2-似然估计和无偏性
- 格式:ppt
- 大小:664.00 KB
- 文档页数:31
第二章经典单方程计量经济学模型:一元线性回归模型一、内容提要本章介绍了回归分析的基本思想与基本方法。
首先,本章从总体回归模型与总体回归函数、样本回归模型与样本回归函数这两组概念开始,建立了回归分析的基本思想。
总体回归函数是对总体变量间关系的定量表述,由总体回归模型在若干基本假设下得到,但它只是建立在理论之上,在现实中只能先从总体中抽取一个样本,获得样本回归函数,并用它对总体回归函数做出统计推断。
本章的一个重点是如何获取线性的样本回归函数,主要涉及到普通最小二乘法(OLS)的学习与掌握。
同时,也介绍了极大似然估计法(ML)以及矩估计法(MM)。
本章的另一个重点是对样本回归函数能否代表总体回归函数进行统计推断,即进行所谓的统计检验。
统计检验包括两个方面,一是先检验样本回归函数与样本点的“拟合优度”,第二是检验样本回归函数与总体回归函数的“接近”程度。
后者又包括两个层次:第一,检验解释变量对被解释变量是否存在着显著的线性影响关系,通过变量的t检验完成;第二,检验回归函数与总体回归函数的“接近”程度,通过参数估计值的“区间检验”完成。
本章还有三方面的内容不容忽视。
其一,若干基本假设。
样本回归函数参数的估计以及对参数估计量的统计性质的分析以及所进行的统计推断都是建立在这些基本假设之上的。
其二,参数估计量统计性质的分析,包括小样本性质与大样本性质,尤其是无偏性、有效性与一致性构成了对样本估计量优劣的最主要的衡量准则。
Goss-markov定理表明OLS估计量是最佳线性无偏估计量。
其三,运用样本回归函数进行预测,包括被解释变量条件均值与个值的预测,以及预测置信区间的计算及其变化特征。
二、典型例题分析例1、令kids表示一名妇女生育孩子的数目,educ表示该妇女接受过教育的年数。
生育率对教育年数的简单回归模型为β+μβkids=educ+1(1)随机扰动项μ包含什么样的因素?它们可能与教育水平相关吗?(2)上述简单回归分析能够揭示教育对生育率在其他条件不变下的影响吗?请解释。
参数估计方法与实例例题和知识点总结一、参数估计的概念参数估计是指根据从总体中抽取的样本估计总体分布中包含的未知参数。
参数通常是描述总体分布的特征值,比如均值、方差、比例等。
二、参数估计的方法(一)点估计点估计就是用样本统计量来估计总体参数,给出一个具体的数值。
常见的点估计方法有矩估计法和最大似然估计法。
1、矩估计法矩估计法的基本思想是用样本矩来估计总体矩。
比如,用样本均值估计总体均值,用样本方差估计总体方差。
2、最大似然估计法最大似然估计法是求使得样本出现的概率最大的参数值。
它基于这样的想法:如果在一次抽样中得到了某个样本,那么这个样本出现概率最大的参数值就是总体参数的估计值。
(二)区间估计区间估计则是给出一个区间,认为总体参数以一定的概率落在这个区间内。
区间估计通常包含置信水平和置信区间两个概念。
置信水平表示区间包含总体参数的可靠程度,常见的置信水平有90%、95%和 99%。
置信区间则是根据样本数据计算得到的一个区间范围。
三、实例例题假设我们要研究某地区成年人的身高情况。
随机抽取了 100 名成年人,他们的身高数据如下(单位:厘米):165, 170, 172, 168, 175, 180, 160, 178, 176, 169,(一)点估计1、用样本均值估计总体均值:计算这 100 个数据的均值,得到样本均值为 172 厘米。
因此,我们估计该地区成年人的平均身高约为 172 厘米。
2、用样本方差估计总体方差:计算样本方差,得到约为 25 平方厘米。
(二)区间估计假设我们要以 95%的置信水平估计总体均值的置信区间。
首先,根据样本数据计算样本标准差,然后查找标准正态分布表或使用相应的统计软件,得到置信系数。
最终计算出置信区间为(168,176)厘米。
这意味着我们有 95%的把握认为该地区成年人的平均身高在 168 厘米到 176 厘米之间。
四、知识点总结(一)点估计的评价标准1、无偏性:估计量的期望值等于被估计的参数。
计量经济学第一部分:名词解释第一章1、模型:对现实的描述和模拟。
2、广义计量经济学:利用经济理论、统计学和数学定量研究经济现象的经济计量方法的统称,包括回归分析方法、投入产出分析方法、时间序列分析方法等。
3、狭义计量经济学:以揭示经济现象中的因果关系为目的,在数学上主要应用回归分析方法。
第二章1、总体回归函数:指在给定Xi 下Y 分布的总体均值与Xi 所形成的函数关系(或者说总体被解释变量的条件期望表示为解释变量的某种函数)。
2、样本回归函数:指从总体中抽出的关于Y ,X 的若干组值形成的样本所建立的回归函数。
3、随机的总体回归函数:含有随机干扰项的总体回归函数(是相对于条件期望形式而言的)。
4、线性回归模型:既指对变量是线性的,也指对参数β为线性的,即解释变量与参数β只以他们的1次方出现。
5、随机干扰项:即随机误差项,是一个随机变量,是针对总体回归函数而言的。
6、残差项:是一随机变量,是针对样本回归函数而言的。
7、条件期望:即条件均值,指X 取特定值Xi 时Y 的期望值。
8、回归系数:回归模型中βo ,β1等未知但却是固定的参数。
9、回归系数的估计量:指用¶µ01,ββ等表示的用已知样本提供的信息所估计出来总体未知参数的结果。
10、最小二乘法:又称最小平方法,指根据使估计的剩余平方和最小的原则确定样本回归函数的方法。
11、最大似然法:又称最大或然法,指用生产该样本概率最大的原则去确定样本回归函数的方法。
12、估计量的标准差:度量一个变量变化大小的测量值。
13、总离差平方和:用TSS 表示,用以度量被解释变量的总变动。
14、回归平方和:用ESS 表示:度量由解释变量变化引起的被解释变量的变化部分。
15、残差平方和:用RSS 表示:度量实际值与拟合值之间的差异,是由除解释变量以外的其他因素引起的被解释变量变化的部分。
16、协方差:用Cov (X ,Y )表示,度量X,Y 两个变量关联程度的统计量。
1. 总体回归函数:在给定解释变量X i 条件下被解释变量Y i 的期望轨迹称为总体回归线,或更一般地称为总体回归曲线。
相应的函数:E(Y 〡X i )=f(X i )称为(双变量)总体回归函数(populationregressionfunction,PRF )2. 样本回归函数:样本散点图近似于一条直线,画一条直线以尽好地拟合该散点图,由于样本取自总体,可以该线近似地代表总体回归线。
该线称为样本回归线。
记样本回归线的函数形式为:i i i X X f Y 10ˆˆ)(ˆββ+==称为样本回归函数(sampleregressionfunction ,SRF )。
3. 随机的总体回归函数:函数 〡 或者在线性假设下, 式称为总体回归函数(方程)PRF 的随机设定形式。
表明被解释变量除了受解释变量的系统性影响外,还受其他因素的随机性影响。
由于方程中引入了随机项,成为计量经济学模型,因此也称为总体回归模型。
4. 线性回归模型:假设1、回归模型是正确设定的。
假设2、解释变量X 是确定性变量,不是随机变量,在重复抽样中取固定值。
假设3、解释变量X 在所抽取的样本中具有变异性,而且随着样本容量的无限增加,解释变量X 的样本方差趋于一个非零的有限常数,即假设4、随机误差项具有零均值、同方差和不序列相关性:E(i )=0i=1,2,…,nVar(i )=2i=1,2,…,nCov(i,j )=0i≠ji,j=1,2,…,n假设5、随机误差项与解释变量X 之间不相关:Cov(X i ,i )=0i=1,2,…,n假设6、服从零均值、同方差、零协方差的正态分布i ~N(0,2)i=1,2,…,n以上假设也称为线性回归模型的经典假设,满足该假设的线性回归模型,也称为经典线性回归模型5. 随机误差项( )和残差项( ):(1)i 为观察值Y i 围绕它的期望值E(Y |X i )的离差,是一个不可观测的随机变量,又称为随机干扰项或随机误差项。