数控机床机械故障诊断及处理
- 格式:pdf
- 大小:303.04 KB
- 文档页数:4
数控机床进给伺服系统类故障诊断与处理数控机床进给伺服系统是数控机床中非常关键的一个组成部分,它直接影响机床加工的精度和效率。
然而,在使用过程中,由于各种原因,进给伺服系统可能会出现故障。
本文将介绍数控机床进给伺服系统的常见故障及其诊断与处理方法。
一、数控机床进给伺服系统常见故障1. 运动不平稳:机床在加工工件时,出现运动不平稳的情况,可能是由于进给伺服系统的故障引起的。
这种情况表现为运动过程中有明显的抖动或者不稳定的现象。
2. 运动失效:机床无法正常运动,不响应操作指令。
这种情况可能是由于进给伺服系统的电源故障、控制器故障或者连接线路故障引起的。
3. 位置误差过大:机床在加工过程中,位置误差超过了允许范围,导致加工工件的尺寸不准确。
这种情况可能是由于进给伺服系统的位置反馈元件(如编码器)故障引起的。
4. 加工速度过慢:机床在加工时,进给速度远低于预设值,导致加工效率低下。
这种情况可能是由于进给伺服系统的电机故障或者速度控制回路故障引起的。
二、故障诊断与处理方法1. 运动不平稳的诊断与处理:首先,检查机床的润滑系统,确保润滑油是否充足,并且清洁。
其次,检查机床的传动系统,确保螺杆和导轨的润滑良好。
如果问题还未解决,可以通过检查进给伺服系统的控制器参数是否正确、电机驱动器是否正常工作等方式进一步诊断。
2. 运动失效的诊断与处理:首先,检查进给伺服系统的电源供应情况,确保电源正常。
其次,检查进给伺服系统的连接线路,包括电源线、编码器连接线等,确保线路没有松动或者断裂。
如果问题还未解决,可以通过检查进给伺服系统的控制器和电机驱动器是否正常工作等方式进一步诊断。
3. 位置误差过大的诊断与处理:首先,检查进给伺服系统的位置反馈元件,如编码器是否损坏或者松动。
如果问题还未解决,可以通过检查进给伺服系统的控制器参数是否正确、电机驱动器是否正常工作等方式进一步诊断。
4. 加工速度过慢的诊断与处理:首先,检查进给伺服系统的电机是否正常工作,包括电机是否有异常声音或者发热等。
数控机床常见的故障及排除方法一、数控机床常见故障分类1、确定性故障确定性故障是指控制系统主机中的硬件损坏或只要满足一定的条件,数控机床必然会发生的故障。
这一类故障现象在数控机床上最为常见,但由于它具有一定的规律,因此也给维修带来了方便,确定性故障具有不可恢复性,故障一旦发生,如不对其进行维修处理,机床不会自动恢复正常。
但只要找出发生故障的根本原因,维修完成后机床立即可以恢复正常。
正确的使用与精心维护是杜绝或避免故障发生的重要措施。
2、随机性故障随机性故障是指数控机床在工作过程中偶然发生的故障,此类故障的发生原因较隐蔽,很难找出其规律性,故常称之为“软故障”,随机性故障的原因分析与故障诊断比较困难,一般而言,故障的发生往往与部件的安装质量、参数的设定、元器件的品质、软件设计不完善、工作环境的影响等诸多因素有关。
随机性故障有可恢复性,故障发生后,通过重新开机等措施,机床通常可恢复正常,但在运行过程中,又可能发生同样的故障。
加强数控系统的维护检查,确保电气箱的密封,可靠的安装、连接,正确的接地和屏蔽是减少、避免此类故障发生的重要措施。
二、数控机床常见的故障1、主轴部件故障由于使用调速电机,数控机床主轴箱结构比较简单,容易出现故障的部位是主轴内部的刀具自动夹紧机构、自动调速装置等。
为保证在工作中或停电时刀夹不会自行松脱,刀具自动夹紧机构采用弹簧夹紧,并配行程开关发出夹紧或放松信号。
若刀具夹紧后不能松开,则考虑调整松刀液压缸压力和行程开关装置,或调整碟形弹簧上的螺母,减小弹簧压合量。
此外,主轴发热和主轴箱噪声问题也不容忽视,此时主要考虑清洗主轴箱,调整润滑油量,保证主轴箱清洁度和更换主轴轴承,修理或更换主轴箱齿轮等。
2、进给传动链故障在数控机床进给传动系统中,普遍采用滚珠丝杠副、静压丝杠螺母副、滚动导轨、静压导轨和塑料导轨。
所以进给传动链有故障,主要反映是运动质量下降。
如:机械部件未运动到规定位置、运行中断、定位精度下降、反向间隙增大、爬行、轴承噪声变大(撞车后)等。
数控机床典型故障诊断与维修一、数控机床常见故障及其原因1. 通讯故障通讯故障是数控机床中比较常见的故障之一。
通讯故障的主要原因包括通讯电缆连接不良、通讯软件设置错误、通讯卡故障等。
这些原因导致的通讯故障会导致数控机床无法正常与上位机进行通讯,从而影响数控机床的工作效率。
2. 电气故障电气故障是数控机床常见的故障之一,主要原因包括电气元件老化、电气接线错误、电气元件损坏等。
电气故障会影响数控机床的正常电气供电,导致数控机床无法正常工作。
3. 传感器故障数控机床中的传感器故障也比较常见,主要原因包括传感器损坏、传感器灵敏度调整不当、传感器连接错误等。
传感器故障会导致数控机床无法准确感知工件位置或运动状态,从而影响数控机床的加工精度。
4. 润滑系统故障润滑系统故障是数控机床常见的故障之一,主要原因包括润滑油不足、润滑系统堵塞、润滑泵故障等。
润滑系统故障会导致数控机床在运行过程中出现摩擦增大、温升过高等问题,影响数控机床的工作效率和使用寿命。
5. 机械传动系统故障二、数控机床故障诊断方法硬件故障诊断是数控机床故障诊断的重要内容之一。
硬件故障诊断主要通过检查、测量、比对数控机床的各个硬件部件来发现故障原因。
比如通过检查通讯电缆连接状态、检测传感器输出信号、测量电气元件的电压电流等方法来诊断数控机床的硬件故障。
3. 综合故障诊断综合故障诊断是数控机床故障诊断的综合性方法,主要通过对数控机床的硬件、软件以及工艺加工情况进行综合分析,找出故障的根本原因。
综合故障诊断需要运用多种故障诊断方法,结合数控机床的实际工作情况进行综合分析,以确保找出故障的准确原因。
硬件故障维修是数控机床故障维修的重要内容之一。
硬件故障维修主要通过更换损坏的硬件部件、重新连接电气接线、调整机械传动系统等方法来修复数控机床的硬件故障。
数控机床故障诊断与维修是数控机床维护管理工作的重要内容,对于保证数控机床的正常工作、提高数控机床的使用寿命具有重要意义。
数控机床常见故障分析及诊断方法数控机床是工业生产中广泛使用的自动设备,其自动化程度高、精度高,能够节省大量的人力和物力,提高了工业生产的效率。
但是,数控机床由于它具有复杂的结构,复杂的构件以及它们之间的复杂的联系,因此它们也容易出现故障。
要正确诊断故障,并尽可能快地解决故障,必须从机床工件运动规律、各部件工作原理、控制系统特性等方面全面分析机床故障。
一、数控机床常见故障1.运行问题数控机床常见的运行问题是电机起动不起动、电机起动不稳定、拖动减速器振动大、刀具转动不稳定等。
这些问题的主要原因是电机输出的功率不足、相应的调速装置结构不合理、驱动系统没有正确地平衡对称等。
2.精度问题数控机床的精度问题主要是运动精度、定位精度和回转精度不够准确等。
这些问题的原因一般是电机模拟量或控制量故障,滑台振动,尺寸变形等。
3.控制系统故障数控机床控制系统故障是机床中非常常见的故障之一,这些故障的原因有计算机硬件故障、操作系统故障、程序错误等。
二、故障分析与诊断方法1.运行故障分析当数控机床出现运行故障时,首先应进行现场检测,确定故障类型,确定发生故障的精度和时间,以及故障是否伴有异常的声音、振动和其他特征。
在检测过程中,应详细观察受故障部件的外观情况,以确定故障是否与部件本身有关。
通过检查设备电气控制系统,可以根据故障模式和模拟值判断是否存在故障。
2.精度故障分析当发现数控机床的精度故障时,首先应检查机床的性能,其中包括机床的运动精度、定位精度和回转精度。
此外,应进行精度检查,对机床进行校正,查看机床有无磨损、回转不稳定等情况。
最后,在查看机床的调整和使用空间分布图时,应同时注意机床的摆动变形和非理想支撑。
3.控制系统故障分析当发现数控机床控制系统故障时,应尽可能快地分析出故障原因,进行有效的维修和维护。
首先,检查控制系统的硬件组件是否工作正常,如控制卡、驱动器、调速器等,以及检查控制系统的计算机软件是否正常。
此外,应检查与控制系统相关的输入、输出电路接口是否连接正确,确保输入控制信号的准确性,并查看控制系统的程序程序代码是否正确。
数控机床常见故障的诊断与排除数控机床在加工过程中常常会遇到各种故障,这些故障会影响加工质量和生产效率。
因此,及时准确地诊断和排除故障是数控机床的关键。
下面将结合常见的数控机床故障,介绍诊断与排除的方法。
一、机床无法开机或无法正常运行故障1.检查电源输入:检查电源线是否插好,电源是否正常供电。
2.检查断路器和保险丝:检查机床的断路器和保险丝,确保其正常工作。
3.检查电源板:检查电源板上的指示灯是否正常亮起,如发现异常则可能是电源板故障。
4.检查控制器:检查控制器连接线是否插好,如有需要则重新插拔控制器连接线。
5.检查电气元件:检查机床内部的电气元件,如接触器、继电器等是否正常工作。
二、机床加工精度降低故障1.检查刀具:检查刀具的磨损情况,如需要则更换或修复刀具。
2.检查导轨:检查导轨是否清洁,如有需要则清洗或润滑导轨。
3.检查轴承:检查轴承是否正常工作,如发现异常则可能是轴承损坏。
4.检查螺杆:检查螺杆是否正常工作,如发现异常则可能是螺杆松动或严重磨损。
5.检查编码器:检查编码器是否工作正常,如发现异常则可能是编码器损坏。
三、机床运行过程中发生振动故障1.检查紧固件:检查机床的各个紧固件是否松动,如需要则重新紧固。
2.检查传动装置:检查传动装置(如皮带、链条等)是否松动或磨损,如发现异常则需要更换或修复。
3.检查电机:检查电机是否正常工作,如发现异常则可能是电机轴承磨损或电机不平衡。
4.检查工件夹持装置:检查工件夹持装置是否正确安装,如发现异常则重新安装。
四、机床液压系统故障1.检查液压油:检查液压系统的液压油是否充足,如不足则需要添加。
2.检查滤芯:检查滤芯是否清洁,如发现污垢则需要更换滤芯。
3.检查液压泵:检查液压泵是否正常工作,如发现异常则可能是泵的密封件损坏。
4.检查液压阀:检查液压阀是否正常工作,如发现异常则可能是阀门堵塞或密封件损坏。
以上仅是数控机床常见故障的诊断与排除的方法的简要介绍,实际上每种故障都需要具体分析具体情况。
数控机床的故障诊断、处理数控机床,是一种技术含量很高的机、电、仪一体化的高效复杂的自动化机床,机床在运行过程中,零部件不可避免地会发生不同程度、不同类型的故障,因此,熟悉机械故障的特征,掌握数控机床机械故障诊断的常用方法和手段,对确定故障的原因和排除有着重大的作用。
一、数控机床故障诊断原则与基本要求1.1排障原则。
主要包括以下几个方面:1)充分调查故障现象,首先对操作者的调查,详细询问出现故障的全过程,有些什么现象产生,采取过什么措施等。
然后要对现场做细致的勘测;2)查找故障的起因时,思路要开阔,无论是集成电器,还是和机械、液压,只要有可能引起该故障的原因,都要尽可能全面地列出来。
然后进行综合判断和优化选择,确定最有可能产生故障的原因;3)先机械后电气,先静态后动态原则。
在故障检修之前,首先应注意排除机械性的故障。
再在运行状态下,进行动态的观察、检验和测试,查找故障。
而对通电后会发生破坏性故障的,必须先排除危险后,方可通电。
1.2故障诊断要求。
除了丰富的专业知识外,进行数控故障诊断作业的人员需要具有一定的动手能力和实践操作经验,要求工作人员结合实际经验,善于分析思考,通过对故障机床的实际操作分析故障原因,做到以不变应万变,达到举一反三的效果。
完备的维修工具及诊断仪表必不可少,常用工具如螺丝刀、钳子、扳手、电烙铁等,常用检测仪表如万用表、示波器、信号发生器等。
除此以外,工作人员还需要准备好必要的技术资料,如数控机床电器原理图纸、结构布局图纸、数控系统参数说明书、维修说明书、安装、操作、使用说明书等。
二、故障处理的思路不同数控系统设计思想千差万异,但无论那种系统,它们的基本原理和构成都是十分相似的。
因此在机床出现故障时,要求维修人员必须有清晰的故障处理的思路:调查故障现场,确认故障现象、故障性质,应充分掌握故障信息,做到“多动脑,慎动手”避免故障的扩大化。
根据所掌握故障信息明确故障的复杂程度,并列出故障部位的全部疑点。
数控机床典型故障诊断与维修一、数控机床典型故障1. 伺服电机故障:伺服电机是数控机床的主要驱动元件,如伺服电机出现故障,会导致机床无法正常工作。
常见的伺服电机故障包括:电机运行异常、电机发热、电机无法正常启动等。
2. 数控系统故障:数控系统是数控机床的核心,一旦出现故障,会导致整个数控机床无法正常工作。
常见的数控系统故障包括:程序执行错误、操作界面死机、通讯故障等。
3. 传感器故障:传感器在数控机床中起着重要的作用,它能够感知机床状态并将信息反馈到数控系统。
常见的传感器故障包括:传感器信号异常、传感器损坏等。
4. 润滑系统故障:数控机床在工作过程中需要进行润滑,以减少摩擦、降低磨损。
润滑系统故障会导致机床零部件磨损加剧,影响加工精度和机床寿命。
5. 电气元件故障:数控机床中包含大量的电气元件,如断路器、接触器、继电器等。
这些元件一旦出现故障,会直接影响机床的正常运行。
1. 故障现象分析:当数控机床出现故障时,首先要对故障现象进行分析。
包括故障出现的时间、频率、程度等方面,有助于确定故障的性质和范围。
2. 信息收集:通过观察、询问、检测等方式,收集与故障相关的信息,包括数控系统显示的报警信息、机床运行时的异常声音、异味等。
3. 故障检测:根据故障现象和信息收集的结果,对机床进行检测,包括物理检测和电气检测。
物理检测可以发现机床结构的故障,电气检测可以发现电气元件的故障。
4. 故障定位:通过检测结果,确定故障发生的位置和原因,例如伺服电机故障、数控系统故障、传感器故障等。
5. 分析解决方案:根据故障定位结果,分析可能的解决方案,并进行相应的维修或调整。
1. 伺服电机维修:伺服电机故障通常需要专业的维修人员进行处理,首先要对电机进行检测和分析,确定故障原因,然后进行修复或更换。
2. 数控系统维修:数控系统故障可能是软件问题或硬件问题,软件问题可以通过重新设置参数、升级或更换软件来解决,硬件问题则需要更换故障部件。
数控机床常见故障的诊断与排除范文数控机床是一种通过预先编程的方式自动进行加工的机械设备。
在使用过程中,经常会遇到各种故障,影响机床的正常运行。
本文将针对数控机床常见的故障进行诊断与排除范文,帮助读者更好地了解和解决故障。
一、机床电源故障1. 问题现象:数控机床不能正常上电。
2. 故障原因:电源线接触不良、电源开关故障等。
3. 排除方法:(1) 检查机床电源线是否插紧,是否有松动现象。
(2) 检查机床电源开关是否正常,可用万用表测量开关上的电压。
(3) 若电源开关故障,需要更换新的电源开关。
二、机床启动故障1. 问题现象:数控机床不能正常启动。
2. 故障原因:主轴电机不启动、运动系统不正常等。
3. 排除方法:(1) 检查主轴电机供电线路是否正常,检查主轴电机是否有断路、短路等故障。
(2) 检查驱动电机的运动控制器是否故障,可使用示波器检查输出脉冲信号是否正常。
(3) 若发现问题,需要检修主轴电机或更换运动控制器。
三、伺服系统故障1. 问题现象:伺服系统运行不稳定。
2. 故障原因:伺服电机反馈信号异常、伺服控制器故障等。
3. 排除方法:(1) 检查伺服电机反馈信号线路是否正常,检查编码器是否正常工作。
(2) 检查伺服控制器参数设置是否正确,可使用示波器检查控制信号是否稳定。
(3) 若发现问题,需要修复或更换伺服电机或控制器。
四、刀具系统故障1. 问题现象:刀具不能进行换刀或更换刀具失败。
2. 故障原因:刀库卡死、刀具传感器故障等。
3. 排除方法:(1) 检查刀库传感器是否损坏,可使用万用表测量传感器开关的正常状态。
(2) 检查刀库机械结构是否有卡滞现象,需要进行清洁和润滑。
(3) 若发现问题,需要修复或更换刀库传感器或机械结构。
五、液压系统故障1. 问题现象:液压系统无法正常工作。
2. 故障原因:液压泵故障、液压阀故障等。
3. 排除方法:(1) 检查液压泵是否正常工作,可测量泵的出口压力和流量。
(2) 检查液压阀是否正常工作,可使用万用表检查阀的电气信号。
数控机床常见故障诊断及排除方法不同的数控系统虽然在结构和性能上有所区别,但随着微电子技术的发展,在故障诊断上有它的共性。
1、数控机床故障诊断原则在故障诊断时应掌握以下原则:(1)先外部后内部数控机床是集机械、液压、电气和光学为一体的机床,故其故障的发生也会由这四者综合反映出来。
维修人员应先由外向内逐一进行排查。
尽量避免随意地启封、拆卸机床,否则会扩大故障,使机床大伤元气,丧失精度,降低性能。
(2)先机械后电气一般来说,机械故障较易发觉,而数控系统故障的诊断则难度较大些。
在故障检修之前,首先注意排除机械性的故障,往往可达到事半功倍的效果。
(3)先静后动先在机床断电的静止状态,通过了解、观察测试、分析确认为非破坏性故障后,方可给机床通电。
在运行工况下,进行动态的观察、检验和测试,查找故障。
而对破坏性故障,必须先排除危险后,方可通电。
(4)先简单后复杂当出现多种故障互相交织掩盖,一时无从下手时,应先解决容易的问题,后解决难度较大的问题。
往往简单问题解决后,难度大的问题也可能变得容易。
2、数控机床的故障诊断技术数控系统是高技术密集型产品,要想迅速而正确的查明原因并确定其故障的部位,要借助于诊断技术。
随着微处理器的不断发展。
诊断技术也由简单的诊断朝着多功能的高级诊断或智能化方向发展。
诊断能力的强弱也是评价CNC数控系统性能的一项重要指标。
目前所使用的各种CNC系统的诊断技术大致可分为以下几类:1. 启动诊断(Start Up Diagnostics)启动诊断是指CNC系统每次从通电开始,系统内部诊断程序就自动执行诊断。
诊断的内容为系统中最关键的硬件和系统控制软件,如CPU、存储器、I/O等单元模块,以及MDI/CRT单元、纸带阅读机、软盘单元等装置或外部设备。
只有当全部项目都确认正确无误之后,整个系统才能进入正常运行的准备状态。
否则,将在CRT画面或发光二极管用报警方式指示故障信息。
此时启动诊断过程不能结束,系统无法投入运行。
数控机床常见的机械故障诊断与维修实例
1.电机故障:
故障现象:主轴电机反转或转速不能正常调节。
诊断方法:使用万用表测量主轴电机绕组的绝缘电阻,电阻值小于10兆欧时表示绕组内有短路,需更换电机或维修绕组。
维修方法:更换或维修主轴电机。
2.伺服驱动器故障:
故障现象:工作状态不稳定,起动过程中出现抖动、振动。
诊断方法:使用万用表测试伺服驱动器的主电源和控制信号电路。
若电压稳定且电流正常,则可能是驱动器内部故障。
此时可对伺服驱动器进行清洁清理,更换损坏的元件,或更换整个驱动器。
维修方法:更换损坏的元件。
3.导轨滑块故障:
故障现象:导轨滑块工作时出现异常噪声,导轨滑块滑动不畅。
诊断方法:观察导轨滑块表面是否磨损,是否存在异物卡在导轨滑块内部。
如发现表面磨损或异物卡住,可进行更换或清洁。
维修方法:更换或清洁导轨滑块。
4.传感器故障:
故障现象:传感器反应不敏感或不准确。
诊断方法:使用万用表测试传感器的电压信号和线路接触情况。
若信号弱或线路接触不良,则可以重新连接线路或更换传感器。
若传感器内部元件受损,需更换整个传感器。
维修方法:重新连接线路或更换传感器。
C系统故障:
故障现象:CNC系统启动失败或运行出现异常。
诊断方法:使用故障诊断软件对CNC系统进行诊断,或通过现象分析进行问题定位。
根据诊断结果,可尝试重新启动或重新安装CNC系统。
维修方法:重新启动或重新安装CNC系统。
数控机床故障诊断八大办法数控机床故障诊断八大办法数控机床故障诊断方法数控机床电气故障诊断有故障检测、故障判断及隔离和故障定位三个阶段。
第一阶段的故障检测就是对数控机床进行测试,判断是否存在故障;第二阶段是判定故障性质,并分离出故障的部件或模块;第三阶段是将故障定位到可以更换的模块或印制线路板,以缩短修理时间。
为了立即发现系统出现的故障,快速确定故障所在部位并能立即排除,要求故障诊断应尽可能少且简便,故障诊断所需的时间应尽可能短。
为此,可以采用以下的诊断方法:一、直观法利用感觉器官,注意发生故障时的各种现象,如故障时有无火花、亮光产生,有无异常响声、何处异常发热及有无焦味等。
仔细观察可能发生故障的每块印制线路板的表面状况,有无烧毁和损伤痕迹,以进一步缩小检查范围,这是一种最基本、最常用的方法。
二、CNC系统的自诊断功能依靠CNC 系统快速处理数据的能力,对出错部位进行多路、快速的信号采集和处理,然后由诊断程序进行逻辑分析判断,以确定系统是否存在故障,立即对故障进行定位。
现代CNC系统自诊断功能可以分为以下两类:(1) 开机自诊断开机自诊断是指从每次通电开始至进入正常的运行准备状态为止,系统内部的诊断程序自动执行对CPU、存储器、总线、I/O 单元等模块、印制线路板、CRT 单元、光电阅读机及软盘驱动器等设备运行前的功能测试,确认系统的主要硬件是否可以正常工作。
(2) 故障信息提示当机床运行中发生故障时,在CRT 显示器上会显示编号和内容。
根据提示,查阅有关维修手册,确认引起故障的原因及排除方法。
一般来说,数控机床诊断功能提示的故障信息越丰富,越能给故障诊断带来方便。
但要注意的是,有些故障根据故障内容提示和查阅手册可直接确认故障原因;而有些故障的真正原因与故障内容提示不相符,或一个故障显示有多个故障原因,这就要求维修人员必须找出它们之间的内在联系,间接地确认故障原因。
三、数据和状态检查CNC系统的自诊断不但能在CRT 显示器上显示故障报警信息,而且能以多页的“诊断地址”和“诊断数据”的形式提供机床参数和状态信息,常见的`数据和状态检查有参数检查和接口检查两种。
数控机床常见故障诊断及维修数控机床是一种集自动控制、计算机、微电子、伺服驱动、精密机械等技术于一身的高技术产物。
一旦系统的某些部分出现故障,就势必使机床停机,影响生产。
所以,如何正确维护设备和出现故障时迅速诊断,确定故障部位,及时排除解决,保证正常使用,是保障生产正常进行的必不可少的工作。
1 数控机床故障诊断原则1.1 先外部后内部数控机床是集机械、液压、电气为一体的机床,故其故障的发生也会由这三者综合反映出来。
维修人员应先由外向内逐一进行排查,尽量避免随意地启封、拆卸,否则会扩大故障,使机床大伤元气,丧失精度,降低性能。
1.2 先静后动先在机床断电的静止状态,通过了解、观察测试、分析确认为非破坏性故障后,方可给机床通电。
在运行工况下,进行动态的观察、检验和测试,查找故障。
而对破坏性故障,必须先排除危险后,方可通电。
1.3 先简单后复杂当出现多种故障互相交织掩盖,一时无从下手时,应先解决容易的问题,后解决难度较大的问题。
往往简单问题解决后,难度大的问题也可能变得容易。
1.4 先机械后电气一般来说,机械故障较易发觉,而数控系统故障的诊断则难度较大些。
在故障检修之前,首先注意排除机械性的故障,往往可达到事半功倍的效果。
2 数控机床常见故障分析根据数控机床的构成,工作原理和特点,将常见的故障部位及故障现象分析如下。
2.1 数控系统故障2.1.1 位置环这是数控系统发出控制指令,并与位置检测系统的反馈值相比较,进一步完成控制任务的关键环节。
它具有很高的工作频度,并与外部设备相联接,容易发生故障。
常见的故障有:①位控环报警:可能是测量回路开路;测量系统损坏,位控单元内部损坏。
②不发指令就运动,可能是漂移过高,正反馈,位控单元故障;测量元件损坏。
③测量元件故障,一般表现为无反馈值;机床回不了基准点;高速时漏脉冲产生报警的可能原因是光栅或读头脏了;光栅坏了。
2.1.2 电源部分电源是维持系统正常工作的能源支持部分,它失效或故障的直接结果是造成系统的停机或毁坏整个系统。
OCCUPATION2011 3122数控机床系统故障诊断与维修文/许新伟 王庆民当数控机床发生故障时,要能够迅速定位,进行维修,尽快恢复生产。
如何维护好这些设备,是摆在每位维修人员面前的难题。
维修工作人员应具备高度的责任心与良好的职业道德,经过相关培训,掌握数控、驱动及PLC原理,懂得CNC编程和编程语言,并且具有较强的操作能力。
在维修手段上,应备好常用备品、配件。
一、数控系统的故障诊断1.报警处理(1)系统报警。
数控系统发生故障时,一般在操作面板上给出故障信号和相应的信息。
通常系统相关手册中都有详细的报警号、报警内容和处理方法,维修人员可根据警报后面给出的信息与处理办法自行处理。
(2)机床报警和操作信息。
根据机床的电气特点,应用PLC程序,将一些能反映机床接口电气控制方面的故障或操作信息以特定的标志,通过显示器给出,并可通过特定键,看到更详尽的报警说明。
2.故障诊断(1)仪器测量法。
系统发生故障后,采用常规电工检测仪器、工具,按系统电路图及机床电路图对故障部分的电压、电源、脉冲信号等进行实测判断故障所在,用可编程控制器进行PLC中断状态分析,或者检查接口信号。
(2)诊断备件替换法。
电路的集成规模越来越大,技术越来越复杂。
有时,很难把故障定位到一个很小的区域,可以根据模块的功能与故障现象,用诊断备件替换。
(3)利用系统的自诊断功能。
现代数控系统,尤其是全功能数控,具有很强的自诊断能力,通过实施监控系统各部分的工作,及时判断故障,给出报警信息,做出相应的动作,避免事故发生。
3.用诊断程序进行故障诊断所谓诊断程序,就是对数控机床各部分包括数控系统本身进行状态或故障检测的软件。
当数控机床发生故障时,可利用该程序诊断出故障源所在范围或具体位置。
二、数控系统的常见故障分析1.位置环常见故障包括:位控环报警,可能是测量回路开路;测量系统损坏,位控单元内部损坏;不发指令就运动,可能是漂移过高,正反馈,位控单元故障;测量元件故障,一般表现为无反馈值;机床回不了基准点;高速时漏脉冲产生报警可能的原因是光栅或读头脏了;光栅坏了。
数控机床故障诊断一般步骤和常用方法数控机床故障诊断一般包括三个步骤:第一个步骤是故障检测。
这是对数控机床进行测试,检查是否存在故障。
第二个步骤是故障判定及隔离。
这个步骤是要判断故障的性质,以缩小产生故障的范围,分离出故障的部件或模块。
第三个步骤是故障定位。
将故障定位到产生故障的模块或元器件,及时排除故障或更换元件。
数控机床故障诊断一般采用追踪法、自诊断、参数检查、替换法、测量法。
(1)追踪法追踪法是指在故障诊断和维修之前,维修人员先要对故障发生的时间、机床的运行状态和故障类型进行详细了解,然后寻找产生故障的各种迹象。
大致步骤如下:①故障发生的时间故障发生的时间和次数;故障的重复性;故障是否在电源接通时出现;环境温度如何;有否雷击,机床附近有无振动源或电磁干扰源。
②机床的运行状态故障发生时机床的运行方式;故障发生时进给坐标轴的速度情况;故障发生时主轴的速度情况;刀具轨迹是否正常;工作台、刀库运行是否正常;辅助设备运行是否正常;机床是否运行新编程序;故障是否发生在子程序;故障是否出现在执行M、S、T代码;故障是否与螺纹加工有关;机床在运行过程中是否改变了工作方式;方式选择开关设定是否正确;速度倍率开关是否设置为零;机床是否处于锁定状态。
③故障类型监视器画面是否正常;监视器是否显示报警及相应的报警号;故障发生之前是否出现过同样的故障;故障发生之前是否维修或调整过机床;是否调整过系统参数。
接下来可以进行停电检查,利用视觉、嗅觉、听觉和触觉寻找产生故障的各种迹象。
例如仔细观察加工零件表面的情况,机械有无碰撞的伤痕,电气柜是否打开,有无切屑进入电气柜,元器件有无烧焦,印刷电路板阻焊层有无因元器件过流过热而烧黄或烧黑,元器件有无松动,电气柜和器件有无焦糊味,部件或元器件是否发热,熔丝是否熔断,电缆有否破裂和损伤,气动系统或液压系统的管路与接头有无泄漏,操作面板上方式开关设定是否正确,电源线和信号线是否分开安装或分开走线,屏蔽线接线是否正确等。
数控机床常见故障的诊断与排除数控机床是一种高精度、高自动化程度的机床,由于其工作环境复杂,操作人员技术水平不一,常常会出现各种故障。
本文将介绍数控机床常见故障的诊断与排除方法,帮助用户更好地解决问题。
一、数控系统故障的诊断与排除数控系统是数控机床的核心部分,常见故障包括系统启动失败、程序执行错误、轴运动异常等。
以下是一些常见故障的诊断与排除方法。
1. 系统启动失败故障现象:数控系统无法启动,开机后没有显示屏或显示屏闪烁。
故障原因及处理方法:- 检查电源是否连接正常,检查电源开关是否打开,如果有问题及时修复。
- 检查电源线是否损坏,如有问题及时更换。
- 检查控制柜内部的接线是否松动,如有问题及时重新插拔。
2. 程序执行错误故障现象:数控机床按照程序执行时出现偏差、停止或报错。
故障原因及处理方法:- 检查程序是否正确,查看程序中是否有错误的指令或参数。
- 检查刀具长度和半径是否正确,如不正确需要重新设置。
- 检查工件坐标系和机床坐标系是否正确对应,如出现错位需要修正。
3. 轴运动异常故障现象:数控机床的轴运动不正常,包括速度不稳定、动作迟滞等。
故障原因及处理方法:- 检查伺服系统是否正常,包括伺服驱动器是否损坏、伺服电机是否接触不良等。
如有问题需要修复或更换。
- 检查伺服参数是否正确,如伺服增益、速度环参数等。
如不正确需要重新调整。
- 检查传感器是否正常,如位置传感器或速度传感器是否损坏。
如有问题需要修复或更换。
二、传动系统故障的诊断与排除传动系统是数控机床实现各种运动的关键部分,常见故障包括传动带断裂、滚珠丝杠卡滞等。
以下是一些常见故障的诊断与排除方法。
1. 传动带断裂故障现象:机床的轴无法运动,传动带松动或断裂。
故障原因及处理方法:- 检查传动带是否过紧或过松,如过紧需要调整松度,如过松需要重新调整紧度。
- 检查传动带是否损坏,如发现传动带断裂需要及时更换。
2. 滚珠丝杠卡滞故障现象:机床的轴运动不顺畅,有卡滞现象。
数控机床机械故障诊断的原则和方法摘要: 数控机床的需求正日益上升,而且数控机床能够高效解决零件的生产,使零件的生产更高效,精度更准确,所以,对数控机床的要求力度也在日益增大,为此,急需提高数控机床的生产效率。
因此,数控机床机械的故障诊断的要...数控机床的需求正日益上升,而且数控机床能够高效解决零件的生产,使零件的生产更高效,精度更准确,所以,对数控机床的要求力度也在日益增大,为此,急需提高数控机床的生产效率。
因此,数控机床机械的故障诊断的要求也要加大力度,以求提高数控机床的质量。
所以,本文对数控机床机械故障的诊断方法与过程进行了研究并应用。
1.现外部后内部发生故障后,运用“望闻问切”的方法进行由内到外的全身检查,比如各种开关零件、连接零件、传感器的灵敏度、温湿度、油雾等对元件和电路板的损坏。
2.先机械后电气机械故障容易让人察觉,所以先从简单的机械故障开始,而且数控系统故障诊断的难度系数相对而言较大,更何况,有些电气故障也是由机械故障所导致的。
所以先机械后电气可以减少劳动力的浪费。
3.先静后动由于数控机床的精密度和复杂度较高,如果未进行相关的故障诊断就进行修理,可能会造成不少的损失。
因此,在进行故障诊断前,不要盲目动手,应了解故障发生时的过程、状况,并查阅相关的资料,分析故障可能的原因,再进行故障诊断。
4.先公用再专用公用性的问题往往影响着全局,若几个进给轴都不动,先检查电源、CNC、plc,以及液压等公用部位。
5.先简单后复杂当多种故障问题互相交织,难以解决问题时,可先解决容易的故障,也许问题就变得简单了。
6.先一般后特殊在排除某一故障时,要先考虑最常见的、可能的原因,然后再考虑分析极少发生的特殊原因。
在数控机床中,大部分的故障都可翻阅资料进行维修,但也有些故障,由于其的提供警告的信息模糊不清而无法发出警报,又或者出现的时间短、不定期、无规律,导致无法进行故障分析。
为此,要求对故障进行进行精确的分类,以方便维修的进度。
数控机床机械故障诊断及处理梁毅陈功福孙继(中国工程物理研究院机械制造工艺研究所,四川绵阳621900)MechanicalTroublesDiagnosisandMaintenanceMethodsofNCMachineLIANGYi,CHENGongfu,SUNji(InstituteofMachineryManufacturingTechnology,ChinaAcademyofEngineeringPhysics,Mianyang621900,CHN)机床在运行过程中,机械零部件受到力、热、摩擦及磨损等多种因素的作用,使传动副之间的间隙加大,运动件间的联接松动,产生相互撞击、振动,直接影响机床的传动精度和工件的加工质量,严重时将会损坏零部件,或者产生机械结构变形,致使执行机构不能完成功能任务或达不到质量要求。
其故障主要分为动作性故障、功能性故障、结构性故障和使用性故障。
现结合在维修中遇到的实例分析前三类机械故障的表现形式及其故障诊断与处理方法。
1动作性故障动作性故障主要指机床各执行部件动作故障,如刀具夹不紧或松不开,刀库刀盘不能定位或不能被松开,旋转工作台不转等,这类故障一般有报警提示。
诊断这类故障,需要根据报警提示的内容和执行部件的动作原理及顺序进行相关的检查,找到故障点后对产生故障点的零部件进行修复或更换即可。
故障现象1:数控立车换刀,刀库选刀时出现机械撞击的声音,选刀未完成就停止了。
故障分析与处理:根据现场观察可能是选刀时刀杆的四方块在圆形的选刀槽中的位置偏差引起与选刀槽之间的摩擦撞击。
如果x轴回参考点时位置发生变化,就可能使拉刀杆的四方块在选刀槽中的位置发生偏移而与选刀槽的边沿发生撞击。
修改x轴参考点栅格偏移量,使刀杆的四方块在选刀槽中的位置居中。
选刀时仍出现上述故障,并且有时选刀未完成就停止,手动旋转刀库都不能动弹。
由于刀库罩的遮挡,不能观察选刀的动作,因此拆卸该罩,这时观察选刀动作发现选刀时液压拔销不到位,从而出现液压拔销与刀库盘发生摩擦撞击,有时被机械卡死。
而液压拔销是通过液压缸的活塞推动连杆机构,液压缸的活塞与连杆之间是通过螺纹连接起来的,如图1所示。
该螺纹由于长时间的运动及振动引起活塞上的销钉脱落而・146・发生移位,使得活塞与连杆之问的距离变长,而液压缸的移动距离是固定的,因此连杆的移动距离变短,这样销子不能完全从销钉孔中被拔出而出现上述故障。
通过反复调整活塞与连杆机构的长度后选刀正常,并上好销钉,故障再也没出现。
刀盘拔镑螺母保持弹簧图1刀盘液压拔镇示意图叠故障现象2:数控电子速焊机的旋转工作台旋转时出现30号报警(C轴驱动错误)。
故障分析及处理:该旋转工作台是由直流伺服电动机驱动的,由松下的驱动器驱动,规格为RTStri10A/60V。
电动机速度经变速箱减速后带动旋转工作台,因此根据故障现象分析电气、机械故障均有可能。
打开控制柜发现C轴的空开Q39跳闸,合上后再让C轴运转,瞬间测得电动机电流为12A,已超过驱动器的最大电流10A,致使Q39仍然跳闸。
据此判断可能是驱动器故障,或电动机故障,或减速器故障。
让电动机与减速器脱开空运转正常,测得电动机电流为0.7A,因此故障有可能是机械故障,也可能是驱动器或电动机带负荷的能力不够所致。
由于x、y、C三个轴的驱动器完全一致,因此把l,轴的驱动器与c轴的驱动器互换,结果y轴运行正常,因此排除驱动器故障。
该旋转工作台有高、低速两档,从减速器电动机侧手动盘两档对比发现高速档比低速档明显费劲。
据此判断可能是高速档减速器故障。
整体拆下该变速器,再次手动盘减速器很沉。
由于没有该变速器的资料,不清楚内部结构,由CT机测出其内部结构知道该减速器为行星齿轮的减速器。
拆卸该减速器,没发现齿损,也脚到200童8茎翁I磐\~/’十■‘M万方数据没发现别的异常,且减速器内的润滑脂也很充足,经煤油清洗轴承后,手动盘减速器非常轻松。
把减速器装上后C轴工作正常,但工作不到一个星期,同样的故障又出现了,再次清洗轴承装上工作仅3天,同样的故障又出现。
综合上述维修过程判断可能是减速器端部的轴承有故障。
购买相同的轴承更换后,故障再也没有出现。
因此故障原因就是由于轴承密封圈受损所致。
该减速器两端的轴承为带密封圈的精密尘封轴承,如果轴承的密封性不好,焊接时产生的烟雾颗粒进入轴承,长时间的烟雾颗粒积累,使得轴承被研损或研死,从而造成驱动器负载过重而报警。
前两次清洗轴承后能使用,说明精密尘封轴承的密封圈已坏,由于对精密尘封轴承的使用知识了解不够,错误地进行清洗,导致维修判断上的误差。
故障现象3:数控线切割加工时丝发颤,且用30斗m的丝切割工件时会出现断丝报警。
故障分析及处理:丝颤或断丝是线切割机床常见的故障。
加工间隙电压高,脉冲间隔比失调,加工液脏,丝的张力调节紧,运丝机构机械磨损或松动,丝的质鼍差和加工材质都可以造成丝发颤或断丝。
根据故障现场判断可能是运丝机构长时间磨损或松动造成间隙过大或丝的张力调节太紧造成。
检查运丝机构,更换新丝、加工液和磨损严重的小压丝轮,调节丝的张力后,故障没有变化。
测量加工间隙电压,检查丝的检测开关正常。
让30斗m的丝空运行时也会出现丝断,但50p,m的丝空运行不会断,这就排除了脉冲电源引起断丝的因素。
仔细观察运丝机构,用手触摸剪丝处的大的压丝轮发现压丝轮有轴向跳动的现象,经千分表测量其轴向跳动为10斗m。
通过紧固螺母,减小间隙后,故障消除。
因此故障原因就是剪丝处的压丝轮轴向跳动引起丝的颤抖,50岬比30岬的丝能承受较大的力,30¨m因承受力较小被上下压丝轮搓断,从而出现断丝。
2功能性故障功能性故障主要指工件加工精度方面的故障,表现在加工精度差,运动方向误差大,机床无任何报警显示。
诊断这类故障,必须从不合格零件的特征,或运动误差大小的程度及误差的特点,从运动传动的原理及传动链的传动副的特点等来分析叮能的原因。
进而有针对性地进行一些检查,从中找出故障原因。
故障现象l:一数控铣床加工的零件,在检验中发现工件x轴方向的实际尺寸与程序编辑的实际尺寸存在不规则的偏差。
纱剁20圭08豁I搿、~一,4+¥‘MR蒯吗and恂me加nce改装与维修故障分析及处理:根据数控机床原理分析,x轴尺寸偏差是由x轴位置环偏差造成的。
该机床数控系统为FANUCOiMA,控制方式为半闭环控制。
检杳有关位置控制参数,如伺服环增益、反向间隙、轴切削进给到位宽度等均在要求范围内,因此排除参数设置不当或变化引起故障的因素。
检查x轴传动链,因为传动链中任何连接部分存在间隙或松动,均可引起位置偏差,从而造成加工零件超差。
将一千分表吸在主轴端面上,把主轴下降使表头压到工作台上,并使表头压缩到50p,m左右,然后把表刻度对零。
将机床操作面板上的工作方式开关置于增量方式(INC)的×10档,沿x轴按正或负方向进给,观察干分表读数的变化。
理论上应该每按一下,千分表的读数增加10灿m。
经测量,x轴正、负两个方向的增量运动都存在不规则的偏差。
检查与x轴伺服电动机连接的丝杆,发现与伺服电动机和丝杆连接的连轴器的锥套有松动,使得进给传动与伺服电动机驱动不同步。
由于在运行中松动是不规则的,从而造成位置偏差的不规则,最终造成零件的加工尺寸出现不规则的偏差。
由于x轴为半闭环的位置控制,因此编码器检测的位置值不能真正反映x轴的实际位置,位置控制精度在很大程度上取决于传动链的传动精度。
因此在日常维护中要注意对进给传动链的检查,特别是连接元件,看有无松动现象,以便随时进行机械调整。
3结构性故障主要指主轴电动机发热,运行噪声大,速度不稳定,切削时产生振动等,这类故障主要与主轴安装、润滑、档位、动平衡和轴承有关,找出故障点,进行相应的处理即可。
故障现象l:一加工中心主轴启动时主轴速度慢慢达到指令速度,停车也是慢慢停下来。
故障分析与处理:主轴启动时通过主轴运行监控画面发现主轴电动机速度是正常的,齿轮变速后出现不正常,因此排除驱动控制系统的故障。
故障町能是主轴皮带过松,或者是皮带表面有油污,或者皮带使用过久而失效,摩擦离合器调整过松或磨损等原因引起。
通过排除法逐一检查发现电动机与主轴连接的皮带过松,因此移动电动机座,张紧皮带,然后将电动机锁紧,试机故障消失。
经过两小时的运行,电动机不发热,说明皮带张紧度调节合适。
因此故障原因就是皮带过松,主轴在启动和停车时由于力的冲击而使皮带打滑,从而出现上述故障。
总之,机械故障的诊断和处理是比较麻烦的,因为万方数据改装与维修R删ngand№i兀咖腧全数字电控系统在机床设备再造中的应用吴雨川①左智勇②(①武汉科技学院电子信息工程学院,湖北武汉430073;②武汉宝德机电有限责任公司,湖北武汉430080)摘要:针对德国龙门刨床、D2300高中心车床和前苏联745A插床三样典型设备的改造实例。
对改造过程中所遇到的主拖动电动机调速系统的设计优化、刀架准确进给和车床花盘与进给刀架之间要求实现同步跟踪等问题进行了讨论。
采用具有现代自动控制技术的全数字电控系统。
进行设备改造,并给出了再造设备的实际运行曲线和相关检测结果。
关键词:进口机床设备再造全数字控制ApplicationofFullDigitalElectricControlSystemsonRebuildofMachineToolWUYuchuan①.ZUOZhiyong⑦((£)WuhanUniversityofScienceandEngineering,Wuhan430073,CHN;@)WuhanBaodeMechanical&ElectricalCompanyLimited,Wuhan430080,CHN)Abstract:Accordingtothreetypicalexamplesofrebuildingequipment,whicharetableplanningmachinemadeinGermany,1)2300lathefromGermanyand745AslottermadeinRussia,somepracticalpuzzleshavebeendiscussed,e.g.designoptimisationforspeedregulationofmaindrive,positionfindingofcutterframeandsynchrocontrolbetweenlathetoolsfeedingandlathechuckturning.Theequipmentshavebeenrebuilt衍tllfulldigitalelectricsystemofmoderntechnology.Finally.itgivestheresultsofapplica-tionbyoperationalcurvesanddata.Keywords:ImportedMachineTool;Re—・buildingEquipment;FullDigitalControl我国每年有大量的机械设备,由于磨损、腐蚀、老化和性能不佳等缘故,报废或闲置,这不仅造成了浪费,而且对环境和资源造成了巨大压力。