高一数学必修一知识点
- 格式:ppt
- 大小:1.35 MB
- 文档页数:62
高一数学必修一知识点总结全1. 直线与坐标1.1 直线的斜率直线的斜率是指直线上一点到另一点的纵坐标之差与横坐标之差的比值。
1.2 直线的截距直线在坐标系上与y轴的交点称为直线的截距。
1.3 直线的方程直线的方程可以用斜截式、两点式或点斜式来表示。
2. 二次函数与函数的图像2.1 二次函数的定义二次函数是形如y=ax^2+bx+c的函数,其中a、b、c为常数。
2.2 二次函数的图像特征二次函数的图像是一条抛物线,其开口方向由二次项系数a的正负决定,开口向上为正,开口向下为负。
2.3 二次函数的平移与伸缩二次函数可以通过平移和伸缩变换图像的位置和形状。
3. 平面向量与坐标3.1 平面向量的定义平面向量是具有大小和方向的量,在坐标系中可以表示为有序数对。
3.2 平面向量的运算平面向量可以进行加法、减法、数乘和向量乘法运算。
3.3 平面向量的坐标表示平面向量的坐标表示可以用分量表示法或单位向量表示法。
4. 三角函数4.1 三角函数的定义三角函数是角的函数,包括正弦、余弦和正切等。
4.2 三角函数的基本关系式三角函数之间存在一些基本关系式,如正弦定理和余弦定理等。
4.3 三角函数的图像特征三角函数的图像具有周期性和对称性,可以通过坐标系表示。
5. 函数与方程5.1 函数的定义与性质函数是一种特殊的关系,具有输入与输出的对应关系。
5.2 方程的解与解集方程是含有未知数的等式,解是使方程成立的未知数的值。
5.3 一次函数与一次方程一次函数是函数的一种特殊形式,一次方程是一次函数的等式形式。
以上是高一数学必修一的一些重要知识点总结,这些知识点对于建立高中数学基础知识非常重要。
希望这份总结对你有所帮助!。
高一数学必修一知识点归纳第一章二次函数1.1 一元二次方程及其解法一元二次方程的标准形式为ax^2 + bx + c = 0,可以通过公式法、配方法和因式分解等方式求解。
1.2 二次函数的图像及性质二次函数y=ax^2+bx+c的图像为抛物线,开口向上或向下,顶点坐标为(-b/2a,c-b^2/4a)。
1.3 二次函数与一元二次方程的关系一元二次方程可以通过二次函数的图像特征求解,二次函数的各项系数与一元二次方程的特征之间有一一对应的关系。
第二章直线与圆2.1 直线的方程及性质直线的一般方程为Ax+By+C=0,斜率为-k/A,其中k为直线的垂直距离。
2.2 圆的方程及性质圆的标准方程为(x-a)^2 + (y-b)^2 = r^2,其中(a,b)为圆心坐标,r为半径。
第三章度量衡3.1 长度、面积和体积的计算长度、面积和体积的计算包括常见图形的计算公式和应用场景,如长方形、正方形、圆形等。
3.2 单位换算长度、面积和体积的不同单位之间的换算,包括长度单位、面积单位、体积单位等。
第四章三角函数4.1 弧度制下的角度角度的度量单位有度、分、秒和弧度制,弧度制下一周的角度为2π。
4.2 三角函数的概念三角函数包括正弦函数、余弦函数、正切函数等,它们与直角三角形的边和角之间有一一对应的关系。
4.3 三角函数的图像及性质三角函数的图像具有周期性、对称性,通过振幅和周期来描述函数的性质。
第五章概率5.1 随机事件及基本概率随机事件的基本概率计算方法包括等可能概率、加法原理和乘法原理等。
5.2 条件概率及事件的独立性条件概率描述了随机事件在已知其他事件发生的情况下自身发生的概率,事件的独立性指两个事件发生与否互不影响。
第六章初等数论6.1 整除、最大公因数、最小公倍数整除、最大公因数和最小公倍数概念及计算方法,涉及质数、合数、素数分解等内容。
6.2 同余式同余式描述了整数之间的某种特殊的相等关系,同余式的性质包括传递性、对称性和相容性等。
高一数学必修一知识点总结归纳1二次函数I.定义与定义表达式一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)则称y为x的二次函数。
二次函数表达式的右边通常为二次三项式。
II.二次函数的三种表达式一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)顶点式:y=a(x-h)^2+k[抛物线的顶点P(h,k)]交点式:y=a(x-x?)(x-x?)[仅限于与x轴有交点A(x?,0)和B(x?,0)的抛物线]注:在3种形式的互相转化中,有如下关系:h=-b/2ak=(4ac-b^2)/4ax?,x?=(-b±√b^2-4ac)/2aIII.二次函数的图像在平面直角坐标系中作出二次函数y=x^2的图像,可以看出,二次函数的图像是一条抛物线。
IV.抛物线的性质1.抛物线是轴对称图形。
对称轴为直线x=-b/2a。
对称轴与抛物线的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)2.抛物线有一个顶点P,坐标为P(-b/2a,(4ac-b^2)/4a)当-b/2a=0时,P在y轴上;当Δ=b^2-4ac=0时,P在x轴上。
3.二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。
|a|越大,则抛物线的开口越小。
高一数学必修一知识点总结归纳2对数函数对数函数的一般形式为,它实际上就是指数函数的反函数。
因此指数函数里对于a的规定,同样适用于对数函数。
右图给出对于不同大小a所表示的函数图形:可以看到对数函数的图形只不过的指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。
(1)对数函数的定义域为大于0的实数集合。
(2)对数函数的值域为全部实数集合。
1、集合的概念:某些研究对象的全体叫集合,用大写字母表示;集合中的每个对象叫做这个集合的元素,用小写字母表示;2、集合的表示方法有:(1)列举法(把集合的所有元素一一列举并写在大括号内);(2)描述法(把集合中元素的公共属性描述出来写在大括号内);3、集合中元素的特征有无序性、互异性、确定性;4、元素与集合的关系有:属于()和不属于();∈∉5、集合分类:(1)把不含任何元素的集合叫做空集(); (2)含有有限个元素的集合叫做有限集;∅(3)含有无穷个元素的集合叫做无限集;6、常用数集及其记法:(1)自然数集:记作;(2)正整数集:记作;{}0,1,2,3, N {}1,2,3, N N *+或(3)整数集:记作;(4)有理数(包括整数和分数)集:记作;{}3,2,1,0,1,2,3,--- Z Q (5)实数(包括有理数和无理数)集:记作;R 7、集合与集合的关系有:子集(包含于,)、真子集(真包含于,)、相等(=);⊆Ø8、子集的概念:如果集合A 中的每一个元素都是集合B 中的元素,那么集合A 叫做集合B 的子集,记作;A B ⊆9、真子集的概念:若集合A 是集合B 的子集,且B 中至少有一个元素不属于A,那么集合A 叫做集合B 的真子集,记作;(真子集是除本身以外的子集)A B ⊂10、子集、真子集的性质:(1)传递性:若,,则;B A ⊆C B ⊆A C ⊆(2)空集是任意集合的子集,是任意非空集合的真子集;(3)任何一个集合是它本身的子集;(在写子集时首先注意两个特殊的子集----空集和它本身)11、集合相等:(1)若集合A 中的元素与集合B 中的元素完全相同,则称集合A 等于集合B,记作;A B =(2)(即互为子集)。
B A A B B A =⇔⊆⊆,12、n 个元素的集合其子集个数共有个;真子集有个(比子集少了它本身);)(N n ∈2n21n-非空子集有个;非空的真子集有个;21n-22n -13、集合的运算:(1)交集(公共元素) :A ∩B ={x|x ∈A 且x ∈B};(2)并集(所有元素) :A ∪B ={x|x ∈A 或x ∈B};(3)补集(剩余元素) :={x| 且x ∈U},U 为全集。
高一必修一数学全册知识点一、集合1. 集合的基本概念1.1 集合的定义和表示方法1.2 集合的元素与集合的关系二、数字与代数1. 实数与数轴2.1 实数的概念及表示2.2 数轴的绘制与实数的表示2.3 实数的比较与加减法运算2.4 实数的乘除法运算及其性质2. 同底数幂与科学计数法2.1 指数与幂的概念2.2 同底数幂的乘除法运算2.3 科学计数法的表示与运算3. 整式的基本概念3.1 代数式与整式的定义3.2 项、次数及系数的概念3.3 同类项与合并同类项3.4 整式的加减法运算4. 一元一次方程及其应用4.1 一元一次方程的定义及基本性质4.2 解一元一次方程的基本方法4.3 应用题中的一元一次方程5. 分式及其运算5.1 分式的定义及分式运算的基本性质5.2 分式的化简5.3 分式方程的解法及应用三、函数与图像1. 函数的概念与表示6.1 函数的定义及函数的表示方法6.2 函数的自变量、因变量与定义域、值域的关系2. 幂函数与分段函数6.2.1 幂函数的概念及其性质6.2.2 分段函数的定义及分段函数的画法3. 一次函数与斜率6.3.1 一次函数的定义及一次函数的性质6.3.2 斜率的概念及其计算方法4. 二次函数及其图像6.4.1 二次函数的定义及二次函数的图像特点6.4.2 二次函数的变换与最值四、三角函数1. 三角函数及其基本性质7.1.1 弧度制与角度制的转换7.1.2 正弦、余弦、正切函数的定义及其基本性质2. 三角函数图像的性质与变换7.2.1 三角函数图像的对称性与奇偶性7.2.2 三角函数图像的平移与伸缩7.2.3 三角函数图像的组合与分解3. 三角函数的简单应用7.3.1 三角函数在实际问题中的应用7.3.2 直角三角形的解题方法五、平面几何1. 直线与圆的性质8.1.1 直线的定义及其性质8.1.2 圆的定义及其性质2. 三角形的基本性质8.2.1 三角形分类及其特性8.2.2 三角形的成立条件3. 三角形的相似8.3.1 相似三角形的定义及判定条件 8.3.2 相似三角形的性质及应用4. 圆的切线与割线8.4.1 切线的定义及性质8.4.2 相交弦的性质及切割定理六、统计与概率1. 统计图与数据的分析9.1.1 统计图的绘制及其分析9.1.2 数据的分析与统计规律2. 事件的概率9.2.1 随机事件与概率的定义 9.2.2 事件的计算与概率的性质3. 排列与组合9.3.1 排列的定义及排列的计算 9.3.2 组合的定义及组合的计算。
高一必修一数学知识点考点第一章:集合与常用逻辑1. 集合及其表示方法- 集合的定义和基本概念- 集合的表示方法:列举法、描述法和定语从句法- 包含关系与相等关系2. 集合的运算- 交集、并集和差集的含义与计算- 互斥事件与对立事件的关系- 集合的运算律:交换律、结合律、分配律3. 常用逻辑符号与命题- 命题的概念与性质- 非、与、或、异或等逻辑运算符号的意义与运算规则 - 命题的合取范式与析取范式第二章:函数与方程1. 函数的概念与性质- 函数的定义及其基本性质- 定义域、值域和象集的概念- 函数的分类:一次函数、二次函数、指数函数、对数函数等2. 初等函数的图像与性质- 一次函数、二次函数、指数函数、对数函数等常用函数的图像特征- 函数的单调性、奇偶性和周期性等性质- 函数与方程的关系:函数方程、隐函数、显函数等3. 方程与不等式- 方程与等式的概念及其解的求解方法和性质- 一元一次方程和一元二次方程的解法- 不等式的概念和性质,不等式的解集表示方法第三章:平面几何1. 平面内的基本图形与性质- 点、线、线段、射线和角的概念与基本性质- 直线的分类:平行线、垂直线、相交线等- 三角形的分类:等边三角形、等腰三角形、直角三角形等2. 三角形的面积和周长- 三角形的面积公式及其推导- 三角形的周长计算方法- 与三角形相关的重要定理:海伦公式、正弦定理、余弦定理等3. 圆的性质与圆的应用- 圆的定义及其基本性质- 弧的概念与弧长、弦长的计算方法- 圆的切线与切点的概念及其性质第四章:立体几何1. 空间几何体的基本概念- 简单体与复合体的概念与区别- 空间直线、平面、立体角等的定义和性质- 空间几何体的分类与性质:球体、柱体、锥体等2. 直线与平面的位置关系- 平行关系、垂直关系和斜率关系的概念- 平面与平面的位置关系:相交、平行、垂直等- 平面与直线的交点的分类:内交点、外交点等3. 空间几何体的表面积和体积- 立体几何体的表面积计算方法- 立体几何体的体积计算方法- 相似立体几何体的表面积和体积的比较第五章:数据统计与概率1. 数据的收集与整理- 数据的概念与数据的收集方法- 数据的整理与分析方法:频数分布表、频率分布直方图等- 分类数据与数值数据的概念和处理方法2. 数据的图表表示与分析- 数据的图表表示方法及其选择技巧- 直方图、折线图、饼图等常用图表的绘制和分析- 统计指标(平均数、中位数、众数、四分位数等)的计算和比较3. 概率与统计- 随机事件与样本空间的概念- 概率的定义和性质- 古典概型、几何概型和统计概型的应用以上是高一必修一数学知识点的考点概述,希望能对你有所帮助。
高一数学必修一必背知识点一、集合。
1. 集合的概念。
- 集合是由一些确定的、互不相同的对象所组成的整体。
这些对象称为集合的元素。
- 集合中的元素具有确定性(给定一个集合,任何一个对象是不是这个集合的元素是确定的)、互异性(集合中的元素互不相同)、无序性(集合中的元素没有顺序要求)。
2. 集合的表示方法。
- 列举法:把集合中的元素一一列举出来,写在大括号内。
例如{1,2,3}。
- 描述法:用集合所含元素的共同特征表示集合的方法。
形式为{xp(x)},其中x是集合中的代表元素,p(x)是描述元素x特征的条件。
例如{xx > 0且x∈ R}表示正实数集。
- 区间表示法:对于数集,还可以用区间表示。
- 开区间(a,b)={xa < x < b}。
- 闭区间[a,b]={xa≤slant x≤slant b}。
- 半开半闭区间(a,b]={xa < x≤slant b},[a,b)={xa≤slant x < b}。
3. 集合间的基本关系。
- 子集:如果集合A的任意一个元素都是集合B的元素,那么集合A称为集合B的子集,记作A⊆ B(或B⊇ A)。
- 真子集:如果A⊆ B,且B中至少有一个元素不属于A,那么A是B的真子集,记作A⊂neqq B。
- 相等:如果A⊆ B且B⊆ A,那么A = B。
- 空集varnothing是任何集合的子集,是任何非空集合的真子集。
4. 集合的基本运算。
- 交集:A∩ B={xx∈ A且x∈ B}。
- 并集:A∪ B ={xx∈ A或x∈ B}。
- 补集:设U是全集,A⊆ U,则∁_UA={xx∈ U且x∉ A}。
二、函数。
1. 函数的概念。
- 设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数y和它对应,那么就称f:A→ B为从集合A到集合B的一个函数,记作y = f(x),x∈ A。
其中x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{yy = f(x),x∈ A}叫做函数的值域。
精心整理高一数学必修一全册知识点(定义、公式、定理)第一章集合与函数概念一、集合有关概念1.集合的含义{述法。
合的方法。
{x R|x-3>2},{x|x-3>2}3)语言描述法:例:{不是直角三角形的三角形}4)Venn图:4、集合的分类:(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合(3)空集不含任何元素的集合例:{x|x2=-5}?B那就说集合A B(B A)例题:取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.注意:1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。
求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上.(2)画法A、描点法:B、图象变换法常用变换方法有三种1)平移变换2)伸缩变换3)对称变换4.区间的概念(1)区间的分类:开区间、闭区间、半开中的任意一个元素集,值域是各段值域的并集.补充:复合函数如果y=f(u)(u∈M),u=g(x)(x∈A),则y=f[g(x)]=F(x)(x∈A)称为f、g的复合函数。
二.函数的性质1.函数的单调性(局部性质)(1)增函数设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),D时,都有f(xD(C)复合函数的单调性复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”注意:函数的单调区间只能是其定义域的子区间,不能把单调性相同的区间和在一起写成其并集.8.函数的奇偶性(整体性质)(1)偶函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫象判定.9、函数的解析表达式(1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.(2)求函数的解析式的主要方法有: 1) 凑配法 2) 待定系数法 3) 换元法 4) 消参法2.6.已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式7.已知函数()f x 满足2()()34f x f x x +-=+,则()f x =。
高一数学必修一知识点汇总
高一数学必修一的知识点汇总如下:
1. 数集与运算:数集的概念、数的分类、集合的运算及其性质、集合的相等和包含关系、集合的运算法则。
2. 不等式与绝对值:不等式的概念、不等式的性质、解不等式的方法、绝对值的概念
及性质、绝对值不等式。
3. 函数与方程:函数的概念、函数的性质及分类、函数的图象、函数的运算、方程的
概念、方程的解、一元一次方程、一元一次方程组及解法。
4. 直线与圆的基本性质:直线的概念和性质、直线与方程、直线与函数、圆的概念和
性质、圆的方程。
5. 三角函数:角的概念、弧度制和角度制、三角函数的定义、三角函数的关系、三角
函数图象、三角函数的性质。
6. 三角恒等变换:三角恒等式的概念和性质、三角恒等式的运用。
7. 证明方法与技巧:数学证明的基本方法、数学证明的技巧和途径。
8. 几何证明:基本概念和公理、几何图形的基本性质和判定、几何证明的方法和步骤、几何证明中的常用技巧。
以上是高一数学必修一的知识点汇总,希望对你有帮助!如果你还有其他问题,可以
继续提问。
高一数学必修第一册知识点第一章集合与常用逻辑用语1元素:研究的对象统称为元素,用小写拉丁字母 ,,,c b a 表示,元素三大性质:互异性,确定性,无序性.2集合:一些元素组成的总体叫做集合,简称集,用大写拉丁字母 ,,,C B A 表示.3集合相等:两个集合B A ,的元素一样,记作B A .4元素与集合的关系:①属于:A a ;②不属于:A a .5常用的数集及其记法:自然数集N ;正整数集 N N 或*;整数集Z ;有理数集Q ;实数集R .6集合的表示方法:①列举法:把集合中的所有元素一一列举出来,并用花括号括起来表示集合的方法;②描述法:把集合中所有具有共同特征)(x P 的元素x 所组成的集合表示为})(|{x P A x 的方法;③图示法(Ve nn 图):用平面上封闭曲线的内部代表集合的方法.7集合间的基本关系:子集:对于两个集合B A ,,如果集合A 中任意一个元素都是集合B 中的元素,就称集合A 为集合A 的子集,记作,读作A 包含于B ;真子集:如果B A ,但存在元素B x ,且A x ,就称集合A 是集合B 的真子集,记作A B ,读作A 真包含于B .8空集:不含任何元素的集合,用 表示,空集的性质,空集是任何集合的子集,是任何集合的真子集.9集合的基本运算:并集},|{B x A x x B A 或 ;交集},|{B x A x x B A 且 ;补集},|{A x U x x A C U且(U 为全集,全集是含有所研究问题中涉及的所有元素).运算性质:B A B B A ;B A A B A ;A A ; A ;U C U C A A C C U U U U ,,)(,)()()(),()()(B A C B C A C B A C B C A C UU U U U U .10充分条件与必要条件:一般地,“若p ,则q ”为真命题,p 可以推出q ,记作q p ,称p 是q 的充分条件,q 是p 的必要条件;p 是q 的条件的四种类型:若q q p , p ,则p 是q 的充分不必要条件;若p p q , q ,则p 是q 的必要充分不条件;若q p ,则p 是q 的充要条件;若p q ,q p ,则p 是q 的既不充分也不必要条件.11全称量词及全称量词命题:短语“所有的”,“任意一个”在逻辑中叫做全称量词,并用符号 表示,含有全称量词的命题成为全称量词命题.12存在量词及存在量词命题:短语“存在一个”,“至少有一个”在逻辑中叫做存在量词,并用符号 表示,含有存在量词的命题成为存在量词命题.13全称量词命题与存在量词命题的否定:全称量词命题的否定是存在量词命题;存在量词命题的否定是全称量词命题.第二章一元二次函数、方程不等式1不等式的性质不等式的性质:①对称性a b b a ;②传递性,a b b c a c ;③可加性a b a c b c ;④可乘性,0a b c ac bc ,,0a b c ac bc ;⑤同向可加性,a b c d a c b d ;⑥同向可乘性0,0a b c d ac bd ;⑦可乘方性 0,1nna b a b n n ;⑧可开方性 0,1nna b ab n n.⑨可倒数性bab a 11.2重要不等式:若R b a ,,则ab b a 222,当且仅当b a 时等号成立.3基本不等式:若0a ,0b ,则2a b ab,即2abab,当且仅当b a 时等号成立.4不等式链:若0a ,0b ,则baabbab a1122222,当且仅当b a 时等号成立;一正二定三相等.5一元二次不等式:只含有一个未知数,并且未知数的最高次数是2的不等式.6一元二次不等式的解法:二次函数的图象、一元二次方程的根、一元二次不等式的解集间的关系:判别式24b ac0 0 0 二次函数2y a x b x c0a的图象一元二次方程2a xb x 0c0a的根有两个相异实数根1,22b x a12x x 有两个相等实数根122bx x a没有实数根一元二次不等式的解集20a x b x c 0a 12x xx x x 或2bx xaR2a xb x c0a12x x x x第三章函数的概念与性质1函数的概念:一般地,设B A ,是非空的实数集,如果对于集合A 中的任意一个数x ,按照某种确定的对应关系f ,在集合B 中都有唯一确定的数y 与它对应,那么就称B A f :为从集合A 到集合B 的一个函数,记作A x x f y ),(,其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域,与x 的值相对应的y 值叫做函数值,函数值的集合}|)({A x x f 叫做函数的值域,值域是集合B 的子集.2函数的三要素:定义域、对应关系、值域.求函数定义域的原则:(1)若 f x 为整式,则其定义域是R ;(2)若 f x 为分式,则其定义域是使分母不为0的实数集合;(3)若 f x 是二次根式(偶次根式),则其定义域是使根号内的式子不小于0的实数集合;(4)若 0f x x ,则其定义域是 0x x ;(5)若 0,1xf x aaa ,则其定义域是R ;(6)若 lo g 0,1af x x aa ,则其定义域是 0xx;(7)若x x f t a n )( ,则其定义域是},2|{Z k k x x;求函数值域的方法:配方法,换元法,图象法,单调性法等;求函数的解析式的方法:待定系数法,换元法,配凑法,方程组法等;3函数的表示方法:解析法(用函数表达式表示两个变量之间的对应关系)、图象法(用图象表达两个变量之间的对应关系)、列表法(列出表格表示两个变量之间的对应关系).4分段函数:在定义域内,对于自变量x 的不同取值区间,有不同对应关系的函数.6函数的单调性:(1)单调递增:设任意D x x 21,(I D ,I 是 f x 的定义域),当12x x 时,有12()()f x f x .特别的,当函数在它的定义域上单调递增时,该函数称为增函数;(2)单调递减:设任意D x x 21,(I D ,I 是 f x 的定义域),当12x x 时,有12()()f x f x.特别的,当函数在它的定义域上单调递增时,该函数称为减函数.7单调区间:如果函数在区间上单调递增或单调递减,那么就说函数在这一区间有(严格的)单调性,区间就叫做函数的单调区间,单调区间分为单调增区间和单调减区间.8复合函数的单调性:同增异减.9函数的最大值、最小值:一般地,设函数)(x f y 的定义域为I ,如果存在实数M 满足:I x ,都有))(()(M x f M x f ;I x 0使得M x f )(0,那么称M 是函数的最大(小)值.10函数的奇偶性:偶函数:一般地,设函数)(x f y 的定义域为I ,如果I x ,都有I x ,且)()(x f x f ,那么函数叫做偶函数;偶函数的图象关于y 轴对称;偶函数)(x f y 满足|)(|)()(x f x f x f ;奇函数:一般地,设函数)(x f y 的定义域为I ,如果I x ,都有I x ,且)()(x f x f ,那么函数叫做奇函数;奇函数的图象关于原点对称;若奇函数)(x f y 的定义域中有零,则其函数图象必过原点,即(0)0f .11幂函数:一般地,函数 x y 叫做幂函数,其中x 是自变量, 是常数.12幂函数 f x x 的性质:①所有的幂函数在 0, 都有定义,并且图象都通过点 1,1;②如果0 ,则幂函数的图象过原点,并且在区间 0, 上是增函数;③如果0 ,则幂函数的图象在区间 0, 上是减函数,在第一象限内,当x 从右边趋向于原点时,图象在y 轴右方无限地逼近y 轴,当x 趋向于 时,图象在x 轴上方无限地逼近x 轴;④在直线1 x 的右侧,幂函数图象“指大图高”;⑤幂函数图象不出现于第四象限.第四章指数函数与对数函数1、n 次方根与分数指数幂、指数幂运算性质(1)若nx a ,则 n na n xa n为奇数为偶数;(2)n n a n a n a为奇数为偶数;(3)()nna a ;(4)*(0,,,1)mnmn a a am n N n 且;(5)*1(0,,1)m nnmaam n N n a,且;(6)0的正分数指数幂为0,0的负分数指数幂没有意义.(7) 0,,r s r s a a a a r s R ;(8) ()0,,r s r s a a a r s R ;(9) ()0,0,,r r r ab a b a b r s R .2、对数、对数运算性质(1) lo g 0,1x a a N x N a a ;(2) lo g 100,1aa a ;(3) lo g 10,1aaa a ;(4); lo g 0,1a NaNaa ;(5) lo g 0,1maam a a ;(6) lo g ()lo g lo g 0,1,0,0aaaM N MN aa ;(7) lo g lo g lo g 0,1,0,0aaaM MN aa N;(8) lo glo g 0,1,0naaMn M aa ;(9)换底公式 lo g lo g 0,1,0,0,1lo g c a c b b aa b c c a;(10)l o g l o g 0,1,,*mna a n bb aa n m Nm;(11) 1lo g lo g 0,1,0,naa MM aa M n R n;(12) lo g lo g lo g 10,1,0,1,0,1a b c b c a a a b b c c .3、指数函数)1,0( a a a y x且及其性质:①定义域为 , ;②值域为 0, ;③过定点 0,1;④单调性:当1a 时,函数 f x 在R 上是增函数;当01a 时,函数 f x 在R 上是减函数;⑤在y 轴右侧,指数函数的图象“底大图高”.4、对数函数)1,0(lo ga ax y a且及其性质:①定义域为 0, ;②值域为 , ;③过定点 1,0;④单调性:当1a 时,函数f x 在 0, 上是增函数;当01a 时,函数 f x 在 0, 上是减函数;⑤在直线1 x 的右侧,对数函数的图象“底大图低”.5指数函数xa y 与对数函数)1,0(lo g a a x y a且互为反函数,它们的图象关于直线x y 对称.6不同函数增长的差异:线性函数模型)0( k b kx y 的增长特点是直线上升,其增长速度不变;指数函数模型)1( a a y x的增长特点是随着自变量的增大,函数值增大的速度越来越快,呈“指数爆炸”状态;对数函数模型)1(lo g a x y a的增长特点是随着自变量的增大,函数值增大速度越来越慢,即增长速度平缓;幂函数模型)0( n x y n的增长速度介于指数函数和对数函数之间.7函数的零点:在函数)(x f y 的定义域内,使得0)( x f 的实数x 叫做函数的零点.8零点存在性定理:如果函数 f x 在区间 ,a b 上的图象是连续不断的一条曲线,且有0f a f b ,那么函数y f x在区间 ,a b 内至少有一个零点,即存在 ,c a b ,使得0f c ,这个c 也就是方程 0f x 的根.9二分法:对于区间],[b a 上图象连续不断且 0f a f b 的函数)(x f y,通过不断把它的零点所在区间一分为二,使得区间的两个端点逐步逼近零点,进而得到零点近似值的方法.10给定精确度 ,用二分法求函数)(x f y 零点0x 近似值的步骤:⑴确定零点0x 的初始区间 ,a b ,验证 0f a f b ;⑵求区间 ,a b 的中点c ;⑶计算)(c f ,并进一步确定零点所在的区间;①若0)( c f ,则c 就是函数的零点;②若0)()( c f a f (此时),(0c a x ),则令c b ;③若0)()( b f c f (此时),(0b c x ),则令c a ;⑷判断是否达到精确度 :若a b ,则得到零点的近似值a (或b );否则重复上面的⑵至⑷.第五章三角函数1任意角的分类:按终边的旋转方向分:正角:按逆时针方向旋转形成的角任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角2象限角:角 的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称 为第几象限角.第一象限角的集合为 36036090,k k k ;第二象限角的集合为 36090360180,k k k ;第三象限角的集合为 360180360270,k k k ;第四象限角的集合为360270360360,k k k 角 的终边不在任何一个象限,就称这个角不属于任何一个象限终边在x 轴非负半轴的角的集合},2|{Z k k ;终边在x 轴非正半轴的角的集合},2|{Z k k ;终边在y 轴非负半轴的角的集合},22|{Z k k;终边在y 轴非正半轴的角的集合},22|{Z k k;终边在x 轴的角的集合},|{Z k k ;终边在y 轴的角的集合},2|{Z k k;终边在坐标轴的角的集合},2|{Z kk;2终边相同的角:与角 终边相同的角的集合为 360,k k .3弧度制:长度等于半径长的弧所对的圆心角叫做1弧度.4角度与弧度互化公式:2360 ,1180 ,180157.3.5扇形公式:半径为r 的圆的圆心角 所对弧的长为l ,则角 的弧度数的绝对值是lr .若扇形的圆心角为 为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l r ,2Cr l ,21122S l rr.6三角函数的概念:设 是一个任意大小的角, 的终边上任意一点P 的坐标是 ,x y ,它与原点的距离是 220r r xy,则si n y r,c os x r, t a n 0y xx.7三角函数的符号:一全正二正弦三正切四余弦.8记忆特殊角的三角函数值:15 30 45 60759012013515018027036012643125 232 43 65232 sin 426212223426123222101c os4262322214260212223101t a n 321332不存在3133不存在9同角三角函数的基本关系:221si n c os 1 , 2222si n 1c os ,c os 1si n ;si n 2t a n c ossi n sinta n c os ,c os t a n.10诱导公式口诀:奇变偶不变,符号看象限.1si n 2si n k , c os 2c os k , t a n 2t a n k k .2si n si n, c os c os , t a n t a n . 3si n si n , c os c os , t a n t a n . 4si n si n, c os c os , t a n t a n .5si n c os 2,c os si n 2 . 6si n c os 2 ,c os si n 2.11三角函数的图象与性质:si n yxc os yxt a n yx图象定义域RR,2x xk k值域1,11,1 R函数性质12两角和差的正弦、余弦、正切公式:(1) c os c os c os si n si n ;(2) c os c os c os si n si n ;(3) si n si n c os c os si n ;(4) si n si n c os c os si n ;(5) t a n t a n t a n 1t a n t a n( t a n t a n t a n 1t a n t a n );(6) t a n t a n t a n 1t a n t a n( t a n t a n t a n 1t a n t a n ).13二倍角公式:(1)si n 22si n c os ;(2)2222c os 2c os si n 2c os 112si n ;(2c os 21c os 2 ,21c os 2si n 2);(3)22t a n t a n 21t a n ;14半角公式:(1)2c os 12sin ;(2)2c os12c os;(3)c os 1c os12t a n;(4)c os 1sin sin c os 12t a n15辅助角公式:的终边上在角点其中 ),(,t a n ),sin (c ossin 22b a ab xb axb xa.最值当22x kk时,m a x1y ;当22x kk时,m i n 1y .当 2x k k 时,m a x1y ;当2x kk时,m i n 1y .既无最大值也无最小值周期性22奇偶性奇函数偶函数奇函数单调性在2,222k kk上是增函数;在32,222k kk上是减函数.在2,2k k k上是增函数;在2,2k k k上是减函数.在,22k kk上是增函数.对称性对称中心 ,0k k 对称轴2x k k对称中心 ,02k k对称轴x k k 对称中心 ,02k k无对称轴16函数b x A y )sin ( 的图象与性质:图象变换:(1)先平移后伸缩:函数si n y x 的图象上所有点向左(右)平移 个单位长度,得到函数 si n yx 的图象;再将函数 si n y x 的图象上所有点的横坐标伸长(缩短)到原来的1倍(纵坐标不变),得到函数 si n y x 的图象;再将函数 si n y x 的图象上所有点的纵坐标伸长(缩短)到原来的 倍(横坐标不变),得到函数 si n y x 的图象.(2)先伸缩后平移:函数si n y x 的图象上所有点的横坐标伸长(缩短)到原来的1倍(纵坐标不变),得到函数si n y x 的图象;再将函数si n y x 的图象上所有点向左(右)平移个单位长度,得到函数 si n y x 的图象;再将函数 si n y x 的图象上所有点的纵坐标伸长(缩短)到原来的 倍(横坐标不变),得到函数 si n y x 的图象.五点法画图函数 si n 0,0y x 的性质:①定义域为R ;②值域为],[A A ;③单调性:根据函数x y sin 的单调区间求函数的单调区间;④奇偶性:当Z k k , 时,函数 si n y x 是奇函数;当Z k k ,2时,函数si n yx 是偶函数;⑤周期:2T ;⑥对称性:根据函数x y sin 的对称性研究函数的对称性1217函数B x A y )sin ( 的应用①振幅:A ;②周期:2 ;③频率:12f;④相位:x ;⑤初相: .⑥最值:函数B x A y )sin ( ,当1x x 时,取得最小值为m i n y ;当2x x 时,取得最大值为m a xy,则 m a xm i n 12y y, m a xm i n 12y y,21122x x x x.。