全国宽带和窄带载波方案性能对比表
- 格式:doc
- 大小:29.50 KB
- 文档页数:4
宽带载波与窄带载波的对比文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-电力线载波通信(PLC)是一种使用电力线进行数据传输的通信技术,即利用现有电网作为信号的传输介质,使电网在传输电力的同时可以进行数据传输。
目前根据所用频段的不同,低压电力线载波通信一般分为窄带电力线载波通信(10kHz~500KHz)和宽带电力线载波通信(2MHz~20MHz),但由于低压电力线信道的特殊性和复杂性,宽带/窄带低压电力线载波通信系统实际应用的效果对比出现比较模糊的状态,而对比一般主要集中在通信速率,噪声干扰和通信距离几个方面。
(1)通信速率问题。
Shannon定理指出,在高斯白噪声干扰条件下,通信系统的极限传输速率(或称信道容量)为:要增加系统的信息传输速率,则要求增加信道容量。
增加信道容量的方法可以通过增加传输信号带宽B,或增加信噪比S/N来实现。
其中B 与C成正比,而C与S/N呈对数关系,因此,增加B比增加S/N更有效。
当B增加到一定程度后,信道容量C不可能无限的增加。
信道容量C 与信号带宽B成正比,增加B,势必会增加C,但当B增加到一定程度后,C增加缓慢。
这是由于随着B的增加,噪声功率N=n0B也要增加,从而信噪比S/N要下降,最终影响到C的增加。
由此可见,在信号功率S和噪声功率谱密度n0一定时,信道容量C 是有限的,即极限传输速率Rmax是有限的。
(2)噪声干扰问题。
低压电力线噪声普遍存在低频区域的噪声幅度较高,而随着频率的升高,噪声幅度有降低的趋势,但频率继续升高到中频400kHz以后,降低的趋势将变缓,即100kHz以下频率区域噪声幅度有时是400kHz~500kHz频率区域噪声幅度的50~100倍,而400kHz~500kHz频率区域噪声幅度相对于2MHz~20MHz频率区域噪声幅度一般只有几倍,甚至处于同一水平。
同时由于各类型电力设备的工作频率覆盖几乎全载波通信频带(10kHz~20MHz),即窄带/宽带载波通信时均可能出现相同通信频率的干扰噪声,导致实际应用通信效果受影响。
电力线载波通信(PLC )是一种使用电力线进行数据传输的通信技术,即利用现有电网作为信号的传输介质,使电网在传输电力的同时可以进行数据传输。
目前根据所用频段的不同,低压电力线载波通信一般分为窄带电力线载波通信(10kHz ~500KHz )和宽带电力线载波通信(2MHz ~20MHz),但由于低压电力线信道的特殊性和复杂性,宽带/窄带低压电力线载波通信系统实际应用的效果对比出现比较模糊的状态,而对比一般主要集中在通信速率,噪声干扰和通信距离几个方面。
(1) 通信速率问题.Shannon 定理指出,在高斯白噪声干扰条件下,通信系统的极限传输速率(或称信道容量)为:)1(log 2N S B C +=要增加系统的信息传输速率,则要求增加信道容量.增加信道容量的方法可以通过增加传输信号带宽B ,或增加信噪比S/N 来实现。
其中B 与C 成正比,而C 与S/N 呈对数关系,因此,增加B 比增加S/N 更有效。
当B 增加到一定程度后,信道容量C 不可能无限的增加.信道容量C 与信号带宽B 成正比,增加B,势必会增加C ,但当B 增加到一定程度后,C 增加缓慢。
这是由于随着B 的增加,噪声功率N=n0B 也要增加,从而信噪比S/N 要下降,最终影响到C 的增加。
0002244.1lim 44.1)1(log lim )1(log lim lim n S B n S B B n S B N S B C B B B B ==+=+=∞→∞→∞→∞→由此可见,在信号功率S 和噪声功率谱密度n0一定时,信道容量C 是有限的,即极限传输速率Rmax 是有限的。
(2) 噪声干扰问题。
低压电力线噪声普遍存在低频区域的噪声幅度较高,而随着频率的升高,噪声幅度有降低的趋势,但频率继续升高到中频400kHz 以后,降低的趋势将变缓,即100kHz 以下频率区域噪声幅度有时是400kHz ~500kHz 频率区域噪声幅度的50~100倍,而400kHz~500kHz 频率区域噪声幅度相对于2MHz ~20MHz 频率区域噪声幅度一般只有几倍,甚至处于同一水平.同时由于各类型电力设备的工作频率覆盖几乎全载波通信频带(10kHz ~20MHz ),即窄带/宽带载波通信时均可能出现相同通信频率的干扰噪声,导致实际应用通信效果受影响。
技技产产成性国国目编号:甲方(发包方):乙方(承包方):签约时间:年月日签约地点:一、为了完成高速公路合同工程的修建,经双方商定,依照《中华人民共和国合同法》和建设工程法规中的有关规定,本着互利互惠的原则,在遵守甲方与业主于年月日签订的工程承包合同及附件(称:总合同),并在熟知总合同相关条款的前提下签署本合同。
二、本合同由下列文件组成:1、工程承包合同;2、总合同规定的合同文件(工程量清单除外);3、承包工程量清单(作为本合同附件之一)。
三、承包合同概况:1、工程项目名称:2、工程范围、内容:3、开、竣工日期:4、承包方式:详见附件《承包工程量清单》及《清单说明》。
5、工程造价:暂为¥元(大写:)(或按乙方完成并经监理签认、计量的工程量乘以相应单价)。
此金额为完成该工程项目所含一切内容(包括税金、初期进场、中期施工、竣工保养等各阶段的所有内容)的总金额,甲方除此之外,概不支付乙方其他任何费用。
四、工程质量:1、乙方应遵守总合同工程中关于质量的合同条款,严格按施工设计图纸和《技术规范》要求精心施工,工程质量要达到优质工程标准。
2、乙方质检人员必须对每一道工序进行现场监督,质量达不到优质工程标准及不符合规范要求的,应及时予以修复和返工,其工料机损失由乙方承担。
每道工序完工时,经自检合格,报甲方质检人员和驻地监理工程师验收签认后,方可进行下一道工序。
3、若工程经甲方或监理检查达不到优质标准,给甲方造成不良影响,按相应的项目金额对乙方处以2倍罚款,并负责修复和返工,直至甲方和监理、业主满意为止,修复和返工费用(工料机)由乙方自理。
电力线载波通信的重大技术创新:宽带载波1 问题来源电力线不同于普通的数据通信线路,其初衷是为了进行电能而非数据的传输,对于数据通信而言,其信道特性非常不理想,是一个非常不稳定的传输信道,这具体表现为噪声显著且信号衰减严重。
在任何两条不同的电力线上,电力线宽带载波信号的传输带宽和距离都是不一样的,无法建立一个规律的数学模型。
电力线上有许多不可预料的噪声和干扰源,而且电力线通信具有时间上不可控、不恒定的特点,与信号洁净、特性恒定的网络电缆相比,电力线上接入了很多电器设备,这些设备任何时候都可以插入或断开,因而导致电力线的特性不断地变化。
这种电力线分支多节点多,多个电力线接头处输入阻抗不匹配而造成的反射所引起的信号多径效应,造成信号衰减大,传输带宽和距离受到很大限制。
电力线信道输入阻抗的变化强度依赖于信号频率和所处位置,其数值可从几欧姆变化到数千欧姆。
由于输入阻抗的阻抗波动和不连续变化,载波通道中总存在着耦合的不匹配现象,这会大大增加传输的损耗。
除了信道衰减之外,在载波通道中还存在噪声,主要是由两大类噪声叠加而成:一类是背景噪声,在较长时间内保持稳定;另一类是脉冲噪声,由于其的强度而造成数据传输的障碍。
当这类脉冲噪声的持续时间超过使用纠错码能容忍的检测和改正时间限度时,便会产生突发错误。
为克服上述问题,电力线宽带载波技术采用了扩频、OFDM (正交频分复用)等调制技术,而事实证明,多载波正交频分复用是目前为止解决在电力线上传输干扰问题的一种有效方法。
OFDM 的基本思想就是把可用信道带宽划分为若干子信道,每个子信道都可以近似看作理想信道,在规定使用的频段内,使用几十、上百、甚至上千个具有正交特性的载波信号,每个载波传输一定速率的数据,各个载波传输数据的总和就是总的传输速率。
2 扩频通信根据Shannon 公式,在白噪声干扰条件下,通信系统的信道容量(bps )为1(log 2NSB C += (1) 其中B 为信道带宽(Hz ),S 为信号平均功率(W ),N 为噪声平均功率(W )。
宽带与窄带网络的对比分析一、简介宽带和窄带网络都是现代网络通信技术的一部分,它们在数据传输速度、服务质量、应用范围等方面存在明显的差异。
本文将对宽带和窄带网络进行对比分析,以帮助读者更好地理解它们之间的差异和优劣势。
二、宽带网络1. 概念和特点宽带网络是一种高速传输数据的通信网络,其特点包括:- 高速传输:宽带网络能够以更高的速度传输数据,通常以Mbps(兆比特每秒)或Gbps(千兆比特每秒)为单位。
- 大带宽:宽带网络具备较大的带宽,能够同时支持多个用户进行高速数据传输。
- 多样化应用:宽带网络可满足各种高带宽需求,如互联网访问、在线视频、在线游戏等。
2. 技术和应用宽带网络采用多种技术实现,如数字用户线路(DSL)、光纤通信、有线电视网络等。
它广泛应用于各个领域,包括互联网接入、电视信号传输、企业网络通信等。
3. 优势与局限宽带网络的优势在于速度快、带宽大、多功能、多用户支持等。
但也存在一些局限,如高价格、建设和维护成本高、在一些偏远地区无法普及等。
三、窄带网络1. 概念和特点窄带网络是指传输速度相对较慢、带宽较窄的通信网络,其特点包括:- 低速传输:窄带网络通常以较低的速度传输数据,通常以Kbps(千比特每秒)为单位。
- 较小带宽:窄带网络带宽较小,适用于低带宽需求。
- 传统应用:窄带网络多用于传统通信方式,如电话传输、传真等。
2. 技术和应用窄带网络采用的主要技术包括拨号、ISDN(数字化服务集成网)、GSM等。
它主要应用于传统通信服务,如电话、传真、短信等。
3. 优势与局限窄带网络的优势在于低价、覆盖范围广、在偏远地区普及度较高等。
然而,由于传输速度慢、带宽窄等限制,窄带网络无法满足高带宽需求,如高清视频、大型文件传输等。
四、宽带与窄带网络对比分析1. 传输速度和带宽宽带网络的传输速度较快,带宽较大,可以满足高带宽需求;而窄带网络传输速度较慢,带宽较小,仅适用于低带宽需求。
2. 多样化应用能力宽带网络可满足各种高带宽应用需求,如在线视频、云存储等;而窄带网络主要用于传统通信应用,如电话、传真等。
1、宽带其实并没有很严格的定义,一般是以目前拨号上网速率的上限56Kbps为分界,将56Kbps及其以下的接入称为“窄带”,之上的接入方式则归类于“宽带”。
宽带目前还没有一个公认的定义,从一般的角度理解,它是能够满足人们感观所能感受到的各种媒体在网络上传输所需要的带宽,因此它也是一个动态的、发展的概念。
目前的宽带对家庭用户而言是指传输速率超过1M,可以满足语音、图像等大量信息传递的需求。
包括:光纤,xDSL(ADSl,HDSL),ISDN(严格来说不算是宽带)ADSL:ADSL是英文Asymmetrical Digital Subscriber Loop(非对称数字用户环路)的英文缩写,ADSL技术是运行在原有普通电话线上的一种新的高速宽带技术,它利用现有的一对电话铜线,为用户提供上、下行非对称的传输速率(带宽)。
非对称主要体现在上行速率(最高640Kbps)和下行速率(最高8Mdps)的非对称性上。
上行(从用户到网络)为低速的传输,可达640Kbps;下行(从网络到用户)为高速传输,可达8Mbps。
它最初主要是针对视频点播业务开发的,随着技术的发展,逐步成为了一种较方便的宽带接入技术,为电信部门所重视。
通过网络电视的机顶盒,可以实现许多以前在低速率下无法实现的网络应用。
DSL:DSL(Digital Subscriber Line数字用户环路)技术是基于普通电话线的宽带接入技术,它在同一铜线上分别传送数据和语音信号,数据信号并不通过电话交换机设备,减轻了电话交换机的负载;并且不需要拨号,一直在线,属于专线上网方式。
DSL包括ADSL、RADSL、HDSL和VDSL等等。
VDSL:VDSL(Very-high-bit-rate Digital Subscriber loop)是高速数字用户环路,简单地说,VDSL就是ADSL的快速版本。
使用VDSL,短距离内的最大下传速率可达55Mbps,上传速率可达19.2Mbps,甚至更高。
宽带PLC和窄带PLC通信技术浅较20世纪20年代,通信行业迎来了快速发展的时期,通信技术不断进步。
总的说来通信技术可以分成两个主要的类别:第一类是宽带电力线通信;第二类是窄带电力线通信。
所谓宽带电力线通信指的是那些通信速率大于1MHz并且工作频率大于2MHz的通信技术,而窄带电力线通信指的是速率不超过1MHz并且工作频率不超过500kHz的通信技术。
1 电力线通信技术概述1.1 宽带PLC技术在宽带PLC技术发展的初始时期,通信技术标准是多种多样的,但是随着时代的发展和技术的进步,现阶段宽带PLC技术正在逐步走向统一。
总的来说,目前比较常见的200Mbit/s PLC技术主要有三个:第一个是HomePlug AV;第二个是UPA PLC;第三个是HD-PLC。
就HD-PLC技术而言,日本是使用该技术比较多的国家,其他国家使用的相对较少;HomePlug AV和UPA PLC在全球范围内都有使用者,因此目前两者处于竞争市场份额的状态。
一般来讲,宽带电力线通信技术主要有两个主要用途:第一,用于室内联网。
这里的室内联网指的是以宽带电力线通信技术为媒介将室内的不同房间都置于有网络的状态;第二,用于楼宇接入。
相较于室内联网,宽带电力线通信技术在楼宇接入的应用还处于不断完善的状态,比较容易在最后的300米出现问题。
1.2 窄带PLC技术目前不同国家对窄带PLC技术的频带要求有所不同,具体来讲:欧洲国家将窄带PLC技术的频带规定在3~148.5kHz之间;而美国的联邦通讯委员会将窄带PLC技术的频带规定在9~490kHz之间;日本也对窄带PLC技术的频带进行了约束,限制在10~450kHz之间;就我国而言,我国比较重视3~90kHz的频带。
在窄带PLC技术的发展的初始时期传输速率是比较小的,最大只能达到几个kbps。
此外,在传输数据的过程中经常遭受干扰,在干扰的影响之下经常出现各种各样的问题,从而使得传输结果出现错误。
中国互联网络连接带宽图随着互联网的迅猛发展,中国的互联网连接带宽也在不断增长,为国内用户提供更快速、稳定的网络服务。
本文将通过分析中国互联网络连接带宽图,探讨中国在互联网发展方面的现状和未来趋势。
一、中国互联网络连接带宽的概述互联网络连接带宽是指网络传输数据的能力,通常以每秒传输的数据量来衡量,单位为bps(bit per second)。
中国互联网络连接带宽图展示了中国各个地区的网络带宽数值,以及不同地区之间的连接情况。
二、中国互联网络连接带宽的现状根据中国互联网络连接带宽图中的数据,我们可以看到中国的东部地区拥有较高的带宽数值,主要集中在一、二线城市,如北京、上海、广州等。
这些地区的互联网发展较为成熟,拥有更强大的网络基础设施和更高的互联网普及率。
而中国的西部地区带宽数值相对较低,主要原因是经济发展较为滞后,缺乏投资和建设网络基础设施的资金支持。
这导致西部地区的网络连接质量相对较弱,互联网普及率较低。
除了地域差异外,中国互联网络连接带宽图还展示了不同运营商之间的差距。
一线运营商拥有更高的带宽数值,提供更稳定、高速的互联网服务,而二线运营商的带宽数值相对较低,网络质量也有所下降。
三、中国互联网络连接带宽的发展趋势随着中国互联网用户数量的不断增长,中国政府和运营商都意识到加强互联网基础设施建设的重要性。
未来的发展趋势将着重于以下几个方面:1. 提高网络接入速度:通过增加光纤接入、4G和5G网络的覆盖范围,提高用户的网络接入速度。
这将使得更多地区能够享受到高速、稳定的互联网服务。
2. 降低地区差异:通过在西部地区加大网络基础设施建设的投资力度,缩小东西部地区的网络带宽差距,提高网络连接质量和互联网普及率。
3. 加强运营商竞争:鼓励竞争机制,促使运营商提供更高质量的服务和更具竞争力的价格,提高用户的网络体验。
4. 推动技术创新:加大对互联网技术研发和创新的支持,提升网络传输效率和数据安全性,满足用户对高品质互联网服务的需求。
窄带电力载波标准
窄带电力载波通信是一种使用电力线作为通信介质的通信技术,其载波信号频率范围通常为10kHz~500kHz。
在实际应用中,窄带电力载波通信系统通常采用FSK、PSK等调制方式进行数据传输。
窄带电力载波通信具有一些显著的优势。
首先,它利用现有的配电线网络进行数据传输,因此无需另外铺设通信线路,具有很高的成本效益。
其次,窄带电力载波通信具有较强的抗干扰能力,能够在电力线上的噪声和干扰环境下稳定工作。
此外,窄带电力载波通信还可以实现点对多点的通信模式,方便进行组网和数据传输。
然而,窄带电力载波通信也存在一些限制和挑战。
首先,由于其通信带宽较窄,因此通信速率相对较低,通常只能支持较低的数据传输速率。
其次,窄带电力载波通信容易受到电力线上的噪声和干扰影响,需要进行有效的信号处理和调制解调技术来保证通信的可靠性。
此外,由于电力线的特殊性和复杂性,窄带电力载波通信系统的实际应用效果可能会因不同的用电环境和设备而有所不同。
总的来说,窄带电力载波通信是一种具有潜力的通信技术,尤其适用于对实时用电数据要求低、电表分散、工程施工难度大的地区。
随着技术的不断发
展和优化,窄带电力载波通信有望在智能家居、智能农业、智能工业等领域得到更广泛的应用。
多种带宽的定义,窄带、宽带与超宽带我们想让雷达的分辨率越来越高,达到目标的物理尺寸级,这样通过回波的信号分析,使得分辨和识别目标具有了额外优势。
精细的空间分辨率意味着雷达的带宽大,这也会给频谱分配、干扰和技术能力等带来问题。
我们常常根据分辨率要求来简单倒推信号带宽,例如1m分辨率需要150MHz;带宽达到500MHz的话可以提供0.3m的分辨率,这在雷达成像中较典型。
大家可能觉得500MHz并不是很宽,对现在高速ADC来说很轻松。
但对于较低的微波频率范围来说,500MHz带宽将占中心频率较大的百分比,也就是相对带宽大。
而具有较大相对带宽的信号需要新的无线电设计概念。
带宽的定义通常,这里说的带宽是指在电路、组件频率响应或信号功率谱-3dB点之间的差值。
对于一个正弦脉冲信号,脉宽的倒数近似为-3dB 信号带宽。
当然也有用信号所占有的频率范围来定义信号带宽,也就是用最高频率减去最低频率 (FH-FL)。
其他带宽定义包括X dB带宽,具体定义见下图。
另外,平时也会遇到“工作带宽”、“瞬时带宽”等说法。
雷达工作带宽常常是指该雷达可能工作的频率范围,例如我们常听到的S波段雷达、X波段雷达或者毫米波雷达等,是指雷达工作时的频率在该范围内。
瞬时带宽往往指雷达信号带宽,根据雷达模式从几MHz~几百MHz。
对于相控阵雷达,瞬时带宽会受到一定的限制。
当信号具有一定带宽时,以中心频率设计的移相器波控码不变,对相位的权值不变,但由于相对于中心频率的偏离,会导致波束扫描的指向会发生偏离。
另外,在接收宽带信号时,由于孔径渡越时间的限制,阵列两端的信号不能同时相加,会导致波形展宽。
也就是说要实现相控阵天线的大瞬时带宽,需要解决上述问题。
窄带、宽带和超宽带并不是说带宽小的就是窄带或者带宽大的就是宽带、超宽带,所谓窄带宽带超宽带是基于相对带宽来说的,相对带宽是用带宽除以中心频率获得的。
从James D. Taylor的“Ultrawideband Radar: Applications and Design”的书中找到了有价值的参考依据。
PLC(电力线通信)技术利用现有的电力线路作为数据传输的介质。
在PLC系统中,数据通过载波信号进行传输,这些载波信号通常是调制在电力线上的高频信号。
载波频段的选择对于PLC系统的性能至关重要,因为它直接影响到信号的传输距离、抗干扰能力和数据传输速率。
对于PLC技术,通常存在两个主要的频段:
1. 窄带PLC(Narrowband PLC):
窄带PLC通常工作在较低的频率范围内,大约在30kHz到500kHz之间。
这个频段的信号传播损耗相对较小,适合较短距离的通信。
窄带PLC技术由于其较低的频率,能够更好地抵抗电力线上的噪声和干扰,但它的数据传输速率较低。
2. 宽带PLC(Broadband PLC):
宽带PLC技术则工作在更高的频率范围,大约在1MHz到30MHz之间。
这个频段的信号可以携带更多的信息,因此数据传输速率更高,适合长距离的通信。
然而,由于频率较高,宽带PLC信号的传播损耗较大,且更容易受到电力线上的噪声和干扰的影响。
不同国家和地区的电力线通信标准可能有所不同。
例如,根据欧洲标准(ETSI)和北美标准(FCC),宽带PLC的频段划分可能会有所差异。
在实际应用中,选择哪个频段需要根据具体的应用场景、通信距离、数据传输需求以及电力线环境的特性来决定。
在中国,电力线通信通常遵守国家标准GB/T 18487.1-2015《工业车辆电气设备第1部分:一般要求》和GB/T 37556-2019《工业车辆安全要求和试验方法》等。
这些标准规定了PLC系统的电气参数、安全要求以及测试方法等,为PLC技术在中国的应用提供了指导和保障。
各种DSL 性能对照表:ADSL 原理:ADSL (Asymmetric Digital Subscriber Line )的中文名称为非对称数字用户专线其工作流程是:经ADSLModem 编码后的信号通过电话线传到电话局后再通过一个信号识别/分离器,如果是语音信号就传到电话交换机上,如果是数字信号就接入Internet.ADSL 的核心是编码技术,目前有多音复用DMT 和抑制载波幅度/相位CAP 两种主要方法。
两种方法的共同点是二者都使用正交幅度调制(QAM )。
区别是在CAP 中数据被调制到单一的载波之上,DMT 中数据被调制到多个载波之上,每个载波上的数据使用QAM 进行调制。
DMT 技术复杂成本也稍高一些,但由于DMT 线路的依赖性,并且有很强的抗干扰能力,已被定为标准。
DMT 使用0~4K 频带传输电话音频,用26K~1.1M 频带传送数据,并把它以4K 的宽度分为25个上行子通道和249个下行子通道。
速度计算公式为:信道数*每信道采样值位数*调制速度,所以ADSL 理论的上行速度为25*15*4K =1.5M ,而理论下行的速度为249*15*4K =14.9M 。
ADSL 使用了调制技术,采用频分多路复用(FD M )技术或回波消除技术实现在电话线上分隔有效带宽,从而产生多路信道,使用频带得到复用,因此可用带宽大大增加。
同时回波消除技术使上行频带与下行频带叠加,通过本地回波抵消来区分两频带。
DMT 根据探测到的信噪比-频率曲线,自动高速各个子通道的速度,使总体传输速度尽可能地接近给定条件下的最高速度。
基于DMT 的AD SL 还连续地对每个子道进行监测,当某些噪音增大时,DMT 系统会自动地把分配给这个通道的数据流转移到其他通道中。
中使用的ADSL 就是基于DMT 编码。
简称含义 下行传输率 上行传输率 传输距离 ADSL非对称DSL 1.544Mbps(T1) 64Kbps 6000m HDSL高速DSL 1.544Mbps(T1) 1.544Mbps(T1) 2/3*ADSL VDSL甚高速DSL 51~55Mbps 1.6~2.3Mbps 1000~6000英尺 SDSL对的DSL 384Kbps 384Kbps RADSL 速率自适应DSL 7Mbps 1Mbps。