不平衡推理法.
- 格式:ppt
- 大小:1.94 MB
- 文档页数:3
高三数学证明题推理方法数学学科担负着培养运算能力、逻辑思维能力、空间想象能力,以及运用所学知识分析问题、解决问题的能力的重任。
下面就是小编给大家带来的高三数学证明题推理方法,希望大家喜欢!一、合情推理1.归纳推理是由部分到整体,由个别到一般的推理,在进行归纳时,要先根据已知的部分个体,把它们适当变形,找出它们之间的联系,从而归纳出一般结论;2.类比推理是由特殊到特殊的推理,是两类类似的对象之间的推理,其中一个对象具有某个性质,则另一个对象也具有类似的性质。
在进行类比时,要充分考虑已知对象性质的推理过程,然后类比推导类比对象的性质。
二、演绎推理演绎推理是由一般到特殊的推理,数学的证明过程主要是通过演绎推理进行的,只要采用的演绎推理的大前提、小前提和推理形式是正确的,其结论一定是正确,一定要注意推理过程的正确性与完备性。
三、直接证明与间接证明直接证明是相对于间接证明说的,综合法和分析法是两种常见的直接证明。
综合法一般地,利用已知条件和某些数学定义、定理、公理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法(或顺推证法、由因导果法)。
分析法一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止,这种证明方法叫做分析法。
间接证明是相对于直接证明说的,反证法是间接证明常用的方法。
假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明原命题成立,这种证明方法叫做反证法。
四、数学归纳法数学上证明与自然数 N 有关的命题的一种特殊方法,它主要用来研究与正整数有关的数学问题,在高中数学中常用来证明等式成立和数列通项公式成立。
一、分类记忆法遇到数学公式较多,一时难于记忆时,可以将这些公式适当分组。
例如求导公式有 18 个,就可以分成四组来记: (1)常数与幂函数的导数(2 个); (2)指数与对数函数的导数(4 个); (3)三角函数的导数(6 个); (4)反三角函数的导数(6 个)。
主题:离散数学中的contrapositive随着计算机科学和信息技术的快速发展,离散数学作为计算机科学的基础学科逐渐受到重视。
其中,逻辑推理是离散数学中的重要内容之一,而contrapositive(否定逆命题)作为逻辑推理中的一种重要方法,对于解题和证明都有着重要的作用。
本文将对contrapositive在离散数学中的应用进行介绍,希望能够帮助读者更好地理解contrapositive的原理和应用。
一、contrapositive的定义contrapositive是逻辑推理中的一种重要方法,它指的是将一个命题的逆命题进行否定,得到的结论与原命题的真值相同。
具体来说,对于命题“如果p,则q”,它的逆命题是“如果非q,则非p”。
contrapositive的定义就是:“如果非q,则非p”,其真值与原命题“如果p,则q”相同。
这种逻辑推理方法在离散数学中具有广泛的应用,能够帮助我们简化问题、进行证明及推理。
二、contrapositive的应用1. 证明定理在离散数学中,常常需要证明某个定理或命题。
而contrapositive方法能够帮助我们简化证明过程,减少繁琐的推理步骤。
通过对原命题进行否定和逆命题的转换,我们可以得到等价的结论,从而简化证明过程。
举例来说,对于一个数论定理:“如果n是一个整数,且n^2为偶数,则n为偶数”。
采用contrapositive方法,我们可将原命题进行否定和逆命题的转换得到“如果n为奇数,则n^2为奇数”,这样便可简化证明过程,使得推理更加清晰和简洁。
2. 解决问题在离散数学中,contrapositive方法也常常用于解决问题。
通过对问题进行转化和逻辑推理,我们可以得到等价的结论,从而更好地理解问题的本质和寻找解决问题的方法。
举例来说,如果我们需要证明某个命题成立,而直接证明比较困难时,可以尝试采用contrapositive方法进行推理。
通过对原命题进行否定和逆命题的转换,我们可以得到等价的结论,从而更容易找到证明的方法或者解决问题的途径。
一旦你创业了,你就变成了所有人的孙子,员工是你大爷、客户是你大爷、市场是你大爷、ZF更是你大爷。
而你自己,就只能是小心翼翼的孙子。
——牛文文第一部分题目开始:1.有两根不均匀分布的香,香烧完的时间是一个小时,你能用什么方法来确定一段15分钟的时间?2.一个经理有三个女儿,三个女儿的年龄加起来等于13,三个女儿的年龄乘起来等于经理自己的年龄,有一个下属已知道经理的年龄,但仍不能确定经理三个女儿的年龄,这时经理说只有一个女儿的头发是黑的,然后这个下属就知道了经理三个女儿的年龄。
请问三个女儿的年龄分别是多少?3.有三个人去住旅馆,住三间房,每一间房$10元,于是他们一共付给老板$30,第二天,老板觉得三间房只需要$25元就够了于是叫小弟退回$5给三位客人,谁知小弟贪心,只退回每人$1,自己偷偷拿了$2,这样一来便等于那三位客人每人各花了九元,于是三个人一共花了$27,再加上小弟独吞了$2,总共是$29。
可是当初他们三个人一共付出$30那么还有$1呢?4.有两位盲人,他们都各自买了两对黑袜和两对白袜,八对袜了的布质、大小完全相同,而每对袜了都有一张商标纸连着。
两位盲人不小心将八对袜了混在一起。
他们每人怎样才能取回黑袜和白袜各两对呢?5.有一辆火车以每小时15公里的速度离开洛杉矶直奔纽约,另一辆火车以每小时20公里的速度从纽约开往洛杉矶。
如果有一只鸟,以30公里每小时的速度和两辆火车同时启动,从洛杉矶出发,碰到另一辆车后返回,依次在两辆火车来回飞行,直到两辆火车相遇,请问,这只小鸟飞行了多长距离?6.你有两个罐子,50个红色弹球,50个蓝色弹球,随机选出一个罐子,随机选取出一个弹球放入罐子,怎么给红色弹球最大的选中机会?在你的计划中,得到红球的准确几率是多少?7.你有四个装药丸的罐子,每个药丸都有一定的重量,被污染的药丸是没被污染的重量+1.只称量一次,如何判断哪个罐子的药被污染了?8.你有一桶果冻,其中有黄色,绿色,红色三种,闭上眼睛,抓取两个同种颜色的果冻。
1、五年级下册《找次品》一等奖说课稿一、教材分析《找次品》是人教版数学五年级下册第七单元数学广角的内容。
在这节课的学习中要求学生在所有待测物品中找出唯一一个外观与合格品完全相同,只是质量有所差异的次品,且事先已经知道次品比合格品轻(或重)。
“找次品”的教学,旨在通过“找次品”渗透优化思想,让学生充分感受到数学与日常生活的密切联系。
优化是一种重要的数学思想方法,在教学中尝试把这种思想方法通过学生可以理解的简单形式,采用生动有趣的事例呈现出来,并运用它可有效地分析和解决问题。
本节课通过从3个、5个、9个待测物品中找出一个次品这一操作活动为载体,让学生通过观察、猜测、试验等方式感受解决问题策略的多样性,在此基础上,通过归纳、推理的方法体会运用优化策略解决问题的有效性,感受数学的魅力,培养观察、分析、推理以及解决问题的能力。
二、学情分析解决问题的策略研究学生已经不是第一次接触,此前学习过的“沏茶”、“田忌赛马”、“打电话”等都属于这一范畴,在这些内容的学习中,对简单的优化思想方法、通过画图的方式发现事物隐含的规律等都有所渗透,学生已经具有一定的逻辑推理能力和综合运用所学知识解决问题的能力。
另外,本节课中涉及到的“可能”、“一定”、等知识点学生在此之前都已学过。
三、教学目标知识技能目标:让学生初步认识“找次品”这类问题的基本解决手段和方法。
过程方法目标:学生通过观察、猜测、试验、推理等活动,体会解决问题策略的多样性及运用优化的方法解决问题的有效性。
情感态度价值观目标:感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。
四、教学重难点体会解决问题策略的多样性,初步学会运用优化的方法解决实际问题。
五、教学方法1、加强学生的试验、操作活动。
本节课内容的活动性和操作性比较强,可以采取学生动手实践、小组讨论、探究的方式教学。
先多给学生一些时间,让他们充分地操作、试验、讨论、研究,找到解决问题的多种策略。
一旦你创业了,你就变成了所有人的孙子,员工是你大爷、客户是你大爷、市场是你大爷、ZF更是你大爷。
而你自己,就只能是小心翼翼的孙子。
——牛文文第一部分题目开始:1.有两根不均匀分布的香,香烧完的时间是一个小时,你能用什么方法来确定一段15分钟的时间?2.一个经理有三个女儿,三个女儿的年龄加起来等于13,三个女儿的年龄乘起来等于经理自己的年龄,有一个下属已知道经理的年龄,但仍不能确定经理三个女儿的年龄,这时经理说只有一个女儿的头发是黑的,然后这个下属就知道了经理三个女儿的年龄。
请问三个女儿的年龄分别是多少?3.有三个人去住旅馆,住三间房,每一间房$10元,于是他们一共付给老板$30,第二天,老板觉得三间房只需要$25元就够了于是叫小弟退回$5给三位客人,谁知小弟贪心,只退回每人$1,自己偷偷拿了$2,这样一来便等于那三位客人每人各花了九元,于是三个人一共花了$27,再加上小弟独吞了$2,总共是$29。
可是当初他们三个人一共付出$30那么还有$1呢?4.有两位盲人,他们都各自买了两对黑袜和两对白袜,八对袜了的布质、大小完全相同,而每对袜了都有一张商标纸连着。
两位盲人不小心将八对袜了混在一起。
他们每人怎样才能取回黑袜和白袜各两对呢?5.有一辆火车以每小时15公里的速度离开洛杉矶直奔纽约,另一辆火车以每小时20公里的速度从纽约开往洛杉矶。
如果有一只鸟,以30公里每小时的速度和两辆火车同时启动,从洛杉矶出发,碰到另一辆车后返回,依次在两辆火车来回飞行,直到两辆火车相遇,请问,这只小鸟飞行了多长距离?6.你有两个罐子,50个红色弹球,50个蓝色弹球,随机选出一个罐子,随机选取出一个弹球放入罐子,怎么给红色弹球最大的选中机会?在你的计划中,得到红球的准确几率是多少?7.你有四个装药丸的罐子,每个药丸都有一定的重量,被污染的药丸是没被污染的重量+1.只称量一次,如何判断哪个罐子的药被污染了?8.你有一桶果冻,其中有黄色,绿色,红色三种,闭上眼睛,抓取两个同种颜色的果冻。
逻辑推理公式整理逻辑推理是一种基于事实和前提的推导过程,通过推理规则和逻辑公式来得出新的结论。
在逻辑推理中,公式扮演着重要的角色,可以帮助我们理解和描述逻辑关系。
以下是一些常见的逻辑推理公式。
1.求取命题的否定:公式:¬P说明:这个公式表示命题P的否定,即P不成立。
2.条件推理:公式:P→Q说明:这个公式表示如果P成立,则Q也成立。
这是一种常见的逻辑推理形式。
3.充分必要条件:公式:P↔Q说明:这个公式表示P与Q是充分必要条件,即当P成立时Q成立,且当Q成立时P也成立。
4.假言推理:公式:P,Q/P→Q说明:这个公式表示如果同时有P和Q成立,则可以得出P推出Q。
5.排中律:公式:P∨¬P说明:这个公式表示一个命题P或它的否定¬P一定成立。
这是一种基本的逻辑定律。
6.矛盾律:公式:P∧¬P说明:这个公式表示一个命题P与它的否定¬P是矛盾的,不可能同时成立。
7.分配律:公式:P∧(Q∨R)≡(P∧Q)∨(P∧R)说明:这个公式表示逻辑中的分配律,可以帮助我们简化复杂命题的形式。
8.合取范式:公式:(P∨Q)∧(¬P∨Q)∨(P∨¬Q)∧(¬P∨¬Q)说明:这个公式表示合取范式,可以将命题写成一组合取式的多个命题的析取。
9.析取范式:公式:(P∧Q)∨(¬P∧Q)∨(P∧¬Q)∨(¬P∧¬Q)说明:这个公式表示析取范式,可以将命题写成一组析取式的多个命题的合取。
10.假言三段论:公式:P→Q,Q→R/P→R说明:这个公式表示如果P推出Q,且Q推出R,则可以得出P推出R。
这些是一些常见的逻辑推理公式,可以应用于不同的逻辑推理问题中。
逻辑公式的运用能够帮助我们进行准确有效的推理和论证,提高逻辑思维能力。
在实际应用中,还有更多的逻辑推理公式可以用于解决复杂的问题。
不完全归纳推理的5个逻辑规则一、什么是不完全归纳推理不完全归纳推理是指前提中考察了某类事物的部分对象具有(或不具有)某种属性,从而推出该类事物具有(或不具有)这种属性的推理。
例如,人们通过考察发现,甲乌鸦是黑的,乙乌鸦是黑的,丙乌鸦是黑的,一直到n乌鸦都是黑的;而甲、乙、丙直到n乌鸦只是乌鸦中的部分对象,从而推出结论:天下所有的乌鸦都是黑的。
这个结论就是运用不完全归纳推理而得出的。
其推理过程如下:甲乌鸦是黑的;乙乌鸦是黑的;丙乌鸦是黑的;……n乌鸦是黑的;……甲乌鸦直到n乌鸦只是乌鸦中的部分对象;所以,天下所有的乌鸦都是黑的。
不完全归纳推理由于其前提只考察了某类事物中的部分对象具有(或不具有)某种属性,而结论则是该类事物的全部对象都具有(或不具有)某种属性,这样其结论的断定明显地超出了其前提所断定的范围。
因而,前提与结论之间的联系便是或然的,也就是说,即使前提真实,推理有效,而其结论也不必然为真。
因此,不完全归纳推理是一种或然性推理。
二、不完全归纳推理的种类根据其前提是否揭示了对象和属性间的因果联系或其他必然联系,把不完全归纳推理分为简单枚举归纳推理和科学归纳推理两类。
(一)简单枚举归纳推理1.什么是简单枚举归纳推理简单枚举归纳推理是指凭经验观察到某类事物中的部分对象具有(或不具有)某种属性,同时,又没有遇到反例,从而推出该类事物具有(或不具有)这一属性。
简单枚举归纳推理简称为简单枚举法,它是一种最典型的归纳推理。
例如:甲地的棉花是白的;乙地的棉花是白的;丙地的棉花是白的;丁地的棉花是白的;……在考察中未遇到反例;所以,所有的棉花都是白的。
这个推理就是一个简单枚举归纳推理。
前提中只考察了棉花的部分对象具有白的属性,从而推出了所有的棉花都具有这种属性的结论,即它是从经验的个别事实,概括出了一般性的结论。
简单枚举法的结构,可用公式表示为:S1是(或不是)P;S2是(或不是)P;S3是(或不是)P;……Sn是(或不是)P;(S1、S2、S3……Sn是S中的部分对象,并且在已考察的事例中未遇到相反的情况);所以,所有的S是(或不是)P。