),则綈p 是特称命题:∃x ∈M ,綈p (x ).故选C.2.命题p :若ab =0,则a =0;命题q :若a =0,则ab =0,则( ) A .“p 或q ”为假 B .“p 且q ”为真 C .p 真q 假D .p 假q 真解析:选D 由条件易知:命题p 为假命题,命题q 为真命题,故p 假q 真.从而“p 或q ”为真,“p 且q ”为假.3.下列命题中,真命题是( ) A .∃x 0∈R ,e x 0≤0 B .∀x ∈R,2x >x 2C .a +b =0的充要条件是ab=-1 D .a >1,b >1是ab >1的充分条件解析:选D ∵∀x ∈R ,e x >0,∴A 错;∵函数y =2x 与y =x 2的图象有交点,如点(2,2),此时2x=x 2,∴B 错;∵当a =b =0时,a +b =0,而0作分母无意义,∴C 错;a >1,b >1,由不等式可乘性知ab >1,∴D 正确.4.设平面α与平面β相交于直线m ,直线a 在平面α内,直线b 在平面β内,且b ⊥m ,则“α⊥β”是“a ⊥b ”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选A 先证“α⊥β⇒a ⊥b ”.∵α⊥β,α∩β=m ,b ⊂β,b ⊥m ,∴b ⊥α.又∵a ⊂α,∴b ⊥a ;再证“a ⊥b ⇒/ α⊥β”.举反例,当a ∥m 时,由b ⊥m 知a ⊥b ,此时二面角αm β可以为(0,π]上的任意角,即α不一定垂直于β.故选A.5.下列有关命题的说法错误的是( )A .命题“若x 2-1=0,则x =1”的逆否命题为“若x ≠1,则x 2-1≠0” B .“x =1”是“x 2-3x +2=0”的充分不必要条件 C .若集合A ={x |kx 2+4x +4=0}中只有一个元素,则k =1D .对于命题p :∃x 0∈R ,使得x 20+x 0+1<0,则綈p :∀x ∈R ,均有x 2+x +1≥0 解析:选C A 显然正确;当x =1时,x 2-3x +2=0成立,但x 2-3x +2=0时,x =1或x =2,故“x =1”是“x 2-3x +2=0”的充分不必要条件,B 正确;若集合A ={x |kx 2+4x +4=0}中只有一个元素,则k =0或k =1,故C 错误;D 显然正确.6.已知p :m -1<x <m +1,q :(x -2)(x -6)<0,且q 是p 的必要不充分条件,则m 的取值X 围是( )A .(3,5)B .[3,5]C .(-∞,3)∪(5,+∞)D .(-∞,3]∪[5,+∞)解析:选B p :m -1<x <m +1,q :2<x <6.因为q 是p 的必要不充分条件,所以由p 能得到q ,而由q 得不到p ,所以可得⎩⎪⎨⎪⎧m -1>2,m +1≤6或⎩⎪⎨⎪⎧m -1≥2,m +1<6.解得3≤m ≤5.7.命题“在△ABC 中,如果∠C =90°,那么c 2=a 2+b 2”的逆否命题是__________________________________.答案:在△ABC 中,若c 2≠a 2+b 2,则∠C ≠90°8.设p :x >2或x <23;q :x >2或x <-1,则綈p 是綈q 的________条件.解析:綈p :23≤x ≤2.綈q :-1≤x ≤2.因为綈p ⇒綈q ,但綈q ⇒/ 綈p . 所以綈p 是綈q 的充分不必要条件. 答案:充分不必要9.已知命题p :“∀x ∈[1,2],x 2-a ≥0”,命题q :“∃x 0∈R ,x 20+2ax 0+2-a =0”,若命题“p 且q ”是真命题,则实数a 的取值X 围是________.解析:命题p :“∀x ∈[1,2],x 2-a ≥0”为真,则a ≤x 2,x ∈[1,2]恒成立,所以a ≤1. 命题q :“∃x 0∈R ,x 20+2ax 0+2-a =0”为真, 则“4a 2-4(2-a )≥0,即a 2+a -2≥0”,解得a ≤-2或a ≥1. 若命题“p 且q ”是真命题,则实数a 的取值X 围是(-∞,-2]∪{1}. 答案:(-∞,-2]∪{1}10.已知p :x 2-8x -20>0,q :x 2-2x +1-a 2>0,若p 是q 的充分不必要条件,求正实数a 的取值X 围.解:p :x 2-8x -20>0⇔x <-2或x >10, 令A ={x |x <-2或x >10},∵a >0,∴q :x <1-a 或x >1+a , 令B ={x |x <1-a 或x >1+a }, 由题意p ⇒q 且q ⇒/ p ,知A B ,应有⎩⎪⎨⎪⎧a >0,1+a <10,1-a ≥-2或⎩⎪⎨⎪⎧a >0,1+a ≤10,1-a >-2⇒0<a ≤3,∴a 的取值X 围为(0,3].11.已知函数f (x )=⎩⎪⎨⎪⎧-x -1,x <-2,x +3-2≤x ≤12.(1)求函数f (x )的最小值;(2)已知m ∈R ,命题p :关于x 的不等式f (x )≥m 2+2m -2对任意m ∈R 恒成立;q :函数y =(m 2-1)x是增函数.若“p 或q ”为真,“p 且q ”为假,某某数m 的取值X 围.解:(1)作出函数f (x )的图象,可知函数f (x )在(-∞,-2)上单调递减,在⎝ ⎛⎭⎪⎫-2,12上单调递增,故f (x )min =f (-2)=1.(2)对于命题p ,m 2+2m -2≤1, 故-3≤m ≤1; 对于命题q ,m 2-1>1,故m >2或m <- 2.由于“p 或q ”为真,“p 且q ”为假,则p 与q 一真一假.①若p 真q 假,则⎩⎨⎧-3≤m ≤1,-2≤m ≤2,解得-2≤m ≤1.②若p 假q 真,则⎩⎨⎧m >1或m <-3,m <-2或m >2,解得m <-3或m > 2. 故实数m 的取值X 围是(-∞,-3)∪[-2,1]∪(2,+∞).。