球团矿质量冶金性能
- 格式:doc
- 大小:28.50 KB
- 文档页数:2
实验2 球团矿的制备及性能测试一、球团矿的发展现状与趋势精料和合理的炉料结构一直是国内炼铁界努力探索的课题。
球团矿作为良好的高炉炉料,不仅具有品位高、强度好、易还原、粒度均匀等优点,而且酸性球团矿与高碱度烧结矿搭配,可以构成高炉合理的炉料结构,使得高炉达到增产节焦、提高经济效益的目的,因而近年来国内炼铁球团矿产量和用量大幅增加,不仅中小型高炉普遍使用,大型高炉如马钢2500M3高炉、昆钢2000 M3高炉、宝钢、攀钢等也加大了球团矿的配料比例。
大力发展球团矿已成为有关权威机构、学术会议以及生产厂家关注的焦点和共识,国内目前已形成一股球团矿“热”。
1、球团矿具有规则的形状、均匀的粒度、高的强度(抗压和抗磨),能进一步改善高炉的透气性和炉内煤气的均匀分布;球团矿FeO含量低,有较好的还原性(充分焙烧后,有发达的微孔)更有利于高炉内还原反应的进行。
因此,球团矿在我国高炉操作者的心目中称之为“顺气丸”,其冶金性能好,非其它熟料所能比。
2、国内大量的理论研究和生产实践表明,高碱度烧结矿与酸性炉料搭配有一个合适的配比。
大型高炉采用75% ~70%碱度为1.85左右的烧结矿与25% ~ 30%的酸性球团矿是合理的炉料结构。
当酸性球团配入比例为25% ~ 30%时,其在炉内软熔区间的最大压差值最小,也就是按此比例搭配效果最佳。
3、在上述合适的范围内,在高炉正常运行情况下,球团矿入炉配比的高低是由其质量≤3.0%; S≤决定的。
高质量的球团矿应具有的指标为:TFe≥65%; FeO≤1.0%; SiO20.04%; 球团矿粒度8—16mm占95%以上;转鼓指数(ISO)≥96%,抗压强度≥2500N/个球。
目前,我国冶金企业生产的球团矿,特别是竖炉球团矿与高质量球团矿及进口球团矿相比,普遍存在着相当的差距。
纵观国内外先进高炉炼铁经验,在原料供应可能的情况下,合理的炉料结构发展趋势是:a)高炉少吃或不吃生料;b)增加高炉球团矿的用量;c)减少烧结矿的用量(即提高烧结矿的品位,应当相应提高烧结矿的碱度,否则烧结矿的强度、冶金性能将会有较大的下降。
球团矿的制备和性能测定一、国内外球团矿的发展球团矿是一种优良的高炉炼铁原料,我国的铁矿资源本适合生产球团矿,但是由于历史的原因,却走上了细精矿烧结的道路,上世纪80年代中期宝山钢铁公司的1号高炉投产,改变了我国传统的细精矿烧结工艺,其后随着钢铁工业快速的发展,国产精矿不能满足需求,进口粉矿逐年增加,目前就全国范围而言,细精矿在烧结配料中已经不占主导地位。
球团矿在我国高炉炉料中的比例逐年升高,进入21世纪,链篦机一回转窑工艺发展迅速,2007年球团矿的产量可以达到l亿吨左右,加上进口的球团矿大约1.3亿吨,在全国高炉炉料中的比重平均16%左右,在可以预见的将来,烧结矿依然是我国高炉的主要原料,球团矿必将持续发展。
各钢铁厂的情况不同和矿源不同决定了其不同的高炉炉料结构。
日本、韩国高炉以烧结矿为主, 因为其主要铁料是国际上购买的粉矿, 适宜生产烧结矿。
北美高炉以球团矿为主, 因为其矿源多为细精矿, 适宜生产球团矿。
欧盟由于环保要求, 烧结厂的生产和建设受到了严格的限制, 为了进一步改善高炉炼铁指标, 充分发挥球团矿在高炉炼铁中优越的冶金性能, 因而以球团矿为主。
欧美高炉球团矿使用比例一般都较高, 个别的高炉达100 %。
其中一部分高炉使用熔剂型球团矿, 如加拿大Algoma7 号高炉熔剂球团矿比例达99 % , 墨西哥AHMSA 公司Monclova 厂5 号高炉熔剂球团矿比例为93 % , 美国AKSteel 公司Ashland1KY厂Amanda 高炉熔剂球团矿比例为90 %以上; 另一部分高炉以酸性球团矿为主, 配比一般在70 %以上。
欧洲高炉中, 瑞典、英国和德国的部分高炉球团矿的比例很高。
亚洲国家的高炉一般以烧结矿为主, 高达70 %左右。
日本高炉炉料结构的特点是烧结矿比例高且一直比较平稳,而球团矿比例自1979 年以来一直在下降, 块矿比一直在上升。
高炉炉料中高碱度烧结矿比例维持在7113 %~7619 % , 用量一直比较平稳。
钢铁厂冷压块与球团矿冶金性能对比-冶金工业论文-工业论文——文章均为WORD文档,下载后可直接编辑使用亦可打印——摘要:冶金工业生产领域里,由于对减排的政策要求越来越高,企业内部循环无聊的处理日渐成为一个人们课题。
冷固成型技术尽管发展有一定局限,但如果能与固废处理相结合,可以发挥更大的社会和经济效益,形成高效的循环经济新技术。
本项目通过对冷压球(块)的冶金性能对比研究,分析了作为高炉入炉原料的可行性,对钢铁企业循环物料的资源化利用开拓了新的途径。
关键词:冷压块;复合粘接剂;高炉应用;冶金性能烧结矿和球团作为高炉炼铁生产的主要入炉原料,其自身的质量对于高炉炼铁而言具有很大的影响。
近年来,由于钢铁行业竞争激烈,为了降低成本节约资源,必不可少的需要使用一些低成本的铁矿石,这就造成烧结矿的冶金性能不稳定、强度差。
重庆臻焱节能环保科技有限公司在开发出专利技术后,在汉钢进行了冷压块的生产实践,取得很好的效果。
但为了了解冷压块在生产过程中的作用机理,专门委托第三方科研机构进行了冷压块与常规使用的球团矿的冶金性能对比研究,进一步明确该项技术在实际使用中的价值。
矿石的冶金性能是评价各类炼铁原料冶炼适应性价值的标准,通常再用的指标包括低温还原粉化、还原性、热爆裂性能、荷重软化特性等指标,这些指标的测试方法都有相应的标准进行规定。
冷压块的低温还原粉化和还原性都有见诸报道的研究结论,因此本次研究的重点主要是爆裂性和荷重软化特性研究。
1研究方法1.1荷重软化特性实验目前对于荷重软化性能的实验方法国内没有统一的标准,不过通行的方法是试样在荷重状态下连续通还原气体并升温,同时连续测定位移变化获得试样随温度升高的收缩曲线,定义位移收缩10%为软化开始温度,压差最高对应的温度为软化终了温度。
同时根据获得的压差变化定义熔融开始温度和熔融终了温度。
铁矿石高温熔滴、软熔性能是影响高炉炉内情况,炉料的正常运行及煤气流的合理分布的重要性质。
球团矿抗压强度对其冶金性能的影响摘要:球团矿具有品位高、粒变均匀、还原性好、常温抗压强度高等优点。
但在高炉中的堆角小、还原膨胀率大及在高温下易相互粘结,因此,大大限制了它在高炉炉料中的使用比例。
球团矿是强化高炉炼铁必不可少的优质炉料,目前缺乏对球团矿质量综合评价的方法,导致在优化高炉炉料的选择上缺乏科学依据。
本文介绍了球团矿的生产现状、出现问题及发展趋势,进一步提高炼铁生产的技术经济指标。
关键词:球团矿;生产现状;发展趋势我国在具有足够造球能力条件下,通过严格控制造球操作,就有可能生产出小直径的球团矿、维持足够窄的粒度范围,来保证焙烧过程中良好的透气性和保证高炉冶炼中良好的还原性。
同时随着钢铁生产技术的发展,对炉料提出了越来越严格的要求。
因而对高品位的优质球团矿的需求越来越大,目前来看已显得十分迫切。
为此我们应当努力,科学地促进我国球团矿生产的发展。
一、球团矿生产的现状我国球团矿生产有很大的发展,在国家产业政策的支持和有识之士的努力下,在短短的时间内建成了几千万吨的生产能力。
绝大部分采用先进的链篦机—回转窑工艺,且大型化发展速度很快,单窑年生产能力从几十万吨到几百万吨,技术装备水平有了极大的进步。
而上世纪末仅建成了两个带式焙烧机工厂,年生产能力不到400万吨;链篦机—回转窑球团的生产能力仅有100万吨左右;另外还有竖炉球团矿二三十座,生产能力在800万吨左右。
二、球团矿焙烧试验1、生球团的准备。
造球时,膨润土配比为1.2%,时间为12min,生球经8-15mm方筛筛分后,供下一步的试验使用。
2、焙烧试验。
球团矿的预热焙烧在卧式管炉中进行,气氛为自然通风。
焙烧时将烘干好的球团放在小瓷舟内推送至管炉中,按规定的温度进行焙烧。
为获得不同抗压强度的球团,对预热及焙烧工艺参数进行了相应调整,不同预热及焙烧工艺参数对应的成品球团抗压强度不同。
三、球团矿生产中出现的问题1、小型球团厂数量太多。
100万吨/年以下的球团生产线有30多条,落后的竖炉球团生产线有60多条。
关于碱性球团矿的生产及其冶金性能研究摘要:得益于科学技术的不断发展,提升了高炉炼铁的利用率,充分发挥出燃料质量与炉料构造优化的作用。
实际上,在高炉炼铁的原料当中,球团矿属于十分重要的炼铁原料之一。
尤其在精矿粉产量日益提高的影响下,让球团入炉的比重也随之提高,尤其对于碱性球团矿来说,凭借着出色的冶金性能,在炼钢原料中发挥出重要的功效。
所以,加大对碱性球团矿的生产与冶金性能研究的力度十分关键。
本文通过阐述碱性球团矿原料的性能,分析了竖炉烧焙实验情况,并研究了碱性球团矿的冶金性能,从而有效提升碱性球团矿生产工作的总体水平。
关键词:碱性球团矿;生产;冶金性能引言:长期以来,针对很多钢铁厂而言,烧结矿与球团矿的选择性发展成为一项难题,需要进一步进行探究与分析。
无论是细粒铁矿粉、化工铁泥,还是转炉污泥、硫酸渣等,均属于非常关键的原料,在这当中,加快竖炉焙烧球团矿的发展速度,并科学利用较少的熔剂性烧结矿可谓至关重要。
通过此项举措,不但所需要投资的资金数量较少,而且可以满足中小型高炉冶炼的要求,获得更多的经济效益。
鉴于此,系统思考和分析碱性球团矿的生产及其冶金性能显得尤为必要,拥有一定的研究意义与实践价值。
1.碱性球团矿原料的性能说明本次研究与分析的原料是xx地区周围矿区磁精矿的混合矿,具体的情况如下表1所示。
表1 原料的化学成分分析表原料的特征包含以下几点:第一,矿粉的粒度,大部分都十分粗。
第二,转炉生粒度非常细,属于重要的粘结剂。
第三,在添加消石灰起熔剂与粘结剂之后,能够发挥出良好的功效。
第四,返矿粒度较粗,并不适合被运用到配合料当中。
第五,原料的含硫量是非常低的[1]。
2.竖炉烧焙实验的分析有关实验室运用的竖炉容积大概为0.16m 3,焙烧带断面积为0.034m 2,装料大概180公斤,采用抽风持续排料的方式,每小时相应的生产率为35公斤,焙烧的周期为6-6.6h 。
实验竖炉拥有相应的技术模拟特性。
而焙烧碱度的具体范围则以相关工厂的规定作为依据[2]。
实验2 球团矿的制备及性能测试一、球团矿的发展现状与趋势精料和合理的炉料结构一直是国内炼铁界努力探索的课题。
球团矿作为良好的高炉炉料,不仅具有品位高、强度好、易还原、粒度均匀等优点,而且酸性球团矿与高碱度烧结矿搭配,可以构成高炉合理的炉料结构,使得高炉达到增产节焦、提高经济效益的目的,因而近年来国内炼铁球团矿产量和用量大幅增加,不仅中小型高炉普遍使用,大型高炉如马钢2500M3高炉、昆钢2000 M3高炉、宝钢、攀钢等也加大了球团矿的配料比例。
大力发展球团矿已成为有关权威机构、学术会议以及生产厂家关注的焦点和共识,国内目前已形成一股球团矿“热”。
1、球团矿具有规则的形状、均匀的粒度、高的强度(抗压和抗磨),能进一步改善高炉的透气性和炉内煤气的均匀分布;球团矿FeO含量低,有较好的还原性(充分焙烧后,有发达的微孔)更有利于高炉内还原反应的进行。
因此,球团矿在我国高炉操作者的心目中称之为“顺气丸”,其冶金性能好,非其它熟料所能比。
2、国内大量的理论研究和生产实践表明,高碱度烧结矿与酸性炉料搭配有一个合适的配比。
大型高炉采用75% ~70%碱度为1.85左右的烧结矿与25% ~ 30%的酸性球团矿是合理的炉料结构。
当酸性球团配入比例为25% ~ 30%时,其在炉内软熔区间的最大压差值最小,也就是按此比例搭配效果最佳。
3、在上述合适的范围内,在高炉正常运行情况下,球团矿入炉配比的高低是由其质量决定的。
高质量的球团矿应具有的指标为:TFe≥65%; FeO≤1.0%; SiO2≤3.0%; S≤0.04%; 球团矿粒度8—16mm占95%以上;转鼓指数(ISO)≥96%,抗压强度≥2500N/个球。
目前,我国冶金企业生产的球团矿,特别是竖炉球团矿与高质量球团矿及进口球团矿相比,普遍存在着相当的差距。
纵观国内外先进高炉炼铁经验,在原料供应可能的情况下,合理的炉料结构发展趋势是:a)高炉少吃或不吃生料;b)增加高炉球团矿的用量;c)减少烧结矿的用量(即提高烧结矿的品位,应当相应提高烧结矿的碱度,否则烧结矿的强度、冶金性能将会有较大的下降。
球团矿质量应包括化学成分、物理性能和冶金性能等三个方面。
具体要求如下表:
各指标含义及测定方法:
1)抗压强度
球团矿抗压强度的检测标准和国际标准ISO 700相同。
国标(GB/T14201-93)。
随即取样大约1公斤,每次试验应区直径12.5~10.0mm 成品球60各进行试验。
2)筛分指数
筛分指数的测定方法:取100kg 试样,分成五分,每分20kg ,用5mm ×5mm 的筛子筛分,受筛往复10次,称量大雨5mm 筛上物出量A ,以小于5mm 占试样质量的百分数作筛分指数%。
筛分指数 =(100-A) ×100/100 我国要求球团矿筛分指数不大于5%。
3)转鼓指数
转鼓强度是评价球团矿抗冲击和耐磨性能的一项重要指标。
因为耐磨性能代表乐球团矿形成粉末的倾向。
世界各国采用的测定方法尚未统一,但我国已参考国际标准(ISO3271-1975)作为现行国家标准方法。
4)球团矿还原性
还原性是指球团矿被还原气体CO 和H2还原的难易程度,还原性好,有利于降低焦比。
影响还原性的因素主要有矿物组成、结构、致密程度、粒度、和气孔率等。
目前采用热天平减重法测定还原性,国标(GB/T13241-91)。
还原度指数 RI=100]10043.043.011.0[
2
011
⨯⨯⨯--w m m m w w t
m 0:试样质量
m 1:还原开始前试样质量,g m t :还原后的试样的质量,g w 1:还原前试样中FeO 的含量
w2:试验前试样的全铁含量%
5)球团矿低温还原粉化性能
球团矿进入高炉炉身上部在500~600℃区间,由于受气流冲击及Fe2O3->Fe3O4->FeO还原过程发生晶形,导致球团矿粉化,直接影响高炉内气流分布和炉料顺性。
低温还原粉化测定主要有静态法和动态法,我国大部分研究者和生产企业倾向于采用静态法还原粉化指标,而且把静态法作为国家标准(GB/T13242-91)。
低温还原粉化指数RDI分别用RDI+6.3RDI+3.15和RDI-0.5表示。
6)球团矿还原膨胀
球团矿在还原过程中,由于时发生晶格转变,以及浮氏体还原可能出现的铁晶须,使其体积膨胀,球团若出现异常膨胀将直接影响高炉顺性和还原过程,某些球团矿的膨胀可达原体积的300%,一般认为膨胀率在20%以上的球团矿就不宜在高炉或直接还原竖炉中大量使用,因为有可能造成悬料。
目前球团矿的还原膨胀指数作为评价球团矿质量的重要指标。
测定方法为国标(GB/T13240-91)。
7)软化性能
软化性包括开始软化温度和软化区间两个方面。
开始软化温度指铁矿石在一定荷重下加热的开始变形温度;软化区间是指球团矿软化开始到软化终了的温度范围。
通常矿石的开始软化温度高,则软化区间较窄;反之,则软化区间较宽。
高炉冶炼要求铁矿石具有较高的开始软化温度和较窄的软化区间,以使高炉内不会过早地形成初渣,初渣中FeO含量高,使炉内透气性变坏,并增加炉缸热负荷,严重影响冶炼过程的正常进行。
铁矿石不是纯物质的晶体,因此没有一定的熔点,而具有一定范围的软熔区间。
检验使测定软化开始和终了温度,通常将矿石在荷重还原条件下收缩率为4%时的温度定为软化开始温度,收缩率为40%时的温度定为软化终了温度。
我国软化性能测定尚无统一标准,一般采用升温法,荷重在50~100Kpa在CO=30%,N2=70%的气流中还原150~240min(或还原度80%)。
8)熔滴性
矿石软化后,在高炉内继续下行,被进一步加热和还原,并开始熔融。
在熔渣和金属达到自由流动、积聚成滴前,软熔层透气极差,出现很大的压力降。
生产高炉软熔带压力降约占高炉料柱总压力降的60%。
人们对矿石在模拟高炉冶炼条件下的熔滴过程进行研究,并测定其滴落开始温度、终了温度及过程压力降作为评价矿石熔滴性能的依据。
矿石熔滴性能指标及其测定方法尚未标准化。
一般是将规定质量和粒度的矿样,放入试验炉内,试样上下均铺有一定厚度的焦碳以模拟软熔带中的焦窗。
试样上面荷重50~100,由下部通入规定成分和流量的还原性气体,并以一定的速度将温度升到1500~1600度进行测定。
国内普遍采用压差陡升温度表示矿石开始熔化温度,第一滴液滴下温度表示滴落温度,以开始熔化和开始滴下的温度差未熔滴温度区间,以最高压差表明熔滴区的透气性状况。
高炉操作要求熔滴温度高些,区间窄些,最高压差低些为好。