3-1-1_行程问题基础题库教师版
- 格式:doc
- 大小:527.00 KB
- 文档页数:14
行程问题例1.A、B两城相距240千米,一辆汽车计划用6小时从A城开到B城,汽车行驶了一半路程,因故障在中途停留了30分钟,如果按原计划到达B城,汽车在后半段路程时速度应加快多少?分析:对于求速度的题,首先一定是考虑用相应的路程和时间相除得到。
解:后半段路程长:240÷2=120(千米)后半段用时为:6÷2-0.5=2.5(小时)后半段行驶速度应为:120÷2.5=48(千米/时)原计划速度为:240÷6=40(千米/时)汽车在后半段加快了:48-40=8(千米/时)。
答:汽车在后半段路程时速度加快8千米/时。
例2.两码头相距231千米,轮船顺水行驶这段路程需要11小时,逆水每小时少行10千米,问行驶这段路程逆水比顺水需要多用几小时?分析:求时间的问题,先找相应的路程和速度。
解:轮船顺水速度为:231÷11=21(千米/时)轮船逆水速度为:21-10=11(千米/时),逆水比顺水多需要的时间为:21-11=10(小时)答:行驶这段路程逆水比顺水需要多用10小时。
例3.汽车以每小时72千米的速度从甲地到乙地,到达后立即以每小时48千米的速度返回到甲地,求该车的平均速度。
分析:求平均速度,就要考虑用总路程除以总时间。
解:设从甲地到乙地距离为S 千米。
则汽车往返用的时间为:S ÷48+S ÷72= + = 平均速度为:2S ÷ =144÷5×2=57.6(千米/时) 答:该车的平均速度为57.6千米/时例4.一辆汽车从甲地出发到300千米外的乙地去,在一开始的120千米内平均 速度为每小时40千米,要想使这辆车从甲地到乙地的平均速度为每小时50千米,剩下的路程应以什么速度行驶?分析:求速度,首先找相应的路程和时间,平均速度说明了总路程和总时间的关系。
解:剩下的路程为300-120=180(千米)计划总时间为:300÷50=6(小时)剩下的路程计划用时为:6-120÷40=3(小时)剩下的路程速度应为:180÷3=60(千米/小时)答:剩下的路程应以60千米/时行驶。
黑龙江省齐齐哈尔市小学数学小学奥数系列3-1-1行程问题(一)姓名:________ 班级:________ 成绩:________亲爱的同学,经过一段时间的学习,你们一定学到不少知识,今天就让我们大显身手吧!一、 (共23题;共115分)1. (5分) (2019三上·永福期中) 看图列式计算.(1)一共有多少个五角星?(2)2. (5分) (2019六上·福州期中) 甲、乙两地相距250km,一辆汽车从甲地开往乙地,行了5小时,行了全程的,这辆汽车行完全程一共需要多少小时?3. (5分) (2018四上·重庆期中) 商店运来苹果橘子各40筐.已知每筐苹果重15千克,每筐橘子重20千克.这两种水果共重多少千克?4. (5分)甲、乙两人星期天一起上街买东西,两人身上所带的钱共计是元.在人民市场,甲买一双运动鞋花去了所带钱的,乙买一件衬衫花去了人民币元.这样两人身上所剩的钱正好一样多.问甲、乙两人原先各带了多少钱?5. (5分) (2020四上·官渡期末) 埃及金字塔是世界七大奇迹之一,雄伟壮观。
经测算一座金字塔高106米,绕塔底一周近1000米,小明3分钟走了156米,照这样计算,21分钟能绕该金字塔走一周吗?6. (5分)商店运来500千克桔子,比香蕉多3箱,已知每箱桔子重20千克,每箱香蕉重26千克,运来的香蕉一共多少千克?7. (5分) (2016四下·甘肃月考) 在一次登山比赛中,王兵上山每分钟走50米,12分钟到达山顶,然后按原路下山,用了8分钟。
8. (5分)看图回答(1)小货车出发3时后,大约在什么位置?(用▲在图上作标记)(2)小货车8:00出发,走完一半路程是什么时间?(3)小货车要几时才能到达乙地?9. (5分) (四上·南浔期末) 甲、乙两车同时从A地出发开往B地。
甲车6小时到达,乙车8小时到达。
甲车比乙车每小时快24千米。
河南省南阳市数学小学奥数系列3-1-1行程问题(二)姓名:________ 班级:________ 成绩:________亲爱的小朋友们,这一段时间的学习,你们收获怎么样呢?今天就让我们来检验一下吧!一、 (共23题;共115分)1. (5分) (2020四下·景县期末) 星期日,张老师骑自行车去旅行。
上午骑了4.25小时,里程表记录的骑行路程是80.3千米;下午骑了4.75小时,里程表记录的骑行路程是90.7千米。
张老师这一天平均每小时骑行多少千米?)2. (5分)爸爸开车从北京去上海,他经过13.8小时到达上海。
已知爸爸的平均速度是83.5千米/时,上海到北京的距离是多少千米?3. (5分) (2020五上·大冶期末) 如图,学校在小英家和小华家之间,每天放学回家,小英要走15分钟,小华要走10分钟。
已知小英每分钟走70米,小华每分钟走多少米?(列方程解答)4. (5分) (2019六下·竞赛) 甲、乙两地相距6720米,某人从甲地步行去乙地,前一半时间平均每分钟行80米,后一半时间平均每分钟行60米.问他走后一半路程用了多少分钟?5. (5分) (2019四上·涧西期末) 李叔叔可选用的交通工具的速度分别是:客车60千米/时,汽车(高速)80千米/时,火车120千米/时,假如三种交通工具从洛阳回漯河的路程都是240千米,△?(请提出一个问题并解答)6. (5分) (2019六下·竞赛) 一个人站在铁道旁,听见行近来的火车汽笛声后,再过57秒钟火车经过他面前.已知火车汽笛时离他1360米;(轨道是笔直的)声速是每秒钟340米,求火车的速度?(得数保留整数)7. (5分)一列火车以每分600米的速度通过一座长2200米的大桥,如果火车全长200米,从车头上桥到车尾离开大桥,共需多长时间?8. (5分) (2020四上·西安期末) 一辆汽车从甲地开往乙地,去时每小时行70千米,6小时到达,返回时多用了1小时,返回时的速度是多少?9. (5分)(1)下面是四个城市之间的位置关系,请你制做一张它们之间的里程表.(单位:千米)(2)下面是某车站出示的列车票价表:制出A—D部分站间的票价表,(画在右上侧)(3)如果列车由A市早7:10出发,次日早6:20到达D市中间经过了多长时间?平均运行速度是多少?(保留整数)10. (5分)(2018·长沙) 王叔叔每天上、下班,既可以选择开车,也可以选择乘坐地铁,如果开车,按每小时24千米的速度行驶,单程需要40分钟;如果乘坐地铁,单程票价是4元,大约需要42分钟.(1)王叔叔家到单位的路程是多少千米?(2)王叔叔开车,每行驶1千米要消耗0.8元的汽油。
1. 会解一些简单的方程.2. 掌握寻找等量关系的方法来构建方程.比例的知识是小学数学最后一个重要内容,从某种意义上讲仿佛扮演着一个小学“压轴知识点”的角色。
从一个工具性的知识点而言,比例在解很多应用题时有着“得天独厚”的优势,往往体现在方法的灵活性和思维的巧妙性上,使得一道看似很难的题目变得简单明了。
比例的技巧不仅可用于解行程问题,对于工程问题、分数百分数应用题也有广泛的应用。
我们常常会应用比例的工具分析2个物体在某一段相同路线上的运动情况,我们将甲、乙的速度、时间、路程分别用,,v v t t s s 乙乙乙甲甲甲,;;来表示,大体可分为以下两种情况: 1. 当2个物体运行速度在所讨论的路线上保持不变时,经过同一段时间后,他们走过的路程之比就等于他们的速度之比。
s v t s v t =⨯⎧⎨=⨯⎩甲甲甲乙乙乙,这里因为时间相同,即t t t ==乙甲,所以由s s t t v v ==甲乙乙甲乙甲, 得到s s t v v ==甲乙乙甲,s v s v =甲甲乙乙,甲乙在同一段时间t 内的路程之比等于速度比 2. 当2个物体运行速度在所讨论的路线上保持不变时,走过相同的路程时,2个物体所用的时间之比等于他们速度的反比。
s v t s v t =⨯⎧⎨=⨯⎩甲甲甲乙乙乙,这里因为路程相同,即s s s ==乙甲,由s v t s v t =⨯=⨯乙乙乙甲甲甲, 得s v t v t =⨯=⨯乙乙甲甲,v t v t =甲乙乙甲,甲乙在同一段路程s 上的时间之比等于速度比的反比。
模块一:比例初步——利用简单倍比关系进行解题【例 1】 (难度等级 ※※※)上午8点8分,小明骑自行车从家里出发,8分钟后,爸爸骑摩托车去追他,在离家4千米的地方追上了他.然后爸爸立即回家,到家后又立刻回头去追小明,再追上小明的时候,离家恰好是8千米,这时是几点几分?知识精讲 教学目标比例解行程问题【解析】画一张简单的示意图:图上可以看出,从爸爸第一次追上到第二次追上,小明走了8-4=4(千米).而爸爸骑的距离是4+8=12(千米).这就知道,爸爸骑摩托车的速度是小明骑自行车速度的12÷4=3(倍).按照这个倍数计算,小明骑8千米,爸爸可以骑行8×3=24(千米).但事实上,爸爸少用了8分钟,骑行了4+12=16(千米).少骑行24-16=8(千米).摩托车的速度是8÷8=1(千米/分),爸爸骑行16千米需要16分钟.8+8+16=32.所以这时是8点32分。
安徽省黄山市数学小学奥数系列3-1-1行程问题(二)姓名:________ 班级:________ 成绩:________亲爱的小朋友们,这一段时间的学习,你们收获怎么样呢?今天就让我们来检验一下吧!一、 (共23题;共115分)1. (5分)(2019·邢台) 某工程队修一条路,12天共修780米,还剩下325米没有修。
照这样速度,修完这条公路,共需要多少天?(比例解)2. (5分) (2019三下·峄城期末) 丽丽从家到学校,每分钟走60米,8分钟到达,如果要用6分钟到达,那么她平均每分钟要走多少米?3. (5分) (四上·拱墅期末) 杭州湾跨海大桥全长约36千米,一辆小轿车上桥后3分钟行了4800米,照这样的速度,这辆小轿车20分钟能通过大桥吗?4. (5分) (2019六下·竞赛) 甲、乙两地相距6720米,某人从甲地步行去乙地,前一半时间平均每分钟行80米,后一半时间平均每分钟行60米.问他走后一半路程用了多少分钟?5. (5分)下图是两位同学的家与他们学校的位置图,请你看回答问题。
(1)若贝贝家到学校的实际距离是600米,则这幅图的比例尺是多少?(2)上学时,若丽丽共用了 12分钟,则她每分钟走多少米?6. (5分) (2020四上·龙华期末) 涛涛要从艺术楼到教学楼,再到操场。
(1)请你画出涛涛从艺术楼去教学楼,再到操场最近的路。
(2)从艺术楼去教学楼,再到操场最近的距离是186米。
如果涛涛平均每分走62米,从艺术楼沿最近的路先到教学楼再到操场要多少分?7. (5分) (2020四上·新会期中) 王叔叔开车从江门去广州购物,去的时候用了3小时,去时的速度是40千米/时,返回时用了2小时。
从广州返回江门时平均每小时行多少千米?8. (5分) (2019三下·沂源期末) 甲车的速度是80千米/时,乙车的速度是75千米/时,两车同时从车站分别向东、西两个方向开出,3小时后两车相距多少千米?(先画图整理条件和问题,再解答)9. (5分) (2020五上·雅安期末) 芳芳说:我16秒跑了76.8米;洋洋说:我32秒跑了150.4米.根据上述信息提出一个用三步计算的数学问题,并解答.10. (5分) (2019六下·竞赛) 某条道路上,每隔900米有一个红绿灯.所有的红绿灯都按绿灯30秒、黄灯5秒、红灯25秒的时间周期同时重复变换.一辆汽车通过第一个红绿灯后,以每小时多少千米的速度行驶,可以在所有的红绿灯路口都遇到绿灯?11. (5分)甲车每小时行48千米,乙车每小时行56千米,两车从相距12千米的两地同时背向而行,几小时后两车相距272千米?12. (5分) (2019六下·竞赛) 一个人站在铁道旁,听见行近来的火车汽笛声后,再过57秒钟火车经过他面前.已知火车汽笛时离他1360米;(轨道是笔直的)声速是每秒钟340米,求火车的速度?(得数保留整数)13. (5分) (2019六下·竞赛) 一个人从甲地去乙地,骑自行车走完全程的一半时,自行车坏了,又无法修理,只好推车步行到乙地. 骑车时每小时行12千米,步行时每小时4千米,这个人走完全程的平均速度是多少?14. (5分) (2018五上·阳江月考) 一条环形跑道长600米,甲练习骑自行车,平均每分钟行550米,乙练习长跑平均每分钟跑250米.两人同时从同一地点同向出发,经过多少分钟甲从后面追上乙?15. (5分)(2020·成都模拟) 甲乙两车同时从两地相向而行,前4小时甲行了全程的,乙行了全程的少12千米,两车又行了6小时,在途中相遇,两地相距多少千米?16. (5分)石宝村修一条640米的水渠,每天修92米,大约多少天可以修完?17. (5分)(2019·上杭) 看图列方程求解.18. (5分) (2020五上·镇平期末) 一头大象的体重比一匹马体重的4倍还多300千克,大象的体重是4.5吨,马的体重是多少?(用方程解)19. (5分) (2020四下·河池期末) 火车5小时行驶475千米,汽车5小时行驶375千米,火车平均每小时比汽车平均每小时快多少千米?20. (5分) (2020五上·桐梓期末) 一列长950米的火车以每秒钟15米的速度通过长度是4270米的凉风垭隧道,这列火车从车头进隧道至车尾出隧道需要几分钟?21. (5分) (2019六下·竞赛) 两列火车从相距千米的两城相向而行,甲列车每小时行千米,乙列车每小时行千米,小时后,甲、乙两车还相距多少千米?22. (5分) (2020三上·宜昌期末) 仔细阅读下面相关信息,然后解答后面相关问题.寒假期间,小丽一家准备先坐动车到武汉小姨家会合,然后相约一起乘坐客船到南京看望外婆.下表是宜昌到武汉的动车时刻表以及武汉到南京的里程表.始发站﹣到达站出发时间﹣到站时间里程/千米宜昌东﹣武汉09:45﹣12:12328武汉﹣九江/269武汉﹣芜湖/637武汉﹣南京/733在外婆家呆了两天,小丽一家准备回爸爸老家山洼村过年.他们从南京出发,要先乘5时的火车,到达爸爸家乡车站,再乘3时的汽车就能到达山洼村了.(1)动车从宜昌到武汉一共行驶了________时________分.(2)九江到芜湖有多少千米?(3) 733﹣269求的是哪两个城市之间的航程?画一画,然后写出来.(4)从南京到山洼村共有多少千米?23. (5分)下面是小东家、小华家、学校和公园的位置图.(1)小东家到公园有多少米?(2)如果小华每分钟走80米,从家到学校需要多少分钟?(3)小东和小华同时从学校回家.小东每分钟走60米,小华每分钟走70米,4分钟后,两人相距多远?参考答案一、 (共23题;共115分)1-1、2-1、3-1、4-1、5-1、5-2、6-1、6-2、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、19-1、20-1、21-1、22-1、22-2、22-3、22-4、23-1、23-2、23-3、。
三亚市小学数学小学奥数系列3-1-1行程问题(二)姓名:________ 班级:________ 成绩:________亲爱的同学,经过一段时间的学习,你们一定学到不少知识,今天就让我们大显身手吧!一、 (共23题;共115分)1. (5分) (2019四上·临海期末) 明明一家利用双休日骑车去郊游。
去时的速度是12千米/时,用了2小时到达目的地。
回来时比去时每小时慢4千米。
返回时用了几小时?2. (5分) (2019四上·遵化期末) 一位司机开车从甲地到乙地,4小时行驶了288千米,照这样的速度计算,这位司机行驶648千米需要多少小时?3. (5分)刘叔叔从济南出发到徐州送货,前3小时的速度是60千米/时,后2小时的速度是55千米/时。
从济南到徐州刘叔叔一共行驶了多少千米?4. (5分)下面是小东家、小华家、学校和公园的位置图.(1)小东家到公园有多少米?(2)如果小华每分钟走80米,从家到学校需要多少分钟?(3)小东和小华同时从学校回家.小东每分钟走60米,小华每分钟走70米,4分钟后,两人相距多远?5. (5分) (2020五上·达川期末) 五年级学生去铁山开展研学活动,去时平均每小时行25千米,需要1.2小时,回来时每小时多行5千米,需要几小时?6. (5分) (2020四上·石景山期末) 看路牌解答:(1)长途客车的速度是50千米/时,它还需要多长时间才能到北京?(2)一辆小轿车司机看到路牌后,3小时到达了天津,它的速度是多少?(3)一辆货车的速度是43千米/时,过8小时它能否到达石家庄?7. (5分) (2019四上·临河期末) 小乐每分钟走65米,小红每分钟走60米.小乐从家到学校一共520米,小红从家到学校比小乐多走5分钟,小红家离学校多少米?8. (5分)(1)下面是四个城市之间的位置关系,请你制做一张它们之间的里程表.(单位:千米)(2)下面是某车站出示的列车票价表:制出A—D部分站间的票价表,(画在右上侧)(3)如果列车由A市早7:10出发,次日早6:20到达D市中间经过了多长时间?平均运行速度是多少?(保留整数)9. (5分)如图是小明早上从家出发到学校的路程与时间关系图,你能描述一下他行进的具体过程吗?10. (5分)(2018·江苏模拟) 甲、乙两车分别从A、B两地同时出发,甲车匀速由A地前往B地,到达B 地后立即匀速返回A地,返回速度是原速度的1.5倍;乙车匀速由B地前往A地。
小学奥数行程问题(教师版)本讲旨在综合训练行程问题,学生需要掌握速度的概念和速度×时间=路程这组数量关系,并应用它去解决问题。
同时,通过本讲,学生将感受到人类创造交通工具的智慧和自然界的多姿多彩。
行程问题常用的解题方法有以下几种:1.公式法:根据常用的行程问题的公式进行求解,需要熟悉公式的原形和各种变形形式,并能够推知需要的条件;2.图示法:在复杂的行程问题中,常用示意图作为辅助工具,包括线段图和折线图,重点在折返、相遇、追及的地点;3.比例法:在只知道和差、比例时,用比例法可求得具体数值;4.分段法:在非匀速即分段变速的行程问题中,通常把不匀速的运动分为匀速的几段,在每一段中用匀速问题的方法去分析,然后再把结果结合起来;5.方程法:在关系复杂、条件分散的题目中,设条件关系最多的未知量为未知数,抓住重要的等量关系列方程常常可以顺利求解。
例题1:甲、乙两人分别从相距35.8千米的两地出发,相向而行。
甲每小时行4千米,但每行30分钟就休息5分钟;乙每小时行12千米,则经过2小时19分的时候两人相遇。
解题思路:经过2小时15分钟的时候,甲实际行了2小时,行了8千米,乙则行了27千米,两人还相距0.8千米,此时甲开始休息,乙再行4分钟就能与甲相遇。
所以经过2小时19分的时候两人相遇。
例题2:龟兔赛跑,全程6千米,兔子每小时跑15千米,乌龟每小时跑3千米,乌龟不停的跑,但兔子边跑边玩。
问它们谁胜利了?胜利者到终点时,另一个距离终点还有多远?解题思路:兔子跑1分钟后玩20分钟,跑2分钟后玩20分钟,跑3分钟后玩20分钟……可以发现,兔子每跑1分钟,乌龟就会跑3分钟,因此兔子跑完全程需要2小时,而乌龟需要6小时。
所以兔子胜利了,当兔子到达终点时,乌龟还有4千米的路程未到达终点。
1.乌龟和兔子比赛,乌龟跑完全程需要2小时,兔子边跑边玩,一共跑了20分钟,跑了5千米。
乌龟胜利了,领先兔子1千米。
2.邮递员走了20千米的上坡路和下坡路,共用时9小时。
小学奥数系列3-1-1行程问题(二)一、1. 从前有座山,山上有座庙,庙里有个老和尚会讲故事,王先生开车去拜访这位老和尚,汽车上山以30千米/时的速度,到达山顶后以60千米/时的速度下山.求该车的平均速度.2. 某人上山速度为每小时8千米,下山的速度为每小时12千米,问此人上下山的平均速度是多少?3. 胡老师骑自行车过一座桥,上桥速度为每小时12千米,下桥速度为每小时24千米,而且上桥与下桥所经过的路程相等,中间也没有停顿,问这个人骑车过这座桥的平均速度是多少?4. 小明去爬山,上山时每时行2.5千米,下山时每时行4千米,往返共用3.9时。
小明往返一趟共行了多少千米?5. 小明上午九点上山,每小时3千米,在山顶休息1小时候开始下山,每小时4千米,下午一点半到达山下,问他共走了多少千米.6. 小明从甲地到乙地,去时每时走2千米,回来时每时走3千米,来回共用了5小时.小明去时用了多长时间?7. 小明从甲地到乙地,去时每时走2千米,回来时每时走3千米,来回共用了15小时.小明去时用了多长时间?8. 小王每天用每小时15千米的速度骑车去学校,这一天由于逆风,开始三分之一路程的速度是每小时10千米,那么剩下的路程应该以怎样的速度才能与平时到校所用的时间相同9. 有一座桥,过桥需要先上坡,再走一段平路,最后下坡,并且上坡、平路及下坡的路程相等。
某人骑自行车过桥时,上坡、走平路和下坡的速度分别为4米/秒、6米/秒和8米/秒,求他过桥的平均速度。
10. 有一座桥,过桥需要先上坡,再走一段平路,最后下坡,并且上坡、平路及下坡的路程相等.某人骑电动车过桥时,上坡、走平路和下坡的速度分别为11米/秒、22米/秒和33米/秒,求他过桥的平均速度.11. 一只蚂蚁沿等边三角形的三条边由A点开始爬行一周. 在三条边上它每分钟分别爬行50cm,20cm,40cm(如图).它爬行一周平均每分钟爬行多少厘米?12. 赵伯伯为了锻炼身体,每天步行3小时,他先走平路,然后上山,最后又沿原路返回.假设赵伯伯在平路上每小时行4千米,上山每小时行3千米,下山每小时行6千米,在每天锻炼中,他共行走多少千米?13. 张师傅开汽车从A到B为平地(见下图),车速是36千米/时;从B到C为上山路,车速是28千米/时;从C到D为下山路,车速是42千米/时. 已知下山路是上山路的2倍,从A到D全程为72千米,张师傅开车从A到D共需要多少时间?14. 老王开汽车从A到B为平地(见右图),车速是30千米/时;从B到C为上山路,车速是22.5千米/时;从C到D为下山路,车速是36千米/时. 已知下山路是上山路的2倍,从A到D全程为72千米,老王开车从A到D共需要多少时间?15. 小明从家到学校有两条一样长的路,一条是平路,另一条是一半上坡路、一半下坡路.小明上学走两条路所用的时间一样多.已知下坡的速度是平路的2倍,那么平路的速度是上坡的多少倍?16. 王师傅驾车从甲地开往乙地交货.如果他往返都以每小时60千米的速度行驶,正好可以按时返回甲地.可是,当到达乙地时,他发现从甲地到乙地的速度只有每小时50千米.如果他想按时返回甲地,他应以多大的速度往回开?17. 解放军某部开往边境,原计划需要行军18天,实际平均每天比原计划多行12千米,结果提前3天到达,这次共行军多少千米?18. 某人要到 60千米外的农场去,开始他以 6千米/时的速度步行,后来有辆速度为18千米/时的拖拉机把他送到了农场,总共用了6小时.问:他步行了多远?19. 小明每天早晨6:50从家出发,7:20到校,老师要求他明天提早6分钟到校。
第一讲行程问题走路、行车、一个物体的移动,总是要涉及到三个数量:距离走了多远,行驶多少千米,移动了多少米等等;速度在单位时间内例如1小时内行走或移动的距离;时间行走或移动所花时间.这三个数量之间的关系,可以用下面的公式来表示:距离=速度×时间很明显,只要知道其中两个数量,就马上可以求出第三个数量.从数学上说,这是一种最基本的数量关系,在小学的应用题中,这样的数量关系也是最常见的,例如总量=每个人的数量×人数.工作量=工作效率×时间.因此,我们从行程问题入手,掌握一些处理这种数量关系的思路、方法和技巧,就能解其他类似的问题.当然,行程问题有它独自的特点,在小学的应用题中,行程问题的内容最丰富多彩,饶有趣味.它不仅在小学,而且在中学数学、物理的学习中,也是一个重点内容.因此,我们非常希望大家能学好这一讲,特别是学会对一些问题的思考方法和处理技巧.这一讲,用5千米/小时表示速度是每小时5千米,用3米/秒表示速度是每秒3米一、追及与相遇有两个人同时在行走,一个走得快,一个走得慢,当走得慢的在前,走得快的过了一些时间就能追上他.这就产生了“追及问题”.实质上,要算走得快的人在某一段时间内,比走得慢的人多走的距离,也就是要计算两人走的距离之差.如果设甲走得快,乙走得慢,在相同时间内,甲走的距离-乙走的距离=甲的速度×时间-乙的速度×时间=甲的速度-乙的速度×时间.通常,“追及问题”要考虑速度差.例1小轿车的速度比面包车速度每小时快6千米,小轿车和面包车同时从学校开出,沿着同一路线行驶,小轿车比面包车早10分钟到达城门,当面包车到达城门时,小轿车已离城门9千米,问学校到城门的距离是多少千米解:先计算,从学校开出,到面包车到达城门用了多少时间.此时,小轿车比面包车多走了9千米,而小轿车与面包车的速度差是6千米/小时,因此所用时间=9÷6=小时.小轿车比面包车早10分钟到达城门,面包车到达时,小轿车离城门9千米,说明小轿车的速度是面包车速度是54-6=48千米/小时.城门离学校的距离是48×=72千米.答:学校到城门的距离是72千米.例2小张从家到公园,原打算每分种走50米.为了提早10分钟到,他把速度加快,每分钟走75米.问家到公园多远解一:可以作为“追及问题”处理.假设另有一人,比小张早10分钟出发.考虑小张以75米/分钟速度去追赶,追上所需时间是50×10÷75-50=20分钟·因此,小张走的距离是75×20=1500米.答:从家到公园的距离是1500米.还有一种不少人采用的方法.家到公园的距离是一种解法好不好,首先是“易于思考”,其次是“计算方便”.那么你更喜欢哪一种解法呢对不同的解法进行比较,能逐渐形成符合你思维习惯的解题思路.例3一辆自行车在前面以固定的速度行进,有一辆汽车要去追赶.如果速度是30千米/小时,要1小时才能追上;如果速度是35千米/小时,要40分钟才能追上.问自行车的速度是多少解一:自行车1小时走了30×1-已超前距离,自行车40分钟走了自行车多走20分钟,走了因此,自行车的速度是答:自行车速度是20千米/小时.解二:因为追上所需时间=追上距离÷速度差1小时与40分钟是3∶2.所以两者的速度差之比是2∶3.请看下面示意图:马上可看出前一速度差是15.自行车速度是35-15=20千米/小时.解二的想法与第二讲中年龄问题思路完全类同.这一解法的好处是,想清楚后,非常便于心算.例4上午8点8分,小明骑自行车从家里出发,8分钟后,爸爸骑摩托车去追他,在离家4千米的地方追上了他.然后爸爸立即回家,到家后又立刻回头去追小明,再追上小明的时候,离家恰好是8千米,这时是几点几分解:画一张简单的示意图:图上可以看出,从爸爸第一次追上到第二次追上,小明走了8-4=4千米.而爸爸骑的距离是4+8=12千米.这就知道,爸爸骑摩托车的速度是小明骑自行车速度的12÷4=3倍.按照这个倍数计算,小明骑8千米,爸爸可以骑行8×3=24千米.但事实上,爸爸少用了8分钟,骑行了4+12=16千米.少骑行24-16=8千米.摩托车的速度是1千米/分,爸爸骑行16千米需要16分钟.8+8+16=32.答:这时是8点32分.下面讲“相遇问题”.小王从甲地到乙地,小张从乙地到甲地,两人在途中相遇,实质上是小王和小张一起走了甲、乙之间这段距离.如果两人同时出发,那么甲走的距离+乙走的距离=甲的速度×时间+乙的速度×时间=甲的速度+乙的速度×时间.“相遇问题”,常常要考虑两人的速度和.例5小张从甲地到乙地步行需要36分钟,小王骑自行车从乙地到甲地需要12分钟.他们同时出发,几分钟后两人相遇解:走同样长的距离,小张花费的时间是小王花费时间的36÷12=3倍,因此自行车的速度是步行速度的3倍,也可以说,在同一时间内,小王骑车走的距离是小张步行走的距离的3倍.如果把甲地乙地之间的距离分成相等的4段,小王走了3段,小张走了1段,小张花费的时间是36÷3+1=9分钟.答:两人在9分钟后相遇.例6小张从甲地到乙地,每小时步行5千米,小王从乙地到甲地,每小时步行4千米.两人同时出发,然后在离甲、乙两地的中点1千米的地方相遇,求甲、乙两地间的距离.解:画一张示意图离中点1千米的地方是A点,从图上可以看出,小张走了两地距离的一半多1千米,小王走了两地距离的一半少1千米.从出发到相遇,小张比小王多走了2千米小张比小王每小时多走5-4千米,从出发到相遇所用的时间是2÷5-4=2小时.因此,甲、乙两地的距离是5+4×2=18千米.本题表面的现象是“相遇”,实质上却要考虑“小张比小王多走多少”岂不是有“追及”的特点吗对小学的应用题,不要简单地说这是什么问题.重要的是抓住题目的本质,究竟考虑速度差,还是考虑速度和,要针对题目中的条件好好想一想.千万不要“两人面对面”就是“相遇”,“两人一前一后”就是“追及”.请再看一个例子.例7甲、乙两车分别从A,B两地同时出发,相向而行,6小时后相遇于C点.如果甲车速度不变,乙车每小时多行5千米,且两车还从A,B两地同时出发相向而行,则相遇地点距C点12千米;如果乙车速度不变,甲车每小时多行5千米,且两车还从A,B两地同时出发相向而行,则相遇地点距C点16千米.求A,B两地距离.解:先画一张行程示意图如下设乙加速后与甲相遇于D点,甲加速后与乙相遇于E点.同时出发后的相遇时间,是由速度和决定的.不论甲加速,还是乙加速,它们的速度和比原来都增加5千米,因此,不论在D点相遇,还是在E点相遇,所用时间是一样的,这是解决本题的关键.下面的考虑重点转向速度差.在同样的时间内,甲如果加速,就到E点,而不加速,只能到D点.这两点距离是12+16=28千米,加速与不加速所形成的速度差是5千米/小时.因此,在D点或E点相遇所用时间是28÷5=小时.比C点相遇少用=小时.甲到达D,和到达C点速度是一样的,少用小时,少走12千米,因此甲的速度是12÷=30千米/小时.同样道理,乙的速度是16÷=40千米/小时.A到B距离是30+40×6=420千米.答:A,B两地距离是420千米.很明显,例7不能简单地说成是“相遇问题”.例8如图,从A到B是1千米下坡路,从B到C是3千米平路,从C到D是2.5千米上坡路.小张和小王步行,下坡的速度都是6千米/小时,平路速度都是4千米/小时,上坡速度都是2千米/小时.问:1小张和小王分别从A,D同时出发,相向而行,问多少时间后他们相遇2相遇后,两人继续向前走,当某一个人达到终点时,另一人离终点还有多少千米解:1小张从A到B需要1÷6×60=10分钟;小王从D到C也是下坡,需要÷6×60=25分钟;当小王到达C点时,小张已在平路上走了25-10=15分钟,走了因此在B与C之间平路上留下3-1=2千米由小张和小王共同相向而行,直到相遇,所需时间是2÷4+4×60=15分钟.从出发到相遇的时间是25+15=40分钟.2相遇后,小王再走30分钟平路,到达B点,从B点到A点需要走1÷2×60=30分钟,即他再走60分钟到达终点.小张走15分钟平路到达D点,45分钟可走小张离终点还有千米.答:40分钟后小张和小王相遇.小王到达终点时,小张离终点还有1千米. 二、环形路上的行程问题人在环形路上行走,计算行程距离常常与环形路的周长有关.例9小张和小王各以一定速度,在周长为500米的环形跑道上跑步.小王的速度是180米/分.1小张和小王同时从同一地点出发,反向跑步,75秒后两人第一次相遇,小张的速度是多少米/分2小张和小王同时从同一点出发,同一方向跑步,小张跑多少圈后才能第一次追上小王解:175秒分.两人相遇,也就是合起来跑了一个周长的行程.小张的速度是500÷=220米/分.2在环形的跑道上,小张要追上小王,就是小张比小王多跑一圈一个周长,因此需要的时间是500÷220-180=分.220×÷500=圈.答:1小张的速度是220米/分;2小张跑圈后才能追上小王.例10如图,A、B是圆的直径的两端,小张在A点,小王在B点同时出发反向行走,他们在C点第一次相遇,C离A点80米;在D点第二次相遇,D点离B点6O米.求这个圆的周长.解:第一次相遇,两人合起来走了半个周长;第二次相遇,两个人合起来又走了一圈.从出发开始算,两个人合起来走了一周半.因此,第二次相遇时两人合起来所走的行程是第一次相遇时合起来所走的行程的3倍,那么从A到D的距离,应该是从A到C距离的3倍,即A到D是80×3=240米.240-60=180米.180×2=360米.答:这个圆的周长是360米.在一条路上往返行走,与环行路上行走,解题思考时极为类似,因此也归入这一节.例11甲村、乙村相距6千米,小张与小王分别从甲、乙两村同时出发,在两村之间往返行走到达另一村后就马上返回.在出发后40分钟两人第一次相遇.小王到达甲村后返回,在离甲村2千米的地方两人第二次相遇.问小张和小王的速度各是多少解:画示意图如下:如图,第一次相遇两人共同走了甲、乙两村间距离,第二次相遇两人已共同走了甲、乙两村间距离的3倍,因此所需时间是40×3÷60=2小时.从图上可以看出从出发至第二次相遇,小张已走了6×2-2=10千米.小王已走了6+2=8千米.因此,他们的速度分别是小张10÷2=5千米/小时,小王8÷2=4千米/小时.答:小张和小王的速度分别是5千米/小时和4千米/小时.例12小张与小王分别从甲、乙两村同时出发,在两村之间往返行走到达另一村后就马上返回,他们在离甲村3.5千米处第一次相遇,在离乙村2千米处第二次相遇.问他们两人第四次相遇的地点离乙村多远相遇指迎面相遇解:画示意图如下.第二次相遇两人已共同走了甲、乙两村距离的3倍,因此张走了×3=千米.从图上可看出,第二次相遇处离乙村2千米.因此,甲、乙两村距离是=千米.每次要再相遇,两人就要共同再走甲、乙两村距离2倍的路程.第四次相遇时,两人已共同走了两村距离3+2+2倍的行程.其中张走了×7=千米,=++千米.就知道第四次相遇处,离乙村千米.答:第四次相遇地点离乙村1千米.下面仍回到环行路上的问题.例13绕湖一周是24千米,小张和小王从湖边某一地点同时出发反向而行.小王以4千米/小时速度每走1小时后休息5分钟;小张以6千米/小时速度每走50分钟后休息10分钟.问:两人出发多少时间第一次相遇解:小张的速度是6千米/小时,50分钟走5千米我们可以把他们出发后时间与行程列出下表:12+15=27比24大,从表上可以看出,他们相遇在出发后2小时10分至3小时15分之间.出发后2小时10分小张已走了此时两人相距24-8+11=5千米.由于从此时到相遇已不会再休息,因此共同走完这5千米所需时间是5÷4+6=小时.2小时10分再加上半小时是2小时40分.答:他们相遇时是出发后2小时40分.例14一个圆周长90厘米,3个点把这个圆周分成三等分,3只爬虫A,B,C分别在这3个点上.它们同时出发,按顺时针方向沿着圆周爬行.A的速度是10厘米/秒,B的速度是5厘米/秒,C的速度是3厘米/秒,3只爬虫出发后多少时间第一次到达同一位置解:先考虑B与C这两只爬虫,什么时候能到达同一位置.开始时,它们相差30厘米,每秒钟B能追上C5-3厘米0.30÷5-3=15秒.因此15秒后B与C到达同一位置.以后再要到达同一位置,B要追上C一圈,也就是追上90厘米,需要90÷5-3=45秒.B与C到达同一位置,出发后的秒数是15,,105,150,195,……再看看A与B什么时候到达同一位置.第一次是出发后30÷10-5=6秒,以后再要到达同一位置是A追上B一圈.需要90÷10-5=18秒,A与B到达同一位置,出发后的秒数是6,24,42,,78,96,…对照两行列出的秒数,就知道出发后60秒3只爬虫到达同一位置.答:3只爬虫出发后60秒第一次爬到同一位置.请思考,3只爬虫第二次到达同一位置是出发后多少秒例15图上正方形ABCD是一条环形公路.已知汽车在AB上的速度是90千米/小时,在BC上的速度是120千米/小时,在CD上的速度是60千米/小时,在DA上的速度是80千米/小时.从CD上一点P,同时反向各发出一辆汽车,它们将在AB中点相遇.如果从PC中点M,同时反向各发出一辆汽车,它们将在AB上一点N处相遇.求解:两车同时出发至相遇,两车行驶的时间一样多.题中有两个“相遇”,解题过程就是时间的计算.要计算方便,取什么作计算单位是很重要的.设汽车行驶CD所需时间是1.根据“走同样距离,时间与速度成反比”,可得出分数计算总不太方便,把这些所需时间都乘以24.这样,汽车行驶CD,BC,AB,AD 所需时间分别是24,12,16,18.从P点同时反向各发一辆车,它们在AB中点相遇.P→D→A与P→C→B所用时间相等.PC上所需时间-PD上所需时间=DA所需时间-CB所需时间=18-12=6.而PC上所需时间+PD上所需时间是CD上所需时间24.根据“和差”计算得PC上所需时间是24+6÷2=15,PD上所需时间是24-15=9.现在两辆汽车从M点同时出发反向而行,M→P→D→A→N与M→C→B→N所用时间相等.M是PC中点.P→D→A→N与C→B→N时间相等,就有BN上所需时间-AN上所需时间=P→D→A所需时间-CB所需时间=9+18-12=15.BN上所需时间+AN上所需时间=AB上所需时间=16.立即可求BN上所需时间是,AN所需时间是.从这一例子可以看出,对要计算的数作一些准备性处理,会使问题变得简单些.三、稍复杂的问题在这一节希望读者逐渐掌握以下两个解题技巧:1在行程中能设置一个解题需要的点;2灵活地运用比例.例16小王的步行速度是4.8千米/小时,小张的步行速度是5.4千米/小时,他们两人从甲地到乙地去.小李骑自行车的速度是10.8千米/小时,从乙地到甲地去.他们3人同时出发,在小张与小李相遇后5分钟,小王又与小李相遇.问:小李骑车从乙地到甲地需要多少时间解:画一张示意图:图中A点是小张与小李相遇的地点,图中再设置一个B点,它是张、李两人相遇时小王到达的地点.5分钟后小王与小李相遇,也就是5分钟的时间,小王和小李共同走了B与A之间这段距离,它等于这段距离也是出发后小张比小王多走的距离,小王与小张的速度差是千米/小时.小张比小王多走这段距离,需要的时间是÷×60=130分钟.这也是从出发到张、李相遇时已花费的时间.小李的速度10.8千米/小时是小张速度5.4千米/小时的2倍.因此小李从A到甲地需要130÷2=65分钟.从乙地到甲地需要的时间是130+65=195分钟=3小时15分.答:小李从乙地到甲地需要3小时15分.上面的问题有3个人,既有“相遇”,又有“追及”,思考时要分几个层次,弄清相互间的关系,问题也就迎刃而解了.在图中设置一个B点,使我们的思考直观简明些.例17小玲和小华姐弟俩正要从公园门口沿马路向东去某地,而他们的家要从公园门口沿马路往西.小华问姐姐:“是先向西回家取了自行车,再骑车向东去,还是直接从公园门口步行向东去快”姐姐算了一下说:“如果骑车与步行的速度比是4∶1,那么从公园门口到目的地的距离超过2千米时,回家取车才合算.”请推算一下,从公园到他们家的距离是多少米解:先画一张示意图设A是离公园2千米处,设置一个B点,公园离B与公园离家一样远.如果从公园往西走到家,那么用同样多的时间,就能往东走到B点.现在问题就转变成:骑车从家开始,步行从B点开始,骑车追步行,能在A点或更远处追上步行.具体计算如下:不妨设B到A的距离为1个单位,因为骑车速度是步行速度的4倍,所以从家到A的距离是4个单位,从家到B的距离是3个单位.公园到B是个单位.从公园到A是1+=单位.每个单位是2000÷=800米.因此,从公园到家的距离是800×=1200米.答:从公园门口到他们家的距离是1200米.这一例子中,取计算单位给计算带来方便,是值得读者仿照采用的.请再看一例.例18快车和慢车分别从A,B两地同时开出,相向而行.经过5小时两车相遇.已知慢车从B到A用了小时,慢车到A停留半小时后返回.快车到B停留1小时后返回.问:两车从第一次相遇到再相遇共需多少时间解:画一张示意图:设C点是第一次相遇处.慢车从B到C用了5小时,从C到A用了=小时.我们把慢车半小时行程作为1个单位.B到C10个单位,C到A15个单位.慢车每小时走2个单位,快车每小时走3个单位.有了上面“取单位”准备后,下面很易计算了.慢车从C到A,再加停留半小时,共8小时.此时快车在何处呢去掉它在B停留1小时.快车行驶7小时,共行驶3×7=21单位.从B到C再往前一个单位到D点.离A点15-1=14单位.现在慢车从A,快车从D,同时出发共同行走14单位,相遇所需时间是14÷2+3=小时.慢车从C到A返回行驶至与快车相遇共用了++=小时.答:从第一相遇到再相遇共需10小时48分.例19一只小船从A地到B地往返一次共用2小时.回来时顺水,比去时的速度每小时多行驶8千米,因此第二小时比第一小时多行驶6千米.求A至B两地距离.解:1小时是行驶全程的一半时间,因为去时逆水,小船到达不了B地.我们在B之前设置一个C点,是小船逆水行驶1小时到达处.如下图第二小时比第一小时多行驶的行程,恰好是C至B距离的2倍,它等于6千米,就知C至B是3千米.为了示意小船顺水速度比逆水速度每小时多行驶8千米,在图中再设置D点,D 至C是8千米.也就是D至A顺水行驶时间是1小时.现在就一目了然了.D至B是5千米顺水行驶,与C至B逆水行驶3千米时间一样多.因此顺水速度∶逆水速度=5∶3.由于两者速度差是8千米.立即可得出A至B距离是12+3=15千米.答:A至B两地距离是15千米.例20从甲市到乙市有一条公路,它分成三段.在第一段上,汽车速度是每小时40千米,在第二段上,汽车速度是每小时90千米,在第三段上,汽车速度是每小时50千米.已知第一段公路的长恰好是第三段的2倍.现有两辆汽车分别从甲、乙两市同时出发,相向而行.1小时20分后,在第二段的解一:画出如下示意图:当从乙城出发的汽车走完第三段到C时,从甲城出发的汽车走完第一段的到达D处,这样,D把第一段分成两部分时20分相当于因此就知道,汽车在第一段需要第二段需要30×3=90分钟;甲、乙两市距离是答:甲、乙两市相距185千米.把每辆车从出发到相遇所走的行程都分成三段,而两车逐段所用时间都相应地一样.这样通过“所用时间”使各段之间建立了换算关系.这是一种典型的方法.例8、例13也是类似思路,仅仅是问题简单些.还可以用“比例分配”方法求出各段所用时间.第一段所用时间∶第三段所用时间=5∶2.时间一样.第一段所用时间∶第二段所用时间=5∶9.因此,三段路程所用时间的比是5∶9∶2.汽车走完全程所用时间是80×2=160分种.例21一辆车从甲地开往乙地.如果车速提高20%,可以比原定时间提前一小时到达;如果以原速行驶120千米后,再将速度提高25%,则可提前40分钟到达.那么甲、乙两地相距多少千米解:设原速度是1.%后,所用时间缩短到原时间的这是具体地反映:距离固定,时间与速度成反比.用原速行驶需要同样道理,车速提高25%,所用时间缩短到原来的如果一开始就加速25%,可少时间现在只少了40分钟,72-40=32分钟.说明有一段路程未加速而没有少这个32分钟,它应是这段路程所用时间真巧,320-160=160分钟,原速的行程与加速的行程所用时间一样.因此全程长答:甲、乙两地相距270千米.十分有意思,按原速行驶120千米,这一条件只在最后用上.事实上,其他条件已完全确定了“原速”与“加速”两段行程的时间的比例关系,当然也确定了距离的比例关系.全程长还可以用下面比例式求出,设全程长为x,就有x∶120=72∶32.。
火车问题教学目标1、会熟练解决基本的火车过桥问题.2、掌握人和火车、火车与火车的相遇追与问题与火车过桥的区别与联系.3、掌握火车与多人多次相遇与追与问题知识精讲火车过桥常见题型与解题方法(一)、行程问题基本公式:路程速度时间总路程平均速度总时间;(二)、相遇、追与问题:速度和相遇时间相遇路程速度差追与时间追与路程;(三)、火车过桥问题1、火车过桥(隧道):一个有长度、有速度,一个有长度、但没速度,解法:火车车长+桥(隧道)长度(总路程) =火车速度×通过的时间;2、火车+树(电线杆):一个有长度、有速度,一个没长度、没速度,解法:火车车长(总路程)=火车速度×通过时间;2、火车+人:一个有长度、有速度,一个没长度、但有速度,(1)、火车+迎面行走的人:相当于相遇问题,解法:火车车长(总路程) =(火车速度+人的速度)×迎面错过的时间;(2)火车+同向行走的人:相当于追与问题,解法:火车车长(总路程) =(火车速度—人的速度) ×追与的时间;(3)火车+坐在火车上的人:火车与人的相遇和追与问题解法:火车车长(总路程) =(火车速度人的速度) ×迎面错过的时间(追与的时间);4、火车+火车:一个有长度、有速度,一个也有长度、有速度,(1)错车问题:相当于相遇问题,解法:快车车长+慢车车长(总路程) =(快车速度+慢车速度) ×错车时间;(2)超车问题:相当于追与问题,解法:快车车长+慢车车长(总路程) =(快车速度—慢车速度) ×错车时间;老师提醒学生注意:对于火车过桥、火车和人相遇、火车追与人以与火车和火车之间的相遇、追与等等这几种类型的题目,在分析题目的时候一定得结合着图来进行。
模块一、火车过桥(隧道、树)问题【例 1】 一列火车长200米,以60米每秒的速度前进,它通过一座220米长的大桥用时多少?【解析】 分析:(1)如右图所示,学生们可以发现火车走过的路程为:200+220=420(米),所以用时420÷60=7(秒).【巩固】 一列火车长米,每秒钟行驶米,全车通过一条隧道需要秒钟,求这条隧道长多少米? 火车行驶路程隧道长?火车火车【解析】 已知列车速度是每秒钟行驶米和全车通过隧道需要秒钟.根据速度时间路程的关系,可以求出列车行驶的全路程.全路程正好是列车本身长度与隧道长度之和,即可求出隧道的长度.列车秒钟行驶:(米),隧道长:(米).【巩固】 一列火车经过南京长江大桥,大桥长米,这列火车长米,火车每分钟行米,这列客车经过长江大桥需要多少分钟?【解析】 建议教师帮助学生画图分析.从火车头上桥,到火车尾离桥,这是火车通过这座大桥的全过程,也就是过桥的路程桥长车长.通过“过桥的路程”和“车速”就可以求出火车过桥的时间.所以过桥路程为:(米),过桥时间为:(分钟).【巩固】长米的火车以米/秒的速度穿越一条米的隧道.那么火车穿越隧道(进入隧道直至完全离开)要多长时间?【解析】火车穿越隧道经过的路程为(米),已知火车的速度,那么火车穿越隧道所需时间为(秒).【巩固】一列长米的火车以每秒米的速度过一座桥,从车头上桥到车尾离桥用了分钟,求这座桥长多少米?【解析】火车过桥时间为分钟秒,所走路程为桥长加上火车长为(米),即桥长为(米).【巩固】一列火车长米,全车通过一座桥需要秒钟,这列火车每秒行米,求这座桥的长度.火车火车桥火车行驶路程【解析】建议教师帮助学生画图分析.由图知,全车通过桥是指从火车车头上桥直到火车车尾离桥,即火车行驶的路程是桥的长度与火车的长度之和,已知火车的速度以与过桥时间,所以这列车秒钟走过:(米),桥的长度为:(米).【例 2】(2009年第七届“希望杯”六年级一试)四、五、六3个年级各有100名学生去春游,都分成2列(竖排)并列行进.四、五、六年级的学生相邻两行之间的距离分别是1米、2米、3米,年级之间相距5米.他们每分钟都行走90米,整个队伍通过某座桥用4分钟,那么这座桥长米.【解析】100名学生分成2列,每列50人,应该产生49个间距,所以队伍长为(米),那么桥长为(米).【巩固】一个车队以6米/秒的速度缓缓通过一座长250 米的大桥,共用152秒.已知每辆车长6米,两车间隔10米.问:这个车队共有多少辆车?【解析】由“路程时间速度”可求出车队152 秒行的路程为 6 152 912 (米),故车队长度为912-250= 662(米).再由植树问题可得车队共有车(662 -6) ÷(6 +10) +1 =42(辆).【巩固】一个车队以4米/秒的速度缓缓通过一座长200米的大桥,共用115秒。
2023-2024学年四年级数学上册典型例题系列第三单元:行程问题“基础型”专项练习(解析版)一、填空题。
1.一辆汽车每小时行78千米,它的速度可记作( )。
小明每分钟走80米,他10分钟走多少米?要求的是( )。
【答案】 78千米/小时路程【分析】首先写出这辆汽车每小时行驶的路程,在后面加上一条斜线,再在斜线的后面加上小时,表示出它的速度;然后根据小明每分钟走80米,他10分钟走多少米?已知速度和时间,要求的是路程。
【详解】80×10=800(米)一辆汽车每小时行78千米,它的速度可记作78千米/小时。
小明每分钟走80米,他10分钟走多少米?要求的是路程。
【点睛】此题主要考查了行程问题中速度的表示方法,以及速度、时间和路程的关系:速度×时间=路程,路程÷时间=速度,路程÷速度=时间,要熟练掌握。
2.一架飞机每小时飞行950千米,它的速度可以写成( )。
照这样的速度飞行3小时,共飞行( )千米。
【答案】 950千米/时 2850【分析】速度的书写方法,先写千米,再写“/”,最后写时。
据此写出飞机的飞行速度。
根据路程=速度×时间,求出飞机飞行的距离。
【详解】一架飞机,每小时飞行950千米。
这一速度可以简写成950千米/时;950×15=2850(千米),照这样的速度,这架飞机3小时可以飞行2850千米。
【点睛】本题考查行程问题,熟练掌握速度的书写方法以及公式路程=速度×时间。
3.一辆汽车2小时行驶了160千米,这是已知这辆汽车行驶的( )和( ),这辆汽车的速度是( )。
【答案】路程时间 80千米/时【分析】“2小时”是汽车行驶的时间,“160千米”是汽车行驶的路程。
根据速度=路程÷时间,即可计算出这辆汽车的速度。
【详解】160÷2=80(千米/时)这是已知这辆汽车行驶的路程和时间,这辆汽车的速度是80千米/时。
黑龙江省鸡西市数学小学奥数系列3-1-1行程问题(一)姓名:________ 班级:________ 成绩:________亲爱的同学,经过一段时间的学习,你们一定学到不少知识,今天就让我们大显身手吧!一、 (共23题;共115分)1. (5分)张老师不小心把发票弄脏了,你能帮他算出羽毛球每筒多少元吗?物品单价数量总价羽毛球拍35元4副212元羽毛球元3筒2. (5分)某列车8:00从北京南发车,13:00到达上海虹桥,这次列车平均每小时行驶263千米,从北京南到上海虹桥有多少千米?3. (5分) (2019三上·闵行期末) 168只弥猴桃,每4只装一盒,每盒8元,这些弥猴桃共可以卖多少元?4. (5分) (2019四下·端州月考) 某火锅店开业酬宾,特推出两种优惠方案:有4位家长带3个孩子去吃饭,怎样最省钱?方案1:成人每位30元,小孩15元。
方案2:团体5人以上(含5人)每位25元。
5. (5分) (2018五上·阳江月考) 火车通过1200米长的铁路桥需75秒,通过300米长的隧道需30秒,火车的速度是多少?车身长多少米?6. (5分)张师傅要用铁线做(下图)形状和大小的框架:形状等边三角形平行四边形单位(m)(1)张师傅要用350米长的铁丝,先做了等边三角形8个,还剩下多少米铁丝?(2)剩下的铁丝最多可以做几个平行四边形?7. (5分) (2020四上·兴国期末) 同学们从学校步行到公园秋游,每分钟行70米,学校距离公园1510米.(1)“每分钟行70米”是同学们步行的________,也可以写作________,“1510米”是同学们步行的________.(2)同学们15分钟走了多少米?(3)剩下的路程同学们加快了步伐,每分钟行92米,再走几分钟能到达公园?8. (5分)一列火车车长180米,每秒行20米,这列火车通过320米长的大桥,需要多少时间?9. (5分) (2020三上·龙华期末) 机器狗和机器猫在广场上沿着不同的长方形运动。
3-1-1-行程问题基础教学目标1.行程的基本概念,会解一些简单的行程题.2.掌握单个变量的平均速度问题及其三种基本解题方法:“特殊值法”、“设而不求法”、“设单位1法”3.利用对比分析法解终(中)点问题知识精讲一、s、v、t探源我们经常在解决行程问题的过程中用到s、v、t三个字母,并用它们来分别代表路程、速度和时间。
那么,为什么分别用这三个字母对应这三个行程问题的基本量呢?今天我们就一起了解一下。
表示时间的t,这个字母t代表英文单词time,翻译过来就是时间的意思。
表示速度的字母v,对应的单词同学们可能不太熟悉,这个单词是velocity,而不是我们常用来表示速度的speed。
velocity表示物理学上的速度。
与路程相对应的英文单词,一般来说应该是distance,但这个单词并不是以字母s开头的。
关于为什么会用s 来代表路程,有一个比较让人接受的说法,就是在行程问题的公式中,代表速度的v和代表时间的t在字母表中比较接近,所以就选取了跟这两个字母位置都比较接近的s来表示速度。
二、关于s、v、t 三者的基本关系速度×时间=路程可简记为:s = vt路程÷速度=时间可简记为:t = s÷v路程÷时间=速度可简记为:v = s÷t三、平均速度平均速度的基本关系式为:平均速度总路程总时间;总时间总路程平均速度;总路程平均速度总时间。
板块一、简单行程公式解题【例 1】韩雪的家距离学校480米,原计划7点40从家出发8点可到校,现在还是按原时间离开家,不过每分钟比原来多走16米,那么韩雪几点就可到校?【解析】原来韩雪到校所用的时间为20分钟,速度为:4802024÷=(米/分),现在每分钟比原来多走16米,即现在的速度为241640÷=(分钟),7+=(米/分),那么现在上学所用的时间为:4804012点40分从家出发,12分钟后,即7点52分可到学校.【巩固】甲、乙两地相距100千米。
下午3点,一辆马车从甲地出发前往乙地,每小时走10千米;晚上9点,一辆汽车从甲地出发驶向乙地,为了使汽车不比马车晚到达乙地,汽车每小时最少要行驶多少千米?.【解析】马车从甲地到乙地需要100÷10=10小时,在汽车出发时,马车已经走了9-3=6(小时)。
依题意,汽车必须在10-6=4小时内到达乙地,其每小时最少要行驶100÷4=25(千米).【巩固】两辆汽车都从北京出发到某地,货车每小时行60千米,15小时可到达。
客车每小时行50千米,如果客车想与货车同时到达某地,它要比货车提前开出几小时?【解析】北京到某地的距离为:6015900÷=(小时),⨯=(千米),客车到达某地需要的时间为:9005018 -=(小时),所以客车要比货车提前开出3小时。
18153【巩固】甲、乙两辆汽车分别从 A、B 两地出发相向而行,甲车先行三小时后乙车从 B 地出发,乙车出发5 小时后两车还相距15千米.甲车每小时行 48千米,乙车每小时行 50千米.求 A、 B 两地间相距多少千米?【解析】在整个过程中,甲车行驶了 3+5= 8(小时),行驶的路程为:48× 8 =384(千米);乙车行驶了 5 小时,行驶的路程为:50 ×5 =250(千米),此时两车还相距15 千米,所以 A 、 B 两地间相距:384+250+15 =649(千米).【巩固】一天,梨和桃约好在天安门见面,梨每小时走200千米,桃每小时走150千米,他们同时出发2小时后还相距500千米,则梨和桃之间的距离是多少千米?【解析】我们可以先求出2小时梨和桃走的路程:(200150)2700+⨯=(千米),又因为还差500千米,所以梨和桃之间的距离:7005001200+=(千米).【巩固】两列火车从相距480千米的两城相向而行,甲列车每小时行40千米,乙列车每小时行42千米,5小时后,甲、乙两车还相距多少千米?【解析】两车的相距路程减去5小时两车共行的路程,就得到了两车还相距的路程:n(千米).480(4042)548041070-+⨯=-=【巩固】小白从家骑车去学校,每小时15千米,用时2小时,回来以每小时10千米的速度行驶,需要多少时间?【解析】从家到学校的路程:15230÷=(小时).⨯=(千米),回来的时间30103【例 2】邮递员早晨7时出发送一份邮件到对面山里,从邮局开始要走12千米上坡路,8千米下坡路。
他上坡时每小时走4千米,下坡时每小时走5千米,到达目的地停留1小时以后,又从原路返回,邮递员什么时候可以回到邮局?【解析】法一:先求出去的时间,再求出返回的时间,最后转化为时刻。
①邮递员到达对面山里需时间:12÷4+8÷5=(小时);②邮递员返回到邮局共用时间:8÷4+12÷5+1+ =2++1+ = l0(小时)③邮递员回到邮局时的时刻是:7+10-12=5(时).邮递员是下午5时回到邮局的。
法二:从整体上考虑,邮递员走了(12+8)千米的上坡路,走了(12+8)千米的下坡路,所以共用时间为:(12+8)÷4+(12+8)÷5+1=10(小时),邮递员是下午7+10-12=5(时) 回到邮局的。
【例 3】一个人站在铁道旁,听见行近来的火车汽笛声后,再过57秒钟火车经过他面前.已知火车汽笛时离他1360米;(轨道是笔直的)声速是每秒钟340米,求火车的速度?(得数保留整数)【解析】火车拉汽笛时离这个人1360米.因为声速每秒种340米,所以这个人听见汽笛声时,经过了(1360÷340=)4秒.可见火车行1360米用了(57+4=)61秒,将距离除以时间可求出火车的速度.1360÷(57+1360÷340)=1360÷61≈22(米)【例 4】龟兔赛跑,同时出发,全程6990米,龟每分钟爬30米,兔每分钟跑330米,兔跑了10分钟就停下来睡了215分钟,醒来后立即以原速往前跑,问龟和兔谁先到达终点?先到的比后到的快多少米?【解析】先算出兔子跑了330103300()(米),此时乌龟只余下⨯+=⨯=(米),乌龟跑了30215106750÷=(分钟)到达终点,兔子在这段时间内跑了69906750240-=(米),乌龟还需要24030883302640+=(米).所以乌龟先到,快了⨯=(米),所以兔子一共跑330026405940-=(米).699059401050【例 5】甲、乙两地相距6720米,某人从甲地步行去乙地,前一半时间平均每分钟行80米,后一半时间平均每分钟行60米.问他走后一半路程用了多少分钟?【解析】方法一:由于前一半时间与后一半时间的平均速度是已知的,因此可以计算出这人步行的时间.而如果了解清楚各段的路程、时间与速度,题目结果也就自然地被计算出来了.应指出,如果前一半时间平均速度为每分钟80米,后一半时间平均速度为每分钟60米,则这个人从甲走到乙的平均速度就为每分钟走(80+60)÷2=70米.这是因为一分钟80米,一分钟60米,两分钟一共140米,平均每分钟70米.而每分钟走80米的时间与每分钟走60米的时间相同,所以平均速度始终是每分钟70米.这样,就可以计算出这个人走完全程所需要的时间是6720÷70=96分钟.由于前一半时间的速度大于后一半时间的速度,所以前一半的时间所走路程大于6720÷2=3360米.则前一个3360米用了3360÷80=42分钟;后一半路程所需时间为96-42=54分钟.方法二:设走一半路程时间是x分钟,则80x+60x=6720,解方程得:x=48分钟,因为80×48=3840(米),大于一半路程3360米,所以走前一半路程速度都是80米,时间是3360÷80=42(分钟),后一半路程时间是48+(48-42)=54(分钟).评注:首先,从这道题我们可以看出“一半时间”与“一半路程”的区别.在时间相等的情况下,总的平均速度可以是各段平均速度的平均数.但在各段路程相等的情况下,这样做就是不正确的.其次,后一半路程是混合了每分钟80米和每分钟60米两种状态,直接求所需时间并不容易.而前一半路程所需时间的计算是简单的.因此,在几种方法都可行的情况下,选择一种好的简单的方法.这种选择能力也是需要锻炼和培养的.【巩固】甲、乙两地相距6千米,某人从甲地步行去乙地,前一半时间平均每分钟行80米,后一半时间平均每分钟行70米.问他走后一半路程用了多少分钟?【解析】方法一:全程的平均速度是每分钟8070275()(米),走完全程的时间是60007580÷=(分+÷=钟),走前一半路程速度一定是80米,时间是30008037.5÷=(分钟),后一半路程时间是8037.542.5-=(分钟).方法二:设走一半路程时间是x分钟,则807061000⨯x=(分钟),因为8040+=⨯,解得40x x3200=(米),大于一半路程3000米,所以走前一半路程速度都是80米,时间是+-=()(分钟).÷=(分钟),后一半路程时间是404037.542.530008037.5【例 6】四年级一班在划船比赛前讨论了两个比赛方案.第一个方案是在比赛中分别以2米/秒和3米/秒的速度各划行赛程的一半;第二个方案是在比赛中分别以2米/秒和3米/秒的速度各划行比赛时间的一半.你认为这两个方案哪个好?【解析】第二种方案模块二、平均速度问题【例 7】如图,从A到B是12千米下坡路,从B到C是8千米平路,从C到D是4千米上坡路.小张步行,下坡的速度都是6千米/小时,平路速度都是4千米/小时,上坡速度都是2千米/小时.问小张从A到D的平均速度是多少?【解析】从A到B的时间为:12÷6=2(小时),从B到C的时间为:8÷4=2(小时),从C到D的时间为:4÷2=2(小时),从A到D的总时间为:2+2+2=6(小时),总路程为:12+8+4=24(千米),那么从A到D 的平均速度为:24÷6=4(千米/时).【巩固】如图,从A到B是6千米下坡路,从B到C是4千米平路,从C到D是4千米上坡路.小张步行,下坡的速度都是6千米/小时,平路速度都是4千米/小时,上坡速度都是2千米/小时.问从A到D的平均速度是多少?【解析】从A到B的时间为:6÷6=1(小时),从B到C的时间为:4÷4=1(小时),从C到D的时间为:4÷2=2(小时),从A到D的总时间为:1+1+2=4(小时),总路程为:6+4+4=14(千米),那么从A到D 的平均速度为:14÷4=(千米/时)【巩固】摩托车驾驶员以每小时30千米的速度行驶了90千米到达某地,返回时每小时行驶45千米,求摩托车驾驶员往返全程的平均速度.【解析】要求往返全程的平均速度是多少,必须知道摩托车“往”与“返”的总路程和“往”与“返”的总时间.摩托车“往”行了90千米,“返”也行了90千米,所以摩托车的总路程是:90×2=180(千米),摩托车“往”的速度是每小时30千米,所用时间是:90÷30=3(小时),摩托车“返”的速度是每小时45千米,所用时间是:90÷45=2(小时),往返共用时间是:3+2=5(小时),由此可求出往返的平均速度,列式为:90×2÷(90÷30+90÷45)=180÷5=36(千米/小时)【巩固】甲乙两地相距200千米,小强去时的速度是10千米/小时,回来的速度是40千米/小时,求小强往返的平均速度.【解析】去时的时间2001020÷=(小时),平均速度=总路程÷总时间÷=(小时),回来的时间200405()()(千米/小时).=+÷+=20020020516【巩固】一辆汽车从甲地出发到300千米外的乙地去,前120千米的平均速度为40千米/时,要想使这辆汽车从甲地到乙地的平均速度为50千米/时,剩下的路程应以什么速度行驶?【解析】求速度首先找相应的路程和时间,平均速度说明了总路程与总时间的关系,剩下的路程为:300-120=180(千米),计划总时间为:300÷50=6(小时),前120千米已用去120÷40=3(小时),所以剩下路程的速度为: (300-120)÷(6-3)=60(千米/时).【巩固】一个运动员进行爬山训练.从A地出发,上山路长30千米,每小时行3千米.爬到山顶后,沿原路下山,下山每小时行6千米.求这位运动员上山、下山的平均速度.【解析】这道题目是行程问题中关于求上、下山平均速度的问题.解题时应区分平均速度和速度的平均数这两个不同的概念.速度的平均数=(上山速度+下山速度)÷2,而平均速度=上、下山的总路程÷上、下山所用的时间和.所以上山时间:30310÷=(小时),÷=(小时),下山时间:3065上、下山平均速度:30210560154()(千米/小时).⨯÷+=÷=【例 8】一个人从甲地去乙地,骑自行车走完全程的一半时,自行车坏了,又无法修理,只好推车步行到乙地. 骑车时每小时行12千米,步行时每小时4千米,这个人走完全程的平均速度是多少?【解析】① 参数法:设全程的的一半为S千米,前一半时间为12S÷,根据公式平S÷,后一半时间为4均速度=总路程÷总时间,可得()21246S S S ÷÷+÷=(千米)。