数理统计-极大 无偏有效性共26页
- 格式:ppt
- 大小:2.50 MB
- 文档页数:26
数理统计8:点估计的有效性、⼀致最⼩⽅差⽆偏估计(UMVUE)、零⽆偏估计法在之前的学习中,主要基于充分统计量给出点估计,并且注重于点估计的⽆偏性与相合性。
然⽽,仅有这两个性质是不⾜的,⽆偏性只能保证统计量的均值与待估参数⼀致,却⽆法控制统计量可能偏离待估参数的程度;相合性只能在⼤样本下保证统计量到均值的收敛性,但却对⼩样本情形束⼿⽆策。
今天我们将注重于统计量的有效性,即⽆偏统计量的抽样分布的⽅差。
由于本系列为我独⾃完成的,缺少审阅,如果有任何错误,欢迎在评论区中指出,谢谢!⽬录Part 1:⼀致最⼩⽅差⽆偏估计⾸先考虑这样的问题:如何刻画⼀个统计量的有效程度?注意到,⼀个统计量的取值既可能⾼于待估参数,亦可能低于待估参数,要综合考虑统计量对待估参数误差,需要⽤平⽅均衡这种双向偏差,因此,提出均⽅误差的概念:若\hat g(\boldsymbol{X})是g(\theta)的估计量,则\hat g(\boldsymbol{X})的均⽅误差定义为\mathrm{MSE}(\hat g(\boldsymbol{X}))= \mathbb{E}[\hat g(\boldsymbol{X})-g(\theta)]^2.对于确定的统计量\hat g(\boldsymbol{X})⽽⾔,\mathrm{MSE}(\hat g(\boldsymbol{X}))是\theta的函数。
显然,⼀个统计量的均⽅误差越⼩,它就越在待估参数真值附近环绕,由此,⽤统计量的⼀次观测值作为待估参数的估计就有着越⼤的把握。
如果对于g(\theta)的两个估计量\hat g_1(\boldsymbol{X})和\hat g_2(\boldsymbol{X}),恒有\mathrm{MSE}(\hat g_1(\boldsymbol{X}))\le \mathrm{MSE}(\hatg_2(\boldsymbol{X})),且严格不等号⾄少在某个\theta处成⽴,就称\hat g_1(\boldsymbol{X})在均⽅误差准则下优于\hat g_2(\boldsymbol{X})。
概率论与数理统计本篇笔记内容主要整理自笔者的教材——《概率论与数理统计》(第四版),作者为盛骤、试式千、潘承毅等人 ,高等教育出版社出版。
一、概率论的基本概念1. 什么是概率?描述性定义:随机事件A发生的可能性的大小的度量(非负值),称为事件A发生的概率。
公理化定义:在随机试验的样本空间的每一个事件A,都对应一个实数值P(A),如果函数P( · )满足下列条件:非负性:规范性:S是必然事件,有P(S) = 1;可列可加性:设A1,A2,...,是两两不相容的事件(即i≠j时,AiAj = ∅),有P(A1∪A2∪...∪An) = P(A1) + P(A2) + ... + P(An)不相容事件的并的概率 等于 这些事件的概率的和。
2. 古典概型有什么特点?随机试验的样本空间只包含有限个元素;随机试验中的每个基本事件发生的可能性都相同。
3. 几何概型有什么特点?样本空间 是一个可度量的有界区域;有无限个基本事件,每个基本事件发生的可能性都一样,即样本点落入 的某一个可度量子区域S可能性与S的几何度量成正比,而与S的位置及形状无关。
4. 什么是条件概率?在已知事件A发生的情况下事件B发生的概率为条件概率P(A|B),公式有5. 什么是全概率公式?有一些时候事件B的概率不容易直接求,可以通过计算给B在各个条件下Ai发生的概率P(B| · ),来研究B发生的概率。
6. 什么是贝叶斯公式?解释一下“先验”和“后验”的概念(按照课本的思路)通过已知信息B来修正A发生的概率(即后验概率),可以通过先验概率P(A)以及AB之间的关系来研究。
举个例子:假设由多年的统计数据可以知道某种疾病的发病率,有一种检测试剂的准确率为99%,即=99%,同时有=5%会误报(检测没有病的病人为阳性),可以通过全概率公式计算试剂表现为阳性的概率。
根据这些信息,就可以计算一个病人在这种试剂检测为阳性的情况下患病的概率7. 什么叫做事件相互独立?P(AB) = P(A)P(B)即一个事件的发生,不会影响另一个事件的发生。
概率论与数理统计自考题型一、选择题(每题3分,共30分)1. 设随机变量X服从正态分布N(μ,σ²),则P(X ≤ μ)等于()A. 0B. 0.5C. 1D. 取决于μ和σ的值。
答案:B。
解析:正态分布的图像关于x = μ对称,所以P(X ≤ μ) = 0.5。
2. 若事件A与B相互独立,P(A) = 0.4,P(B) = 0.5,则P(A∪B)等于()A. 0.7B. 0.8C. 0.6D. 0.9。
答案:A。
解析:因为A与B相互独立,所以P(A∪B)=P(A)+P(B)-P(A)P(B)=0.4 + 0.5 - 0.4×0.5 = 0.7。
3. 设离散型随机变量X的分布律为P(X = k)=ck,k = 1,2,3,则c的值为()A. 1/6B. 1/3C. 1/2D. 2/3。
答案:A。
解析:根据离散型随机变量分布律的性质,所有概率之和为1,即c+2c+3c = 1,解得c = 1/6。
4. 对于二维随机变量(X,Y),如果X与Y相互独立,则()A. Cov(X,Y) = 0B. D(X + Y)=D(X)+D(Y)C. 以上两者都对D. 以上两者都不对。
答案:C。
解析:当X与Y相互独立时,Cov(X,Y) = 0,且D(X + Y)=D(X)+D(Y)。
5. 设总体X服从参数为λ的泊松分布,X₁,X₂,…,Xₙ是来自总体X的样本,则λ的矩估计量为()A. XB. 1/XC. X²D. 1/X²。
答案:A。
解析:根据泊松分布的期望为λ,由矩估计法,用样本均值X估计总体的期望λ。
6. 样本方差S²是总体方差σ²的()A. 无偏估计B. 有偏估计C. 极大似然估计D. 矩估计。
答案:A。
解析:样本方差S²是总体方差σ²的无偏估计。
7. 设总体X~N(μ,σ²),其中μ未知,σ²已知,X₁,X₂,…,Xₙ是来自总体X的样本,则μ的置信区间为()A. (X - zα/2(σ/√n),X + zα/2(σ/√n))B. (X - tα/2(s/√n),X + tα/2(s/√n))C. (X - zα/2(s/√n),X + zα/2(s/√n))D. (X - tα/2(σ/√n),X + tα/2(σ/√n))。
数理统计的基本概念第6章数理统计的基本概念6.1 内容框图6.2 基本要求(1)理解总体、样本及统计量的概念,并熟练掌握常⽤统计量的公式.(2)掌握矩法估计和极⼤似然估计的求法,以及估计⽆偏性、有效性的判断. (3)掌握三⼤抽样分布定义,并记住其概率密度的形状.(4)理解并掌握有关正态总体统计量分布的⼏个结论,如定理6.4~6.9及定理6.11.6.3 内容概要1) 总体与样本在数理统计中,我们把作为统计研究对象的随机变量称为总体,记为ξ,η,… 。
对总体进⾏ n 次试验后所得到的结果,称为样本,记为(n X X X ,,,21 ),(n Y Y Y ,,,21 ),……,其中,试验次数 n 称为样本容量。
样本(n X X X ,,,21 )中的每⼀个 i X 都是随机变量。
样本所取的⼀组具体的数值,称为样本观测值,记为总体与样本统计量点估计矩阵估计常⽤统计量定义统计量的分布正态总体统计量的分布极⼤似然估计点估计的评价三⼤抽样分布(n x x x ,,,21 )。
具有性质:(1)独⽴性,即 n X X X ,,,21 相互独⽴。
(2)同分布性,即每⼀个 i X 都与总体ξ服从相同的分布。
称为简单随机样本。
如果总体ξ是离散型随机变量,概率分布为 }{k P =ξ,那么样本(n X X X ,,,21 )的联合概率分布为∏∏=========ni i ni i in n x P x XP x X x X x X P 112211}{}{},,,{ξ。
如果总体ξ是连续型随机变量,概率密度为 )(x ?,那么样本(n X X X ,,,21 )的联合概率密度为∏∏====ni i ni i X n x x x x x i1121)()(),,,(*??。
如果总体ξ的分布函数为 )(x F ,那么样本(n X X X ,,,21 )的联合分布函数为∏∏====ni i n i i X n x F x F x x x F i 1121)()(),,,(* 。