多元函数微分法及其应用 复习题(及答案)
- 格式:doc
- 大小:963.00 KB
- 文档页数:16
第八章 多元函数微分法及其应用 复习题及解答一、选择题1. 极限lim x y x yx y→→+00242= (提示:令22y k x =) ( B ) (A) 等于0 (B) 不存在 (C) 等于12 (D) 存在且不等于0或12 2、设函数f x y x y y xxy xy (,)sin sin=+≠=⎧⎨⎪⎩⎪1100,则极限lim (,)x y f x y →→0= ( C )(提示:有界函数与无穷小的乘积仍为无穷小)(A) 不存在 (B) 等于1 (C) 等于0 (D) 等于23、设函数f x y xy x y x y x y (,)=++≠+=⎧⎨⎪⎩⎪222222000,则(,)f x y ( A )(提示:①在220x y +≠,(,)f x y 处处连续;②在0,0x y →→ ,令y kx =,200(0,0)x x y f →→→=== ,故在220x y +=,函数亦连续.所以,(,)f x y 在整个定义域内处处连续.)(A) 处处连续 (B) 处处有极限,但不连续 (C) 仅在(0,0)点连续 (D) 除(0,0)点外处处连续4、函数z f x y =(,)在点(,)x y 00处具有偏导数是它在该点存在全微分的 ( A ) (A)必要而非充分条件(B)充分而非必要条件(C)充分必要条件 (D)既非充分又非必要条件5、设u y x =arctan ,则∂∂u x = ( B )(A)xx y 22+(B) -+y x y 22 (C) yx y 22+(D)-+xx y 226、设f x y yx(,)arcsin=,则f x '(,)21= ( A ) (A )-14(B )14 (C )-12 (D )127、设yxz arctan=,v u x +=,v u y -=,则=+v u z z ( C )(A )22v u v u -- (B )22v u u v -- (C )22v u v u +- (D )22v u uv +-8、若f x x x x f x x x x (,),(,)'232612=+=+,则f x x y '(,)2= ( D ) (A) x +32(B) x -32(C) 21x + (D) -+21x 9、设z y x =,则()(,)∂∂∂∂z x zy+=21 ( A ) (A) 2 (B) 1+ln2 (C) 0 (D) 110、设z xye xy =-,则z x x x'(,)-= ( D ) (A)-+2122x x e x () (B)2122x x e x ()- (C)--x x e x ()122 (D)-+x x e x ()12211、曲线x t y t z t ===24sin ,cos ,在点(,,)202π处的法平面方程是 (C )(A) 242x z -=-π (B) 224x z -=-π (C) 42y z -=-π (D) 42y z -=π12、曲线45x y y z ==,,在点(,,)824处的切线方程是 (A )(A)842204x z y --=-= (B)x y z +==+122044 (C) x y z -=-=-85244 (D)x y z -=-=351413、曲面x z y x z cos cos +-=ππ22在点ππ2120,,-⎛⎝ ⎫⎭⎪处的切平面方程为 (D )(A )x z -=-π1 (B )x y -=-π1 (C )x y -=π2 (D )x z -=π214、曲面x yz xy z 2236-=在点(,,)321处的法线方程为 (A ) (A )x y z +=--=--58531918 (B )x y z -=-=--3823118(C )83180x y z --= (D )831812x y z +-=15、设函数z x y =-+122,则点 (,)00是函数 z 的 ( B ) (A )极大值点但非最大值点 (B )极大值点且是最大值点 (C )极小值点但非最小值点 (D )极小值点且是最小值点 16、设函数z f x y =(,)具有二阶连续偏导数,在P x y 000(,)处,有2)()(,0)()(,0)(,0)(000000======P f P f P f P f P f P f yx xy yy xx y x ,则( C )(A )点P 0是函数z 的极大值点 (B )点P 0是函数z 的极小值点 (C )点P 0非函数z 的极值点 (D )条件不够,无法判定 17、函数f x y z z (,,)=-2在222421x y z ++=条件下的极大值是 ( C )(A) 1 (B) 0 (C)-1 (D) -2 二、填空题 1、极限limsin()x y xy x→→0π= ⎽⎽⎽⎽⎽⎽⎽ .答:π 2、极限limln()x y x y e x y→→++01222=⎽⎽⎽⎽⎽⎽⎽ .答:ln23、函数z x y =+ln()的定义域为 ⎽⎽⎽⎽⎽⎽⎽ .答:x y +≥14、函数z xy=arcsin 的定义域为 ⎽⎽⎽⎽⎽⎽⎽ .答:-≤≤11x ,y ≠0 5、设函数f x y x y xy y x (,)ln =++⎛⎝ ⎫⎭⎪22,则f kx ky (,)= ⎽⎽⎽⎽⎽⎽⎽ .答:k f x y 2⋅(,)6、设函数f x y xy x y (,)=+,则f x y x y (,)+-= ⎽⎽⎽⎽⎽⎽⎽ .答:222x y x-(22()()(,)()()2x y x y x y f x y x y x y x y x+--+-==++-Q )7、设f x y x y x y A x y (,)ln()//=-⋅+<+≥⎧⎨⎩11212222222,要使f x y (,)处处连续,则A= ⎽⎽⎽⎽⎽⎽⎽ .答:-ln28、设f x y x y x y x y Ax y (,)tan()(,)(,)(,)(,)=++≠=⎧⎨⎪⎩⎪22220000,要使f x y (,)在(0,0)处连续,则A= ⎽⎽⎽⎽⎽⎽⎽ .答:1 9、函数221x y z x +=-的间断点是 .答:直线10x -=上的所有点10、函数f x y x y yx (,)cos =-122的间断点为 ⎽⎽⎽⎽⎽⎽⎽ .答:直线y x =±及x =011、设z x y y =-+sin()3,则∂∂z xx y ===21_________ .答:3cos512、设f x y x y (,)=+22,则f y (,)01= _________ .答:113、设u x y z x y z(,,)=⎛⎝ ⎫⎭⎪,则)3,2,1(d u =_________ .答:38316182d d ln d x y z --14、设u x x y =+22,则在极坐标系下,∂∂ur= _________ .答:0 15、设u xy y x =+,则∂∂22u x = _________.答:23yx16、设u x xy =ln ,则∂∂∂2u x y = ___________ .答:1y17、函数y y x =()由12+=x y e y 所确定,则d d y x = ___________ .答:22xye xy - 18、设函数z z x y =(,)由方程xy z x y z 2=++所确定,则∂∂zy= _______ .答:2112xyz xy --19、由方程xyz x y z +++=2222所确定的函数z z x y =(,)在点(1,0,-1)处的全微分d z = _________ .答:d d x y -220、曲线x t y t z t ===23213,,在点(,,)1213处的切线方程是_________.答:x y z -=-=-12221321、曲线x te y e z t e t t t ===232222,,在对应于 t =-1点处的法平面方程是___________. 答:01132=+--e y x 22、曲面xe y e z e ey z x ++=+223321在点(,,)210-处的法线方程为_________ . 答:e ze y x 22212=-+=- 23、曲面arctan y xz 14+=π在点(,,)-210处的切平面方程是_________.答:y z +=2124、设函数z z x y =(,)由方程123552422x xy y x y e z z +--+++=确定,则函数z的驻点是_________ .答:(-1,2) 27、函数z x y x y =----2346122的驻点是_________.答:(1,1)25、若函数f x y x xy y ax by (,)=+++++22236在点 (,)11-处取得极值,则常数a =_________, b =_________.答:a =0,b =426、函数f x y z x (,,)=-22在x y z 22222--=条件下的极大值是_______答:-4 三、计算题1、求下列二元函数的定义域,并绘出定义域的图形.(1) z = (2)ln()z x y =+ (3)1ln()z x y =+ (4)ln(1)z xy =-解:(1)要使函数z =有意义,必须有2210x y --≥,即有221x y +≤.故所求函数的定义域为22{(,)|1}D x y x y =+≤,图形为图3.1(2)要使函数ln()z x y =+有意义,必须有0x y +>.故所有函数的定义域为{}(,)|0D x y x y =+>,图形为图3.2(3)要使函数1ln()z x y =+有意义,必须有ln()0x y +≠,即0x y +>且1x y +≠.故该函数的定义域为{}(,)|01D x y x y x y =+>+≠,,图形为图3.3(4)要使函数ln(1)z xy =-有意义,必须有10xy ->.故该函数的定义域为{(,)|1}D x y xy =>,图形为图3.4图3.1 图3.2图3.3 图3.42、求极限limsin x y y xxy →→+-0211.解:lim sin x y y xxy →→+-0211=⋅++→→lim sin ()x y y x xy xy 00211= 43、求极限lim sin()x y x y x yxy →→-+0023211. 解:原式=lim ()sin()x y x y x y x y xy →→-++0232211=-++⋅→→limsin()x y x y xy xy 002111=-124、求极限lim x y xxye xy→→-+0416 . 解:lim x y xxye xy→→-+00416=++-→→lim ()x y x xye xy xy 00416= -85、设u x y y x =+sin cos ,求 u u x y ,. 解:u y y x x =-sin sinu x y x y =+cos cos6、设z xe ye y x =+-,求z z x y ,. 解:z e ye x y x =--z xe e y y x =+-7、设函数z z x y =(,)由yz zx xy ++=3所确定,试求∂∂∂∂z x zy,(其中x y +≠0). 解一:原式两边对x 求导得yz x x zxz y ∂∂∂∂+++=0,则∂∂z x z y y x =-++同理可得:∂∂z y z x y x =-++ 解二:xy xz F F y z xy y z F F x z x y y x ++-=-=++-=-=∂∂∂∂, 8、求函数z x xy y x y =-++-+23243122的极值.解:由z x y z x y x y=-+==-+-=⎧⎨⎩43403430,得驻点(,)-10074334>=--==yy yxxy xx z z z z D z xx =>40,函数z 在点(,)-10处取极小值z (,)-=-101.9、设z e x y =+32,而x t y t ==cos ,2,求d d z t. 解:d d (sin )()zte t e t x y x y =-+++3223232=-++(sin )3432t t e x y10、设z y xy x =ln(),求∂∂∂∂z x z y,. 解:z y y xy xy x x x =⋅+ln ln 1 z xy xy yy y x x =+-11ln() 11、设u a x a x yz a =->+ln ()0,求d u . 解:∂∂u x a a ax x yz =-+-ln 1,∂∂u y a z a x yz =⋅+ln ,∂∂u zya a x yz =+ln d (ln )d ln (d d )u a a ax x a a z y y z x yz x yz =-+++-+112、求函数z x y e xy =++ln()22的全微分.解:∂∂∂∂z x x ye x y e z y y xe x y e xyxyxyxy=+++=+++222222,[]d ()d ()d z x y ex ye x y xe y xyxy xy =+++++12222 四、应用题1、要造一容积为128立方米的长方体敞口水池,已知水池侧壁的单位造价是底部的2倍,问水池的尺寸应如何选择,方能使其造价最低? 解:设水池的长、宽、高分别为x y z ,,米.水池底部的单位造价为a .则水池造价()S xy xz yz a =++44 且 xyz =128令 ()L xy xz yz xyz =+++-44128λ由 ⎪⎪⎩⎪⎪⎨⎧=-==++==++==++=01280440404xyz L xy y x L xz z x L yz z y L z y x λλλλ得 x y z ===82由于实际问题必定存在最小值,因此当水池的长、宽、高分别为8米、8米、2米时,其造价最低.2、某工厂生产两种商品的日产量分别为x 和y (件),总成本函数22128),(y xy x y x C +-=(元).商品的限额为42=+y x ,求最小成本. 解:约束条件为042),(=-+=y x y x ϕ,构造拉格朗日函数22(,,)812(42)F x y x xy y x y λλ=-+++-,解方程组160240420x y F x y F x y F x y λλλ'⎧=-+=⎪'=-++=⎨⎪'=+-=⎩,得唯一驻点)17,25(),(=y x ,由实际情况知,)17,25(),(=y x 就是使总成本最小的点,最小成本为8043)17,25(=C (元).3、某工厂生产两种产品甲和乙,出售单价分别为10元与9元,生产x 单位的产品甲与生产y 单位的产品乙的总费用是)33(01.03240022y xy x y x +++++元, 求取得最大利润时,两种产品的产量各为多少?解:),(y x L 表示获得的总利润,则总利润等于总收益与总费用之差,即有利润目标函数)]33(01.032400[)910(),(22y xy x y x y x y x L +++++-+=)0,0(,400)33(01.06822>>-++-+=y x y xy x y x ,令⎩⎨⎧=+-='=+-='0)6(01.060)6(01.08y x L y x L yx,解得唯一驻点(120,80).又因06.0,01.0,006.0-=''=-=''=<-=''=yy xy xx L C L B L A ,得0105.332>⨯=--B AC .得极大值320)80,120(=L . 根据实际情况,此极大值就是最大值.故生产120单位产品甲与80单位产品乙时所得利润最大320元. 五、证明题 1、设)11(yx e z +-=, 求证z yz y x z x 222=∂∂+∂∂.证明: 因为2)11(1x e xzy x ⋅=∂∂+-, 2)11(1ye y z y x ⋅=∂∂+-, 所以 z e e yz y x z x y x y x 2)11()11(22=+=∂∂+∂∂+-+-2、证明函数nx ey tkn sin 2-=满足关系式22x y k t y ∂∂=∂∂ 证明:因为nx e kn kn nx e ty tkn t kn sin )(sin 2222⋅-=-⋅⋅=∂∂--, nx nex y tkn cos 2-=∂∂, nx e n xy t kn sin 2222--=∂∂, nx e kn xyk t kn sin 2222--=∂∂,所以22x y k t y ∂∂=∂∂.3、设z =xy +xF (u ), 而xyu =, F (u )为可导函数, 证明xy z y z y x z x +=∂∂+∂∂⋅.证明:y z y x z x ∂∂⋅+∂∂⋅])([])()([yu u F x x y x u u F x u F y x ∂∂'+⋅+∂∂'++=)]([)]()([u F x y u F xyu F y x '+⋅+'-+==xy +xF (u )+xy =z +xy .。
多元函数微分学及其应用(时间:150分钟)一、选择题(每小题3分,共15分)1、二重极限21lim 1x x y x y a x +→∞→⎛⎫- ⎪⎝⎭之值为( ).(A ) 0; (B ) 1; (C ) 1e -; (D ) e .2、设函数),(y x f 在),(00y x 处的偏导数),(y x f x 与),(y x f y 存在,则( ).(A ) ),(y x f 在),(00y x 处可微;(B ) ),(y x f 在),(00y x 处连续;(C ) ),(y x f 在),(00y x 处沿任意方向的方向导数存在;(D ) 以上三个结论都不正确.3、已知矩形的周长为2p ,将它绕其一边旋转而形成一个旋转体,当此旋转体的体积为最大时,矩形两边长分别为( ).(A ),22p p ; (B )2,33p p ; (C ) 3,44p p ; (D ) 23,55p p . 4、假设曲线2121522y x z x =-⎧⎪⎨=-⎪⎩在点(1,-1,-2)处的切线与直线533903210,x y z x y z -+-=⎧⎨-+-=⎩的夹角ϕ=( ).(A ) 0 ; (B )4π; (C ) 3π; (D )2π. 5、设(),()f x g x 是可微函数,且满足(,)(25)(25)u x y f x y g x y =++-, (,0)sin 2u x x =,(,0)0y u x =,则(,)u x y =( ).(A )sin 2cos5x y ; (B )sin 5cos 2x y ; (C )cos5sin 2x y ; (D )cos 2sin 5x y .二、填空题(每小题3分,共15分)1、设y x e u xsin -=,则y x u ∂∂∂2在点)1,2(π处的值为 . 2、设y x y x y x z -+++=arctanln 22,则dz = . 3、函数z y x u 1⎪⎪⎭⎫ ⎝⎛=在点(1,1,1)处的梯度为 . 4、已知⎪⎭⎫ ⎝⎛=z y z x ϕ,其中ϕ为可微分函数,则=∂∂+∂∂yz y x z x . 5、已知曲面xy z =上点p 处的法线l 平行于直线2121326:1-=--=-z y x l ,则法线l 的方程为 . 三、计算题(每小题6分,共30分)1、设)sin ,2(x y y x f z -=,其中),(v u f 具有连续的二阶偏导数,求yx z ∂∂∂2. 2、已知),(),,(z y x y x f z ϕ==,其中ϕ,f 均为可微分函数,求dxdz . 3、假设函数(,,)w f x y z =,其中f 具有二阶连续偏导数,(,)z z x y =由方程5551z xy z -+=所确定,求w x ∂∂,22w x ∂∂. 4、设n 是曲面222y x z +=在P (1,2,3)处指向外侧的法向量,求函数xz y x u 22233++=在点P 处沿方向n 的方向导数.5、在曲面222316x y z ++=上求一点,使曲面在此点处的切平面平行于下列两条直线:1361:458x y z l --+==,2:l x y z ==.四、(8分) 设),,(z y x f u =有连续偏导数,且ϕϕθϕθcos ,sin sin ,cos sin r z r y r x ===, 证明:若0=∂∂+∂∂+∂∂z u z y u y x u x ,则u 与r 无关. 五、(8分)一正圆锥的半径以每分钟7厘米的速度增大,而它的高以每分钟20厘米的速度减小,求当半径45r =厘米,高100h =厘米时该正圆锥的体积的变化率,此时体积是在增大还是减小?六、(8分)设椭圆12322=+y x 的内接等腰三角形之底边平行于椭圆长轴,求其最大面积.七、(8分) 试证光滑曲面0),(=--z y x z F 的所有切平面均与一固定非零向量平行.八、(8分)已知,,x y z 为实数,且2||3x e y z ++=,证明不等式2||1x e y z ⋅⋅≤.。
1第八章 多元函数微分法及其应用(A)1.填空题.填空题(1)若()y x f z ,=在区域D 上的两个混合偏导数y x z ∂∂∂2,xy z ∂∂∂2,则在D 上,上, x y zy x z ∂∂∂=∂∂∂22。
(2)函数()y x f z ,=在点()00,y x 处可微的处可微的 条件是()y x f z ,=在点()00,y x 处的偏导数存在。
偏导数存在。
(3)函数()y x f z ,=在点()00,y x 可微是()y x f z ,=在点()00,y x 处连续的处连续的 条件。
条件。
2.求下列函数的定义域.求下列函数的定义域(1)y x z -=;(2)22arccos yx zu +=3.求下列各极限.求下列各极限(1)x xyy x sin lim 00→→; (2)11lim 00-+→→xy xy y x ; (3)22222200)()cos(1lim y x y x y x y x ++-→→ 4.设()xy x z ln =,求y x z ∂∂∂23及23yx z ∂∂∂。
5.求下列函数的偏导数.求下列函数的偏导数(1)x y arctg z =;(2)()xy z ln =;(3)32z xy e u =。
6.设u t uv z cos 2+=,te u =,t v ln =,求全导数dt dz。
7.设()z y e u x-=,t x =,t y sin =,t z cos =,求dtdu 。
8.曲线⎪⎩⎪⎨⎧=+=4422y yx z ,在点(2,4,5)处的切线对于x 轴的倾角是多少?轴的倾角是多少? 9.求方程1222222=++c z b y a x 所确定的函数z 的偏导数。
的偏导数。
10.设y x ye z x2sin 2+=,求所有二阶偏导数。
,求所有二阶偏导数。
11.设()y x f z ,=是由方程y zz x ln =确定的隐函数,求x z∂∂,yz ∂∂。
0809 B一、填空题(每小题3分,共18分)2、设)ln(xy z =,则其全微分dz = . 11dx dy x y+ 3、函数xy x y u 2222-+=的所有间断点是 .2{(,)|2,,}x y y x x R y R =∈∈二、选择题(每小题3分,共15分)1、22),(y x xyy x f +=,则极限=→→),(lim 00y x f y x ( A )(A )不存在 (B )1 (C )2 (D )0A当点(,)P x y 沿曲线y kx =趋向(0,0)时,222200lim (,)lim x x y kxk x f x y x k x →→==+21kk =+显然,当k 取值不同是,极限也不相同。
所以22(,)(0,0)limx y xyx y →+不存在.2、在曲线32,,t z t y t x =-==所有切线中,与平面433=++z y x 平行的切线( A )(A )只有一条; (B ) 只有两条; (C )至少有3条; (D ) 不存在曲线的切向量2((),(),())=(12,3)T t t t t t ϕψω'''=-,,平面的法向量(1,3,3)n = 22(12,3)(1,3,3)1690t t t t -⋅=-+=,,2(31)0t -=,1.3t =得所以只有一条切线满足条件.3、点()0,0是函数xy z =的( B )(A )极值点;(B ).驻点但不是极值点;(C )是极值点但不是驻点;(D )以上都不对 分析: 令0,0x y z y z x ====,得(0,0)是驻点,但点(0,0)是xy z =的鞍点,不是极值点.四、计算题(每小题8分,共32分)1、设, , ,sin y x v xy u v e z u+===求xz∂∂和y z ∂∂ 解z f f u f vx x u x v x∂∂∂∂∂∂=+⋅+⋅∂∂∂∂∂∂e sin e cos e [sin()cos()]u u x y v y v y x y x y =⋅+=⋅+++e sin e cos u u zf f u f v v x v y y u y v y∂∂∂∂∂∂=+⋅+⋅=⋅+∂∂∂∂∂∂e [sin()cos()]x y x x y x y =⋅+++ 五、解答题(每小题分10,共20分)1、要造一个容积为定数a 的长方形无盖容器,如何设计它的尺寸才能使它的表面积最小?此时最小表面积为多少?解:设长方体的长宽高分别为,,,z y x 则问题就是在条件(,,)0x y z xyz a ϕ=-=下求函数 22S xy xz yz =++ )0,0,0(>>>z y x的最小值. 作拉格朗日函数(,,)22(),L x y z xy xz yz xyz a λ=++++-求其对,,,x y z λ的偏导数,并使之为零,得到 20,20,2()0,0.y z yz x z xz x y xy xyz a λλλ++=⎧⎪++=⎪⎨++=⎪⎪-=⎩因为z y x ,,都不等于零, 得 11,22z x y ==代入0xyz a -=,得x y z ===这是唯一可能的极值点. 由问题本身可知最小值一定存在,所以最小值就在这个可能的极值点处取得.时, 最小表面积S =0910B一、填空题(每小题2分,共10分)2、设函数),(y x f z =是由方程z z y x 4222=++给出,则全微分=dz .2d 224x x ydy zdz dz ++=,2xdx ydydz z+=-.3、曲面14222=++z y x 在点)3,2,1(P 处的切平面方程为 .切平面得法向量(1,2,3)(1,2,3)(2,2,2)n x y z =(2,4,6),=切平面方程为2(1)+4(2)6(3)0,23140.x y z x y z --+-=++-=或 二、选择题(每小题2分,共10分)1、二元函数),(y x f 在点),(00y x 处可微是两个偏导数),(',),('0000y x f y x f y x 都存在的 ( A )(A )充分条件 (B )必要条件(C )充分必要条件 (D )既非充分又非必要条件.四、计算题(每小题10分,共40分) 1、设v u z ln 2=,而y x u =、y x v 23-=,求:xz∂∂、y z ∂∂. 解:()()22223323ln 2y y x x y x y x x z -+-=∂∂,()()223223223ln 2y y x x y x yx y z ----=∂∂1011B一、填空题(每小题3分,共15分)(1) 设二元函数)1ln()1(y x xez yx +++=+,则=)0,1(|dz .(1,0)(1,0)(1,0)1|(ln(1))|()|1x y x y x y x dz e xe y dx xe dy y++++=++++++ (1,0)d 2ed (e 2)d zx y ∴=++(2) 旋转抛物面122-+=y x z 在点)4,1,2(处的法线方程是 . 法线的方向向量(2,1,4)(2,1,4)(2,2,1)s x y =-(4,2,1),=-法线方程是214421x y z ---==-. 二、单项选择题(每小题3分,共15分)(4) 设),(y x f z =的全微分为ydy xdx dz += 则点 )0,0( ( C ) .A 不是),(y x f 的连续点;.B 不是),(y x f 的极值点;.C 是),(y x f 的极小值点;.D 是),(y x f 的极大值点.分析:z ,x y x z y ==,得z 1,1,0xx yy xy z z ===,由210,10AC B A -=>=>,则点 )0,0(是),(y x f 的极小值点.三、求偏导数(每小题10分,共20分)(1)设),(3xyxy f x z =,其中f 具有二阶连续偏导数.求 y z ∂∂;22y z ∂∂;y x z ∂∂∂2.解:231223(())z yx f x yf f x x∂''=++-∂23123x f x yf xyf ''=+-3121(())z x xf f y x∂''=+∂ 4212x f x f ''=+ 242122()z x f x f y y ∂∂''=+∂∂421112212211(())(())x f x f x f x f x x ''''''''=⋅++⋅+ 531112222x f x x f xf ''''''=⋅++ y x z ∂∂∂22z y x ∂=∂∂4212()x f x f x∂''=+∂ 3421111222122224(())2(())y y x f x f y f xf x f y f x x ''''''=+⋅+⋅-+++- 3412112242.x f xf x yf yf ''''=++- (2)设),(y x z z =是方程)arc tan(z y x xyz ++=在)1,1,0(-点确定的隐函数,求xz∂∂及)1,1,0(-∂∂yz解:令)arctan(),,(z y x xyz z y x F ++-= …1分则 2)(11z y x xy F z +++-= 2)(11z y x yz F x +++-=2)(11z y x xz F y+++-= …6分 1])(1[1])(1[22-+++-+++-=-=∂∂z y x xy z y x yz F F x z z x ; …8分 11])(1[1])(1[22)1,1,0(-=-+++-+++-=-=∂∂-z y x xy z y x xz F F yz z y…10分六、应用题(本题满分10分)从斜边长为l 的一切直角三角形中,求有最大周长的直角三角形,并求出最大周长.解:设另两边长分别为y x ,,则 222l y x =+,周长 l y x C ++= …2分 设拉格朗日函数 )(),,(222l y x l y x y x F -++++=λλ …4分令 ⎪⎩⎪⎨⎧=-+==+==+=0021021222l y x F y F x F y x λλλ …6分解方程组得l y x 22==为唯一驻点,且最大周长一定存在 …8分 故当l y x 22==时,最大周长为l C )21(+= …10分1112B一、填空题(每小题2分,共10分)1. y x z 2=在点)1,1(处的._______________=dz22,dz xydx x dy =+112.x y dzdx dy ===+2. 设函数y xy ax x y x f 22),(22+++=在点)1,1(-取得极值,则常数_____=a .211(1,1)(4)0x x y f x a y ==--=++=,11(1,1)220y x y f xy ==--=+=,所以 5.a =-例36 设函数22(,)22f x y x ax xy y =+++在(1,1)-处取得极值,试求常数a ,并确定极值的类型.分析 这是二元函数求极值的反问题, 即知道(,)f x y 取得极值,只需要根据可导函数取得极值的必要条件和充分条件即可求解本题.解 因为(,)f x y 在(,)x y 处的偏导数均存在,因此点(1,1)-必为驻点, 则有 2(1,1)(1,1)(1,1)(1,1)40220fx a y x f xy y ----⎧∂=++=⎪∂⎪⎨∂⎪=+=⎪∂⎩,因此有410a ++=,即5a =-. 因为22(1,1)4f A x-∂==∂,2(1,1)(1,1)22fB y x y--∂===-∂∂, 22(1,1)(1,1)22fC x y--∂===∂,2242(2)40AC B ∆=-=⨯--=>,40A =>,所以,函数(,)f x y 在(1,1)-处取得极小值.二、选择题(每小题2分,共10分)3. 在点P 处函数),(y x f 的全微分df 存在的充分条件为 ( C ) (A) y x f f ,均存在 (B) f 连续(C) f 的全部一阶偏导数均连续 (D) f 连续且y x f f ,均存在三、计算题(每小题8分,共40分)1. 设),(y x z z =是由方程z z y x 2222=++所确定的隐函数,计算22,x z x z ∂∂∂∂的值. 解:设 222(,,)2F x y z x y z z =++-,则2x F x =,2y F y = ,22,z F z '=-2,221z x x x z z ∂=-=∂--22()1z xx x z∂∂=∂∂-21(1)x z xz z -+=-22231(1)1(1)(1)xz xz x z z z -+-+-==-- 4. 求函数zx yz xy u ++=在点)3,1,2(沿着从该点到点)15,5,5(的方向导数.解 方向(3,4,12)l = 03412{,,}.13133l =1312cos ,134cos ,133cos ===γβα3)3,1,2(,5)3,1,2(,4)3,1,2(===z y x u u u ,1368cos cos cos =++=∂∂γβαz y x u u u l z . 五、证明题(每小题7分,共7分)证明(,)(0,0)(,)0(,)(0,0)x y f x y x y ≠==⎩在)0,0(点偏导数存在,但不可微.证: (,0)0,(0,)0f x f y ==,0(0,0)(0,0)(0,0)limlim00.x x x f x f f x∆→→+∆-===∆ 00(0,0)(0,0)(0,0)limlim 00.y y y f y f f y∆→∆→+∆-===∆ (,)(0,0)f x y 所以函数在处可导....................3分2202200lim ),(lim )0,0()0,0(limy x y x yx y x f y f x f z y x ∆∆∆∆∆∆∆∆ρ∆∆∆ρρρ+=+=--→→→当点(,)P x y ∆∆沿曲线y kx =趋向(0,0)时,22222222000()lim lim lim ()()()()x x y k xx y x y k x x y x y x k x ρ→∆→→∆=∆∆∆∆∆∆==∆+∆∆+∆∆+∆21kk =+. 显然,当k 取值不同是,极限也不相同。
多元函数微分法和应⽤期末复习试题⾼等数学(下册)(上海电机学院)第⼋章偏导数与全微分⼀、选择题1.若u=u(x, y)是可微函数,且,1),(2==x y y x u ,2x xuxy =??=则=??=2x y y u [A ] A. 21-B. 21C. -1D. 12.函数62622++-+=y x y x z [ D ]A. 在点(-1, 3)处取极⼤值B. 在点(-1, 3)处取极⼩值C. 在点(3, -1)处取极⼤值D. 在点(3, -1)处取极⼩值3.⼆元函数(),f x y 在点()00,x y 处的两个偏导数()()0000,,,x y f x y f x y 存在是函数f 在该点可微的 [ B ]A. 充分⽽⾮必要条件B.必要⽽⾮充分条件C.充分必要条件D.既⾮充分也⾮必要条件4. 设u=2x +22y +32z +xy+3x-2y-6z 在点O(0, 0, 0)指向点A(1, 1, 1)⽅向的导数=??lu[ D ] A.635 B.635- C.335 D. 335- 5. 函数xy y x z 333-+= [ B ]A. 在点(0, 0)处取极⼤值B. 在点(1, 1)处取极⼩值C. 在点(0, 0), (1, 1)处都取极⼤值 D . 在点(0, 0), (1, 1)处都取极⼩值 6.⼆元函数(),f x y 在点()00,x y 处可微是(),f x y 在该点连续的[ A ] A. 充分⽽⾮必要条件 B.必要⽽⾮充分条件 C.充分必要条件D.既⾮充分也⾮必要条件 7. 已知)10(0sin <<=--εεx y y , 则dxdy= [ B ] A. y cos 1ε+ B.y cos 11ε- C. y cos 1ε- D. ycos 11ε+8. 函数yx xy z 2050++= (x>0,y>0)[ D ] A. 在点(2, 5)处取极⼤值 B. 在点(2, 5)处取极⼩值C.在点(5, 2)处取极⼤值D. 在点(5, 2)处取极⼩值9.⼆元函数(),f x y 在点()00,x y 处连续的是(),f x y 在点()00,x y 处可微的 [A ] A. 必要⽽⾮充分条件 B. 充分⽽⾮必要条件 C.充分必要条件 D.既⾮充分也⾮必要条件10. 曲线x=t, y=2t -, z=3t 所有切线中与平⾯x+2y+z=4平⾏的切线有 [ B ] A. 1 条 B.2条 C. 3条 D.不存在 11.设22(,)xy f x y y x =-,则(,)x yf y x= B A. 42xyy x - B. 2244x y y x - C. 2244x y y x +- D. 2244y x y x --12.为使⼆元函数(,)x yf x y x y+=-沿某⼀特殊路径趋向(0,0)的极限为2,这条路线应选择为 B A.4x y = B. 3x y = C. 2x y = D. 23x y = 13.设函数(,)z f x y =满⾜222zy=,且(,1)2f x x =+,(,1)1y f x x '=+,则(,)f x y =BA.2(1)2y x y +++ B. 2(1)2y x y +-+ C. 2(1)2y x y +-- D. 2(1)2y x y ++- 14.设(,)32f x y x y =+,则(,(,))f xy f x y = CA.344xy x y ++B. 2xy x y ++C. 364xy x y ++D. 346xy x y ++15.为使⼆元函数222(,)xy f x y x y=+在全平⾯连续,则它在(0,0)处应被补充定义为 B A.-1 B.0 C.1 D. 16.已知函数2 2(,)f x y x y x y +-=-,则(,)(,)f x y f x y x y+= C A.22x y - B. 22x y + C. x y + D. x y -17.若()yf x=(0)x >,则()f x =BC.x18.若xz y =,则在点 D 处有z z y x= A.(0,1) B.(,1)e C.(1,)e D. (,)e e19.设2y z x =,则下列结论正确的是 AA.220z z x y y x ??-= B. 220z zx y y x ??-> C.220z zx y y x-0(,)11sin sin ,0xy f x y x y xy y x =??=?+≠??,则极限00lim (,)x y f x y →→( C ). (A) 等于1 (B) 等于2 (C) 等于0 (D) 不存在 21.函数z xy =在点(0,0) ( D ).(A) 有极⼤值 (B) 有极⼩值 (C) 不是驻点 (D) ⽆极值 22.⼆元函数z =在原点(0,0)处( A ).(A) 连续,但偏导不存在 (B) 可微(C) 偏导存在,但不连续 (D) 偏导存在,但不可微23.设()u f r =,⽽r =,()f r 具有⼆阶连续导数,则222222u u ux y z++=( B ).(A) 1''()'()f r f r r +(B) 2''()'()f r f r r+ (C) 211''()'()f r f r r r + (D) 212''()'()f r f r r r+24.函数(,)z f x y =在点00(,)x y 处连续是它在该点偏导存在的( D ). (A) 必要⽽⾮充分条件 (B) 充分⽽⾮必要条件(C) 充分必要条件 (D) 既⾮充分⼜⾮必要条件 25.函数221z x y =--的极⼤值点是( D ).(A) (1,1) (B) (1,0) (C) (0,1) (D) (0,0)26.设(,)f x y =(2,1)x f '=(B ).(A) 14 (B) 14- (C) 12 (D) 12-27.极限24200lim x y x y x y →→+( B ).(A) 等于0 (B) 不存在 (C) 等于12 (D) 存在且不等于0及1228.(,)z f x y =若在点000(,)P x y 处的两个⼀阶偏导数存在,则(B ). (A) (,)f x y 在点0P 连续 (B) 0(,)z f x y =在点0x 连续 (C) 00||P P z zdz dx dy x y ??=+ (D) A,B,C 都不对 29. 设函数y x z =,则z d =( A ). (A).y x x x yxy y d ln d 1+- (B).y x x yx y y d d 1+-(C).y x x x x yy d ln d + (D).y y x x yxy y d ln d 1+-30. 已知=??===y zxy v y x u v u z 则 ,,,ln 2( C )(A )y x xy y x 3232ln 2+ (B )y xxy y x 3232ln 2-(C )y x xy y x 3232ln 2+- (D )y x xy y x 22ln 2+31.函数z=22y x 1--的定义域是( D )(A.) D={(x,y)|x 2+y 2=1}(B.)D={(x,y)|x 2+y 2≥1}(C.) D={(x,y)|x 2+y 2<1}(D.)D={(x,y)|x 2+y 2≤1}32.设22),(yx xyy x f +=,则下列式中正确的是( C );)A ( ),(,y x f x y x f =??; )B (),(),(y x f y x y x f =-+;)C ( ),(),(y x f x y f =; )D ( ),(),(y x f y x f =-33.设e cos xz y =,则=yx z2( D );)A ( e sin x y ; )B ( e e sin x x y +;)C ( e cos xy -; )D ( e sin xy -34.已知22),(y x y x y x f -=-+,则x f ??=??+yf ( C ); )A ( y x 22+; )B ( y x -; )C ( y x 22- )D ( y x +.35. 设y xy x z 2232-+=,则=y x z( B )(A )6 (B )3 (C )-2 (D )2.36.设()==?x zy x y x f z 00, ,,则( B )(A )()()x y x f y y x x f x ?-?+?+→?00000,,lim(B )()()x y x f y x x f x ?-?+→?0000,,lim(C )()()x y x f y x x f x ?-?+→?00000,,lim (D )()x y x x f x ??+→?000,lim37. 设由⽅程0=-xyz e z确定的隐函数()==x zy x f z 则,,( B )(A )z z+1 (B )()1-z x z (C )()z x y +1 (D )()z x y -138. ⼆次函数 11)4ln(2222-++--=y x y x z 的定义域是( D )A. 1 < 22y x + ≤ 4;B. –1 ≤ 22y x + < 4; C. –1 ≤ 22y x + ≤ 4; D. 1 < 22y x + < 4。
第八章 多元函数微分法及其应用8.01 在“充分”,“必要”,“充分必要”中选择一个正确的填入下列空格内:(1)()y ,x f 在点()y ,x 可微分是()y ,x f 在该点连续的充 分条件;()y ,x f 在点()y ,x 连续是()y ,x f 在该点可微分的必 要条件。
(2))y ,x (f z =在点()y ,x 的偏导数x z ∂∂及y z∂∂存在是()y ,x f 在该点可微分的必 要条件;)y ,x (f z =在点()y ,x 可微分是函数在该点的偏导数x z ∂∂及y z∂∂存的充 分条件。
(3))y ,x (f z =的偏导数x z ∂∂及y z∂∂点()y ,x 存在且连续是()y ,x f 在该点可微分的充 分条件。
(4)函数()y ,x f z =的两个二阶混合偏导数y x z 2∂∂∂及x y z2∂∂∂在区域D 内连续是这两个二阶混合偏导数在D 内相等的充 分条件。
8.02求函数()()222yx 1ln y x 4y ,x f ---=的定义域,并求()y ,x f lim 0y 21x →→。
解:1)⎩⎨⎧≤<+<⇒⎪⎩⎪⎨⎧≠-->--≥-x4y 1y x 01y x 10y x 10y x 422222222,定义域:(){}x 4y ,1y x 0y ,x D 222≤<+<=2)由初等函数的连续性知:43ln 20211ln 0214)0,21(f )y ,x (f lim 2220y 21x =⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--⨯==→→+8.03 证明极限422y 0x y x xy lim+→→不存在。
证明:当点()y ,x 沿用x k y 1=趋于点()0,0时,有222220x 4220x k y 0x k 1k x k x kx lim y x xy lim 1+=+=+++→→=→,显然它是随着k 的不同而改变的,故:极限422y 0x y x xy lim+→→+不存在。
第八章 多元函数微分法及其应用(A)1.填空题(1)若()y x f z ,=在区域D 上的两个混合偏导数y x z ∂∂∂2,xy z∂∂∂2 ,则在D 上,xy zy x z ∂∂∂=∂∂∂22。
(2)函数()y x f z ,=在点()00,y x 处可微的 条件是()y x f z ,=在点()00,y x 处的偏导数存在。
(3)函数()y x f z ,=在点()00,y x 可微是()y x f z ,=在点()00,y x 处连续的 条件。
2.求下列函数的定义域(1)y x z -=;(2)22arccos yx z u +=3.求下列各极限(1)x xy y x sin lim 00→→; (2)11lim 00-+→→xy xyy x ; (3)22222200)()cos(1lim y x y x y x y x ++-→→4.设()xy x z ln =,求y x z ∂∂∂23及23y x z∂∂∂。
5.求下列函数的偏导数 (1)xyarctgz =;(2)()xy z ln =;(3)32z xy e u =。
6.设u t uv z cos 2+=,t e u =,t v ln =,求全导数dt dz 。
7.设()z y e u x -=,t x =,t y sin =,t z cos =,求dtdu。
8.曲线⎪⎩⎪⎨⎧=+=4422y y x z ,在点(2,4,5)处的切线对于x 轴的倾角是多少?9.求方程1222222=++cz b y a x 所确定的函数z 的偏导数。
10.设y x ye z x 2sin 2+=,求所有二阶偏导数。
11.设()y x f z ,=是由方程y z z x ln =确定的隐函数,求xz∂∂,y z ∂∂。
12.设x y e e xy =+,求dxdy 。
13.设()y x f z ,=是由方程03=+-xy z e z确定的隐函数,求xz∂∂,y z ∂∂,y x z ∂∂∂2。
(((x 2 + y 2 ≤ 1, x+ y }(1- (t + 4) 2 解:令 t=xy , lim = lim= lim 2=- t →0 t →0习题 8-11. 求下列函数的定义域:(1) z =解: x -x - y ;y ≥ 0, y ≥ 0 ⇒ D ={x, y ) y ≥ 0, x ≥ y }x(2) z = ln( y - x) +;1 - x2 - y 2解: y - x ≥ 0, x ≥ 0,1 - x 2 - y 2 ⇒ D ={ x , y ) y > x ≥ 0 且 x2+ y 2 < 1}(3) u = R 2 - x 2 - y 2- z 2 +1x 2 + y 2+ z 2 - r 2(R > r > 0) ;解: 0 ≤ R 2 - x 2 - y 2 - z 2,0 < x 2 + y 2 + z 2 - r 2 ⇒⇒ D = {x , y , z ) r 2< x 2 + y 2 + z 2 ≤ R 2}(4) u = arccoszx 2 + y 2。
解:z2 2 ≠ 0 ⇒ D = {x, y ) z ≤x 2 + y 2 且 x 2 + y 2≠ 02. 求下列多元函数的极限::(1) lim ln( x + e y )x →1 x 2 + y 2y →0;解: limx →1y →0ln( x + e y ) x 2 + y 2 = ln(1+ 1)1= ln 2(2) lim 2 - xy + 4x →0xy y →0;1- 2 - xy + 4 2 t + 4 1 x →0xy t 1 4 y →01 / 28x →0 y →0x →0lim x +y = , m 不同时,极值也不同,所以极限不存在 。
(3) lim sin xyx →0x y →5;sin xy sin xy解: lim = 5lim = 5x →0 x 5xy →5y →01 - cos( x2 + y 2 ) (4) lim( x 2 + y 2 )e x 2 y 2;x →0 y →0解:Q 1 - cos( x 2 + y 2 ) = 2(sinx 2 + y 2 2)2 ,∴ l im x →0 y →01 - cos( x2 + y 2 ) 1= 2 ⋅ ⋅ 0 = 0( x 2 + y 2 )e x 2 y 2 2(5) lim( x 2 + y 2 ) xy 。
第八章 多元函数微分法及其应用 复习题及解答一、选择题1. 极限lim x y x yx y→→+00242= (提示:令22y k x =) ( B ) (A) 等于0 (B) 不存在 (C) 等于12 (D) 存在且不等于0或12 2、设函数f x y x y y xxy xy (,)sin sin=+≠=⎧⎨⎪⎩⎪1100,则极限lim (,)x y f x y →→0= ( C )(提示:有界函数与无穷小的乘积仍为无穷小)(A) 不存在 (B) 等于1 (C) 等于0 (D) 等于23、设函数f x y xy x y x y x y (,)=++≠+=⎧⎨⎪⎩⎪222222000,则(,)f x y ( A )(提示:①在220x y +≠,(,)f x y 处处连续;②在0,0x y →→ ,令y kx =,200(0,0)x x y f →→→=== ,故在220x y +=,函数亦连续.所以,(,)f x y 在整个定义域内处处连续.)(A) 处处连续 (B) 处处有极限,但不连续 (C) 仅在(0,0)点连续 (D) 除(0,0)点外处处连续4、函数z f x y =(,)在点(,)x y 00处具有偏导数是它在该点存在全微分的 ( A ) (A)必要而非充分条件(B)充分而非必要条件(C)充分必要条件 (D)既非充分又非必要条件5、设u y x =arctan ,则∂∂u x = ( B )(A)xx y 22+(B) -+y x y 22 (C) yx y 22+(D)-+xx y 226、设f x y yx(,)arcsin=,则f x '(,)21= ( A ) (A )-14(B )14 (C )-12 (D )127、设yxz arctan=,v u x +=,v u y -=,则=+v u z z ( C )(A )22v u v u -- (B )22v u u v -- (C )22v u v u +- (D )22v u uv +-8、若f x x x x f x x x x (,),(,)'232612=+=+,则f x x y '(,)2= ( D ) (A) x +32(B) x -32(C) 21x + (D) -+21x 9、设z y x =,则()(,)∂∂∂∂z x zy+=21 ( A ) (A) 2 (B) 1+ln2 (C) 0 (D) 110、设z xye xy =-,则z x x x'(,)-= ( D ) (A)-+2122x x e x () (B)2122x x e x ()- (C)--x x e x ()122 (D)-+x x e x ()12211、曲线x t y t z t ===24sin ,cos ,在点(,,)202π处的法平面方程是 (C )(A) 242x z -=-π (B) 224x z -=-π (C) 42y z -=-π (D) 42y z -=π12、曲线45x y y z ==,,在点(,,)824处的切线方程是 (A )(A)842204x z y --=-= (B)x y z +==+122044 (C) x y z -=-=-85244 (D)x y z -=-=351413、曲面x z y x z cos cos +-=ππ22在点ππ2120,,-⎛⎝ ⎫⎭⎪处的切平面方程为 (D )(A )x z -=-π1 (B )x y -=-π1 (C )x y -=π2 (D )x z -=π214、曲面x yz xy z 2236-=在点(,,)321处的法线方程为 (A ) (A )x y z +=--=--58531918 (B )x y z -=-=--3823118(C )83180x y z --= (D )831812x y z +-=15、设函数z x y =-+122,则点 (,)00是函数 z 的 ( B ) (A )极大值点但非最大值点 (B )极大值点且是最大值点 (C )极小值点但非最小值点 (D )极小值点且是最小值点 16、设函数z f x y =(,)具有二阶连续偏导数,在P x y 000(,)处,有2)()(,0)()(,0)(,0)(000000======P f P f P f P f P f P f yx xy yy xx y x ,则( C )(A )点P 0是函数z 的极大值点 (B )点P 0是函数z 的极小值点 (C )点P 0非函数z 的极值点 (D )条件不够,无法判定 17、函数f x y z z (,,)=-2在222421x y z ++=条件下的极大值是 ( C )(A) 1 (B) 0 (C)-1 (D) -2 二、填空题 1、极限limsin()x y xy x→→0π= ⎽⎽⎽⎽⎽⎽⎽ .答:π 2、极限limln()x y x y e x y→→++01222=⎽⎽⎽⎽⎽⎽⎽ .答:ln23、函数z x y =+ln()的定义域为 ⎽⎽⎽⎽⎽⎽⎽ .答:x y +≥14、函数z xy=arcsin 的定义域为 ⎽⎽⎽⎽⎽⎽⎽ .答:-≤≤11x ,y ≠0 5、设函数f x y x y xy y x (,)ln =++⎛⎝ ⎫⎭⎪22,则f kx ky (,)= ⎽⎽⎽⎽⎽⎽⎽ .答:k f x y 2⋅(,)6、设函数f x y xy x y (,)=+,则f x y x y (,)+-= ⎽⎽⎽⎽⎽⎽⎽ .答:222x y x-(22()()(,)()()2x y x y x y f x y x y x y x y x+--+-==++-Q )7、设f x y x y x y A x y (,)ln()//=-⋅+<+≥⎧⎨⎩11212222222,要使f x y (,)处处连续,则A= ⎽⎽⎽⎽⎽⎽⎽ .答:-ln28、设f x y x y x y x y Ax y (,)tan()(,)(,)(,)(,)=++≠=⎧⎨⎪⎩⎪22220000,要使f x y (,)在(0,0)处连续,则A= ⎽⎽⎽⎽⎽⎽⎽ .答:1 9、函数221x y z x +=-的间断点是 .答:直线10x -=上的所有点10、函数f x y x y yx (,)cos =-122的间断点为 ⎽⎽⎽⎽⎽⎽⎽ .答:直线y x =±及x =011、设z x y y =-+sin()3,则∂∂z xx y ===21_________ .答:3cos512、设f x y x y (,)=+22,则f y (,)01= _________ .答:113、设u x y z x y z(,,)=⎛⎝ ⎫⎭⎪,则)3,2,1(d u =_________ .答:38316182d d ln d x y z --14、设u x x y =+22,则在极坐标系下,∂∂ur= _________ .答:0 15、设u xy y x =+,则∂∂22u x = _________.答:23yx16、设u x xy =ln ,则∂∂∂2u x y = ___________ .答:1y17、函数y y x =()由12+=x y e y 所确定,则d d y x = ___________ .答:22xye xy - 18、设函数z z x y =(,)由方程xy z x y z 2=++所确定,则∂∂zy= _______ .答:2112xyz xy --19、由方程xyz x y z +++=2222所确定的函数z z x y =(,)在点(1,0,-1)处的全微分d z = _________ .答:d d x y -220、曲线x t y t z t ===23213,,在点(,,)1213处的切线方程是_________.答:x y z -=-=-12221321、曲线x te y e z t e t t t ===232222,,在对应于 t =-1点处的法平面方程是___________. 答:01132=+--e y x 22、曲面xe y e z e ey z x ++=+223321在点(,,)210-处的法线方程为_________ . 答:e ze y x 22212=-+=- 23、曲面arctan y xz 14+=π在点(,,)-210处的切平面方程是_________.答:y z +=2124、设函数z z x y =(,)由方程123552422x xy y x y e z z +--+++=确定,则函数z的驻点是_________ .答:(-1,2) 27、函数z x y x y =----2346122的驻点是_________.答:(1,1)25、若函数f x y x xy y ax by (,)=+++++22236在点 (,)11-处取得极值,则常数a =_________, b =_________.答:a =0,b =426、函数f x y z x (,,)=-22在x y z 22222--=条件下的极大值是_______答:-4 三、计算题1、求下列二元函数的定义域,并绘出定义域的图形.(1) z = (2)ln()z x y =+ (3)1ln()z x y =+ (4)ln(1)z xy =-解:(1)要使函数z =有意义,必须有2210x y --≥,即有221x y +≤.故所求函数的定义域为22{(,)|1}D x y x y =+≤,图形为图3.1(2)要使函数ln()z x y =+有意义,必须有0x y +>.故所有函数的定义域为{}(,)|0D x y x y =+>,图形为图3.2(3)要使函数1ln()z x y =+有意义,必须有ln()0x y +≠,即0x y +>且1x y +≠.故该函数的定义域为{}(,)|01D x y x y x y =+>+≠,,图形为图3.3(4)要使函数ln(1)z xy =-有意义,必须有10xy ->.故该函数的定义域为{(,)|1}D x y xy =>,图形为图3.4图3.1 图3.2图3.3 图3.42、求极限limsin x y y xxy →→+-0211.解:lim sin x y y xxy →→+-0211=⋅++→→lim sin ()x y y x xy xy 00211= 43、求极限lim sin()x y x y x yxy →→-+0023211. 解:原式=lim ()sin()x y x y x y x y xy →→-++0232211=-++⋅→→limsin()x y x y xy xy 002111=-124、求极限lim x y xxye xy→→-+0416 . 解:lim x y xxye xy→→-+00416=++-→→lim ()x y x xye xy xy 00416= -85、设u x y y x =+sin cos ,求 u u x y ,. 解:u y y x x =-sin sinu x y x y =+cos cos6、设z xe ye y x =+-,求z z x y ,. 解:z e ye x y x =--z xe e y y x =+-7、设函数z z x y =(,)由yz zx xy ++=3所确定,试求∂∂∂∂z x zy,(其中x y +≠0). 解一:原式两边对x 求导得yz x x zxz y ∂∂∂∂+++=0,则∂∂z x z y y x =-++同理可得:∂∂z y z x y x =-++ 解二:xy xz F F y z xy y z F F x z x y y x ++-=-=++-=-=∂∂∂∂, 8、求函数z x xy y x y =-++-+23243122的极值.解:由z x y z x y x y=-+==-+-=⎧⎨⎩43403430,得驻点(,)-10074334>=--==yy yxxy xx z z z z D z xx =>40,函数z 在点(,)-10处取极小值z (,)-=-101.9、设z e x y =+32,而x t y t ==cos ,2,求d d z t. 解:d d (sin )()zte t e t x y x y =-+++3223232=-++(sin )3432t t e x y10、设z y xy x =ln(),求∂∂∂∂z x z y,. 解:z y y xy xy x x x =⋅+ln ln 1 z xy xy yy y x x =+-11ln() 11、设u a x a x yz a =->+ln ()0,求d u . 解:∂∂u x a a ax x yz =-+-ln 1,∂∂u y a z a x yz =⋅+ln ,∂∂u zya a x yz =+ln d (ln )d ln (d d )u a a ax x a a z y y z x yz x yz =-+++-+112、求函数z x y e xy =++ln()22的全微分.解:∂∂∂∂z x x ye x y e z y y xe x y e xyxyxyxy=+++=+++222222,[]d ()d ()d z x y ex ye x y xe y xyxy xy =+++++12222 四、应用题1、要造一容积为128立方米的长方体敞口水池,已知水池侧壁的单位造价是底部的2倍,问水池的尺寸应如何选择,方能使其造价最低? 解:设水池的长、宽、高分别为x y z ,,米.水池底部的单位造价为a .则水池造价()S xy xz yz a =++44 且 xyz =128令 ()L xy xz yz xyz =+++-44128λ由 ⎪⎪⎩⎪⎪⎨⎧=-==++==++==++=01280440404xyz L xy y x L xz z x L yz z y L z y x λλλλ得 x y z ===82由于实际问题必定存在最小值,因此当水池的长、宽、高分别为8米、8米、2米时,其造价最低.2、某工厂生产两种商品的日产量分别为x 和y (件),总成本函数22128),(y xy x y x C +-=(元).商品的限额为42=+y x ,求最小成本. 解:约束条件为042),(=-+=y x y x ϕ,构造拉格朗日函数22(,,)812(42)F x y x xy y x y λλ=-+++-,解方程组160240420x y F x y F x y F x y λλλ'⎧=-+=⎪'=-++=⎨⎪'=+-=⎩,得唯一驻点)17,25(),(=y x ,由实际情况知,)17,25(),(=y x 就是使总成本最小的点,最小成本为8043)17,25(=C (元).3、某工厂生产两种产品甲和乙,出售单价分别为10元与9元,生产x 单位的产品甲与生产y 单位的产品乙的总费用是)33(01.03240022y xy x y x +++++元, 求取得最大利润时,两种产品的产量各为多少?解:),(y x L 表示获得的总利润,则总利润等于总收益与总费用之差,即有利润目标函数)]33(01.032400[)910(),(22y xy x y x y x y x L +++++-+=)0,0(,400)33(01.06822>>-++-+=y x y xy x y x ,令⎩⎨⎧=+-='=+-='0)6(01.060)6(01.08y x L y x L yx,解得唯一驻点(120,80).又因06.0,01.0,006.0-=''=-=''=<-=''=yy xy xx L C L B L A ,得0105.332>⨯=--B AC .得极大值320)80,120(=L . 根据实际情况,此极大值就是最大值.故生产120单位产品甲与80单位产品乙时所得利润最大320元. 五、证明题 1、设)11(yx e z +-=, 求证z yz y x z x 222=∂∂+∂∂.证明: 因为2)11(1x e xzy x ⋅=∂∂+-, 2)11(1ye y z y x ⋅=∂∂+-, 所以 z e e yz y x z x y x y x 2)11()11(22=+=∂∂+∂∂+-+-2、证明函数nx ey tkn sin 2-=满足关系式22x y k t y ∂∂=∂∂ 证明:因为nx e kn kn nx e ty tkn t kn sin )(sin 2222⋅-=-⋅⋅=∂∂--, nx nex y tkn cos 2-=∂∂, nx e n xy t kn sin 2222--=∂∂, nx e kn xyk t kn sin 2222--=∂∂,所以22x y k t y ∂∂=∂∂.3、设z =xy +xF (u ), 而xyu =, F (u )为可导函数, 证明xy z y z y x z x +=∂∂+∂∂⋅.证明:y z y x z x ∂∂⋅+∂∂⋅])([])()([yu u F x x y x u u F x u F y x ∂∂'+⋅+∂∂'++=)]([)]()([u F x y u F xyu F y x '+⋅+'-+==xy +xF (u )+xy =z +xy .。
第九章 多元函数微分法及其应用一、填空题1.若 f ( x, y) x 2 y 2 xy tan x,则 f (tx , ty ) t 2 x 2 t 2 y 2 t 2xy tanxt 2 f ( x, y) .y y 2.若 f ( x)x 2 y 21 u2.y( y 0) ,则 f (x)y3.函数 z arcsin y的定义域为 {( x, y) || y| 1且x0} .xx14. lim(1 xy) sin xy e .xy5.若 ze xyyx 2,则zxe xy x 2 .y6.若 f ( x, y) 5x 2 y 3 ,则 f x (0,1) 10xy 3 |(0,1) 0 .7.若 u ln(1 x 2y 22) ,则 du22 ( xdx ydy zdz) .zx 2y 2zyyy8.设 z e x ,则 dzy e x dx 1e x dy .x 2 x9.已知 z sin( y e x) ,而 y x 3,则dz(3x 2 e x )cos( x 3 e x ) .dx10. 已知 ze x 2 y,而 x sin t , y t 3,则 dzsin t 2 t 3(cost 6t 2).dte11. 设 zln(1 x2y 2) , 则 dz x 11dx2dy .y 23312. 设 zu 2v , 而 u x cos y, v x sin y , 则 z 3x 2 cos 2 ysin y ,xz 32y 2sin 2y) .yx cos y(cos13.若 z f (x, y) 在区域 D 上的两个混合偏导数2z,2z 连续 ,则在 D 上x yy x2z2z.x yy x14.函数 z f (x, y) 在点 (x 0 , y 0 ) 处可微的 必要 条件是 z f ( x, y) 在点 ( x 0 , y 0 ) 处的偏导数存在 .(填“充分”、“必要”或“充分必要” )15.函数 z f (x, y) 在点 (x 0 , y 0 ) 可微是 zf (x, y) 在点 (x 0 , y 0 ) 处连续的 充分 条件 . (填“充分”、“必要”或“充分必要” )16.设 f ( x, y, z) xy 2 z 3 ,其中 z z( x, y) 是由方程 x 2 y 2 z 2 3xyz 0所确定的 隐函数,则 f x (1,1,1) 2 . 二、选择题1.二元函数 zlnx 2 4arcsin x 21的定义域是 ( A ) y 2y 2( A ){( x, y) |1 x 2y 24};( ) {( x, y) |1 x 2 y 24} ;B (C ){( x, y) |1 x 2y 24}; ( ) {( x, y) |1 x 2 y 24} .D2. 设函数 z ln( xy) , 则z( C )x(A )1;(B ) x;(C ) 1;( D ) y.yyxx3. 设函数 z sin( xy 2) , 则z( D )x( A )2; ( ) xy cos(xy 2( ) 22) ; ( ) 2 2xy cos(xy ) B ) ;Cy cos(xy D y cos( xy ) .4. 设函数 z 3xy, 则z( D )x( A ) 3xy( ) xy ; (C ) xy 1 ; (D ) 3xyln 3y ; 3 ln3 xy3 y .B5. 设函数 z1 , 则 z( C )xyy( A )1 ; ( ) 1 ; (C ) 12 ; ( ) 1 2 .2Bx 2yxyDxyx y6. 设函数 z sin xy , 则2z( A )x2( A )y 2sin xy ;2sin xy ;( ) 2 sin xy ; ( D ) x 2sin xy .( B ) yCx 7. 设二元函数 zx y, 则 dz ( B )x y( A )2( xdx ydy) ; (B )2( xdy ydx) ;( C )2( ydyxdx) ; (D )2( ydx xdy) .(x y)2( x y) 2( x y)2( x y)28. 设函数 y f ( x) 是由方程 y xeyx 0 确定 , 则dy(B )dx( A ) e y y;(B ) ey1y ;(C ) ey1y ;(D ) e yy.1 xe 1 xe1 xe1 xe9. 设函数 zf (x, y) 是由方程 x2y3xyz20 确定 , 则z( B)x( A )2x yz 2 ; ( B )2x yz 2; (C )3y 2xz 2; ( D ) 3y 2xz 2 .2xyz2xyz2xyz2xyz 10. 若函数 f ( x, y) 在点 ( x 0 , y 0 ) 处不连续,则 ( C)( A ) lim f (x, y) 必不存在;(B )0 , y 0 ) 必不存在;xx 0 yy 0( C ) f (x, y) 在点 (x 0 , y 0 ) 必不可微;( D ) f x ( x 0 , y 0 ), f y (x 0, y 0 ) 必不存在 .f(x11.考虑二元函数 f (x, y) 的下面 4 条性质:①函数 f ( x, y) 在点 ( x 0 , y 0 ) 处连续;②函数 f ( x, y) 在点 ( x 0 , y 0 ) 处两个偏导数连续;③函数 f ( x, y) 在点 ( x 0 , y 0 ) 处可微;④函数 f ( x, y) 在点 ( x 0 , y 0 ) 处两个偏导数存在 .则下面结论正确的是(A )(A )②③ ①;( B )③ ②①;(C )③ ④ ①;D )③ ① ④。
第八章 偏导数与全微分一、选择题1.若u=u(x, y)是可微函数,且,1),(2==x y y x u ,2x xuxy =∂∂=则=∂∂=2x y y u [A ] A. 21-B. 21C. -1D. 12.函数62622++-+=y x y x z [ D ]A. 在点(-1, 3)处取极大值B. 在点(-1, 3)处取极小值C. 在点(3, -1)处取极大值D. 在点(3, -1)处取极小值3.二元函数(),f x y 在点()00,x y 处的两个偏导数()()0000,,,x y f x y f x y 存在是函数f 在该点可微的 [ B ]A. 充分而非必要条件B.必要而非充分条件C.充分必要条件D.既非充分也非必要条件4. 设u=2x +22y +32z +xy+3x-2y-6z 在点O(0, 0, 0)指向点A(1, 1, 1)方向的导数=∂∂lu[ D ] A.635 B.635- C.335 D. 335- 5. 函数xy y x z 333-+= [ B ]A. 在点(0, 0)处取极大值B. 在点(1, 1)处取极小值C. 在点(0, 0), (1, 1)处都取极大值 D . 在点(0, 0), (1, 1)处都取极小值 6.二元函数(),f x y 在点()00,x y 处可微是(),f x y 在该点连续的[ A ] A. 充分而非必要条件 B.必要而非充分条件 C.充分必要条件D.既非充分也非必要条件 7. 已知)10(0sin <<=--εεx y y , 则dxdy= [ B ] A. y cos 1ε+ B.y cos 11ε- C. y cos 1ε- D. ycos 11ε+8. 函数yx xy z 2050++= (x>0,y>0)[ D ] A. 在点(2, 5)处取极大值 B. 在点(2, 5)处取极小值C.在点(5, 2)处取极大值D. 在点(5, 2)处取极小值9.二元函数(),f x y 在点()00,x y 处连续的是(),f x y 在点()00,x y 处可微的 [A ] A. 必要而非充分条件 B. 充分而非必要条件 C.充分必要条件 D.既非充分也非必要条件 10. 曲线x=t, y=2t -, z=3t 所有切线中与平面x+2y+z=4平行的切线有 [ B ] A. 1 条 B.2条 C. 3条 D.不存在 11.设22(,)xy f x y y x =-,则(,)x yf y x= B A. 42xyy x - B. 2244x y y x - C. 2244x y y x +- D. 2244y x y x --12.为使二元函数(,)x yf x y x y+=-沿某一特殊路径趋向(0,0)的极限为2,这条路线应选择为 B A.4x y = B. 3x y = C. 2x y = D. 23x y = 13.设函数(,)z f x y =满足222zy∂=∂,且(,1)2f x x =+,(,1)1y f x x '=+,则(,)f x y =BA.2(1)2y x y +++ B. 2(1)2y x y +-+ C. 2(1)2y x y +-- D. 2(1)2y x y ++- 14.设(,)32f x y x y =+,则(,(,))f xy f x y = CA.344xy x y ++B. 2xy x y ++C. 364xy x y ++D. 346xy x y ++15.为使二元函数222(,)xy f x y x y=+在全平面连续,则它在(0,0)处应被补充定义为 B A.-1 B.0 C.1 D. 16.已知函数22(,)f x y x y x y +-=-,则(,)(,)f x y f x y x y∂∂+=∂∂ C A.22x y - B. 22x y + C. x y + D. x y -17.若()yf x=(0)x >,则()f x =BB. C.xD.18.若xz y =,则在点 D 处有z z y x∂∂=∂∂ A.(0,1) B.(,1)e C.(1,)e D. (,)e e19.设2y z x =,则下列结论正确的是 AA.220z z x y y x ∂∂-=∂∂∂∂ B. 220z zx y y x ∂∂->∂∂∂∂ C.220z zx y y x∂∂-<∂∂∂∂ D.两者大小无法确定 20.函数0,0(,)11sin sin ,0xy f x y x y xy y x =⎧⎪=⎨+≠⎪⎩,则极限00lim (,)x y f x y →→ ( C ). (A) 等于1 (B) 等于2 (C) 等于0 (D) 不存在 21.函数z xy =在点(0,0) ( D ).(A) 有极大值 (B) 有极小值 (C) 不是驻点 (D) 无极值 22.二元函数z =在原点(0,0)处( A ).(A) 连续,但偏导不存在 (B) 可微(C) 偏导存在,但不连续 (D) 偏导存在,但不可微23.设()u f r =,而r =()f r 具有二阶连续导数,则222222u u ux y z∂∂∂++=∂∂∂( B ).(A) 1''()'()f r f r r +(B) 2''()'()f r f r r+ (C) 211''()'()f r f r r r + (D) 212''()'()f r f r r r+24.函数(,)z f x y =在点00(,)x y 处连续是它在该点偏导存在的( D ). (A) 必要而非充分条件 (B) 充分而非必要条件(C) 充分必要条件 (D) 既非充分又非必要条件 25.函数221z x y =--的极大值点是 ( D ).(A) (1,1) (B) (1,0) (C) (0,1) (D) (0,0)26.设(,)f x y =(2,1)x f '=(B ).(A)14 (B) 14- (C) 12 (D) 12-27.极限24200lim x y x yx y →→+( B ).(A) 等于0 (B) 不存在 (C) 等于12 (D) 存在且不等于0及1228.(,)z f x y =若在点000(,)P x y 处的两个一阶偏导数存在,则(B ). (A) (,)f x y 在点0P 连续 (B) 0(,)z f x y =在点0x 连续 (C) 00||P P z zdz dx dy x y ∂∂=⋅+⋅∂∂ (D) A,B,C 都不对 29. 设函数y x z =,则z d =( A ). (A).y x x x yxy y d ln d 1+- (B).y x x yx y y d d 1+-(C).y x x x x yy d ln d + (D).y y x x yxy y d ln d 1+-30. 已知=∂∂===y zxy v y x u v u z 则 ,,,ln 2( C )(A )y x xy y x 3232ln 2+ (B )y xxy y x 3232ln 2-(C )y x xy y x 3232ln 2+- (D )y x xy y x 22ln 2+31.函数z=22y x 1--的定义域是( D ) (A.) D={(x,y)|x 2+y 2=1}(B.)D={(x,y)|x 2+y 2≥1}(C.) D={(x,y)|x 2+y 2<1}(D.)D={(x,y)|x 2+y 2≤1}32.设22),(yx xyy x f +=,则下列式中正确的是( C );)A ( ),(,y x f x y x f =⎪⎭⎫⎝⎛; )B (),(),(y x f y x y x f =-+;)C ( ),(),(y x f x y f =; )D ( ),(),(y x f y x f =-33.设e cos xz y =,则=∂∂∂yx z2( D );)A ( e sin x y ; )B ( e e sin x x y +;)C ( e cos xy -; )D ( e sin xy -34.已知22),(y x y x y x f -=-+,则x f ∂∂=∂∂+yf ( C ); )A ( y x 22+; )B ( y x -; )C ( y x 22- )D ( y x +.35. 设y xy x z 2232-+=,则=∂∂∂y x z( B )(A )6 (B )3 (C )-2 (D )2.36.设()=∂∂=⎪⎭⎫ ⎝⎛x zy x y x f z 00, ,,则( B )(A )()()x y x f y y x x f x ∆-∆+∆+→∆00000,,lim(B )()()x y x f y x x f x ∆-∆+→∆0000,,lim(C )()()x y x f y x x f x ∆-∆+→∆00000,,lim(D )()x y x x f x ∆∆+→∆000,lim37. 设由方程0=-xyz e z确定的隐函数()=∂∂=x z y x f z 则,,( B )(A )z z+1 (B )()1-z x z (C )()z x y +1 (D )()z x y -138. 二次函数 11)4ln(2222-++--=y x y x z 的定义域是( D )A. 1 < 22y x + ≤ 4;B. –1 ≤ 22y x + < 4; C. –1 ≤ 22y x + ≤ 4; D. 1 < 22y x + < 4。
1 / 28习题8-11. 求下列函数的定义域: (1) y x z -= ;解:0,0x y D ≥≥⇒=(){,0,x y y x ≥≥(2) 221)ln(yx xx y z --+-=;解:220,0,1y x x x y D -≥≥--⇒=(){}22,01x y y x xy >≥+<且(3) )0(122222222>>-+++---=r R rz y x z y x R u ;解:222222220R x y z x y z r ≤---<++-⇒,0D ⇒=(){}22222,,x y z rx y z R <++≤(4) 22arccosyx z u +=。
221,0x y D ≤+≠⇒=(){}22,0x y z x y ≤+≠2. 求下列多元函数的极限:: (1) 22y 01)e ln(limyx x y x ++→→;解:y 1ln 2x y →→== (2) xy xy y x 42lim0+-→→;解:令t=xy,1200001(4)12lim 14x t t y t -→→→→-+===-2 / 28(3) x xyy x sin lim50→→;解:0050sin sin lim5lim 55x x y y xy xyx x →→→→==(4) 22x 222200e)()cos(1limy y x y x y x ++-→→;解:22222222222x 001cos()11cos()2(sin ),lim 20022()ey x y x y x y x y x y →→+-+-+=∴=⋅⋅=+Q (5) xyy x y x )(lim 220+→→。
解:0,xy >设22ln()xy x y +两边取对数,由夹逼定理2200222222lim ln()2222000ln()()ln()0lim ln()0,lim()1x y xy x y xyx x y y xy x y x y x y xy xy x y x y e→→+→→→→≤+≤++<+=∴+==xylnxy 当时同理可得,3. 证明下列极限不存在: (1) y x yx y x -+→→00lim;证明:(1)(,)(,)(,)(1)m x x y y mx f x y f x mx m x+===-当沿直线趋于原点(0,0)时.001lim,1x y x y mm x y m →→++=--不同时,极值也不同,所以极限不存在。
第七章 多元函数微分法及其应用测试题姓名: 学号:一、选择题(每小题3分,共15分)1、设2(,)()x f xy x y y=+,则(,)f x y =( ) (A )221()x y y +; (B )2(1)x y y+; (C )221()y x x +; (D )2(1)y y x +. 2、设函数sin z xy =,则22z x∂=∂( ) (A )2sin y xy -; (B )2sin y xy ; (C )2sin x xy -; (D )2sin x xy . 3、设函数222222,0(,)0,0xy x y x y f x y x y ⎧+≠⎪+=⎨⎪+=⎩,则(,)f x y 在(0,0)点处( )(A )连续,偏导数存在; (B )连续,偏导数不存在;(C )不连续,偏导数存在; (D )不连续,偏导数不存在。
4、考虑二元函数(,)f x y 的下面4 条性质:①函数(,)f x y 在点00(,)x y 处连续;②函数(,)f x y 在点00(,)x y 处两个偏导数连续; ③函数(,)f x y 在点00(,)x y 处可微;④函数(,)f x y 在点00(,)x y 处两个偏导数存在. 则下面结论正确的是( )(A )②⇒③⇒①;(B )③⇒②⇒①;(C )③⇒④⇒①; D )③⇒①⇒④。
5、设函数(,)z f x y =是由方程2320x y xyz +-=确定,则z x∂=∂( ) (A )222x yz xyz +; (B )222x yz xyz -; (C )2232y xz xyz -; (D )2232y xz xyz+. 二、填空题(每空3分,共15分)1、2222(,)4ln(1)f x y x y x y =--++-的定义域是 。
2、22)0,1(),()ln(lim yx e x y y x ++→ 。
3、若23(,)5f x y x y =, 则(0,1)x f = ,(1,0)y f = 。
第八章 多元函数的微分法及其应用习题 8-11. 指出下列平面位置的特殊性质:(1)23200x y -+= (2)320x -=(3)470y z -= (4)0x y z ++= 解 (1)因为方程中缺变量z , 所以该平面平行于z 轴.(2)因为方程中缺变量y 、z , 所以该平面平行于yz 平面即垂直于x 轴.(3)因为方程中缺变量x 且不含常数项, 所以该平面平行于x 轴且经过原点(0,0,0). (4)因为方程中缺常数, 所以该平面通过原点(0,0,0).2. 求下列轨迹的方程:(1)与点(3,0,2)-的距离为4个单位的点的轨迹;(2)与两定点)0,0,(c P 和)0,0,(c Q -的距离之和等于2(0)a a >的点的轨迹; (3)与z 轴和点(1,3,1)-等距离的点之轨迹;(4)与yz 平面的距离为4,且与点)1,2,5(-的距离为3的点之轨迹.。
解 设动点为),,(z y x M ,则(1)点(,,)M x y z 与点(3,0,2)-的距离为4 整理得动点),,(z y x M 的轨迹为2226430x y z x z ++-+-=.(2)动点),,(z y x M 与两定点)0,0,(c P 和)0,0,(c Q -的距离之和等于a 2,即2a整理得动点),,(z y x M 的轨迹为2222222222()()0a c x a y a z a a c -++--=.(3) 动点),,(z y x M 与z 轴和点)1,3,1(-等距离为整理得动点),,(z y x M 的轨迹为2262110z x y z --++=.(4) 由动点),,(z y x M 与yz 平面的距离为4,得4||=x , 由动点),,(z y x M 与点)1,2,5(-的距离为3, 得3=故),,(z y x M 点的轨迹为⎩⎨⎧=++-=8)1()2(422z y x . 3. 求下列各曲面的方程:(1) 中心在点)2,3,1(--且通过点)1,1,1(-的球面方程;(2) 过点)1,1,2(-而在x 轴和y 轴上的截距分别为2和1的平面方程; (3) 平行于xz 平面并过点(2,-5,3)的平面方程;(4) 一动点与点)0,0,1(的距离是与平面4=x 的距离之一半,求该动点之方程.解 (1)设),,(z y x 为所求球面上的任意一点且球面半径为R ,则 2222(1)(3)(2)x y z R ++++-=将点)1,1,1(-代入上式,得3=R . 故所求球面方程为 9)2()3()1(222=-++++z y x .(2)设所求的平面方程为0=+++D Cz By Ax (*)将点)0,0,2(,)0,1,0(,)1,1,2(-代入上式,得20020A D B D A B C D +=⎧⎪+=⎨⎪+-+=⎩解得0.5,,A D B D C D =-=-=-. 代入方程(*)整理得平面方程为2220x y z ++-=.(3)设所求平面方程为0By D += (**)将点)3,5,2(-代入上式,得B D 5=.代入方程(**)整理得平面方程为 50y +=.(4) (4) 设动点为),,(z y x ,则0.5|4|x =-22234412x y z ++=.4.作出下列方程之图形:(1)01=-+-z y x (2)03=-z y(3)02=x (4)12=y(5)1222=++z y x (6)022=-y x(7)223049y x z +-= (8)22149y x +=解 (1) (2)(图8-1) (图8-2)(3) (4)4)(图8-3) (图8-4)(5) (6)(图8-5) (图8-6)(7) (8)习题 8-21. 已知y xxy y x y x f tan),(22-+=,求),(ty tx f .解2222(,)()()tantx f tx ty t x t y tx ty ty =+-2222(tan )(,)xt x y xy t f x y y =+-=.2.已知vu wwu w v u f ++=),,(,求),,(xy y x y x f -+.解 ),,(xy y x y x f -+=yx y x xy xy y x -++++)()(=xxy xy y x 2)()(++.3. 已知2332),(y xy x y x f +-=,求),(xy y x f .解 32(()x x f y y =-+333x xyy =-+.4*.设)(y x f y z --=且1=y 时x z =,试求)(x f 和z .解 由1=y 时x z =,得 )1(1--=x f x令1-=x t ,则)(1)1(2t f t -=+,即22()1(1)2f t t t t =-+=--所以 2()(2)f x x x =-+222)[))] 22 )).z f y y y x y yy y ==---=+-=+-5 .(1)2ln(21)z y x =-+ (2)z =+(3)ln(1)z x y =-- (4)z =解 (1)当2210y x -+>时, 函数有意义, 故函数的定义域(如图8-9所示)为2{(,)|210}D x y y x =-+>.(2)当0,0x y x y +>->时, 函数有意义,故函数的定义域(如图8-10所示)为 图8-9 {(,)|00}D x y x y x y =+>->且(3)当240x y -≥和0122>--y x 且2211x y --≠时, 函数有意义, 故函数的定义域(如图8-11所示)为222{(,)|401}D x y y x x y =≤<+<,(4)当0,0y x ≥,即0,0x y ≥≥且2x y ≥时, 函数有意义, 故函数的定义域(如图8-12所示)为 图8-10|),{(y x D =0≥x ,0≥y ,y x ≥2}.图8-11图8-126. 求下列各极限:(,)limy x y →(1)22(,)(0,1)1limx y xyx y →-+ (2)(3)(,)limx y → (4)(,)(2,0)sin limx y xyy →解(1))1,0(),(lim→y x 221y x xy +-=1.(2))0,1(),(lim→y x 22)ln(y x e x y ++=2ln . (3))0,0(),(lim→y x 11-+xy xy=)0,0(),(lim →y x xy xy xy )11(++=2.(4) )0,2(),(lim→y x y xy sin =)0,2(),(lim→y x xy xyx sin =2.7. 证明下列极限不存在:(1))0,0(),(lim →y x y x yx -+ (2))0,0(),(lim →y x 222)(y x y x - 证 (1)因为当点(,)x y 沿直线x y 2=趋向)0,0(点,得020lim →=→x y x y x yx -+=0lim→x x x x x 22-+=3- 当点(,)x y 沿直线y x 2=趋向)0,0(点,得020limy x y x y x y →=→+-=0lim →y yy3=3所以 )0,0(),(lim→y x y x yx -+不存在.(2)因为当点(,)x y 沿直线kx y =)1(≠k 趋向)0,0(点,得00lim→=→kx y x 222)(y x y x -=00lim →=→kx y x 222)()(kx x kx x -=0lim →x 22)1()(k kx -=0当点(,)x y 沿曲线x x y +=2趋向)0,0(点,得x x y x +=→20l i m222)(y x y x -=x x y x +=→20lim 22222)()(x x x x x x --+=0lim →x 2)1(x +=1所以)0,0(),(lim →y x 222)(y x y x -不存在. 8. 求下列函数的不连续点:(1)221y x z +=(2)y x xy z +=(3)xy z 1sin = 解 (1)因为在)0,0(点处, 函数无意义, 所以函数不连续点为)0,0(.(2)因为当0x y +=时, 函数无意义, 所以函数不连续点为直线0x y +=上的一切点.(3)因为当00x y ==或时, 函数无意义, 所以函数不连续点为坐标轴上的一切点. 9.求函数(,)ln(1)f x y x y =--的定义域及1(,)(,0)2lim (,)x y f x y →.解 要使该函数有意义,则恒有22222401011x y x y x y ⎧-≥⎪⎪-->⎨⎪--≠⎪⎩成立, 则函数的定义域为222{(,)|4001}D x y x y x y =-≥<+<,又因为函数),(y x f 是初等函数且在1(,0)2点处有定义, 所以函数),(y x f 在点1(,0)2处连续.故1(,)(,0)21lim(,)(,0)2x y f x y f →==.习题 8-31. 求下列函数的偏导数:(1)33xy y x z -= (2))ln(xy z =(3))(cos )arcsin(2xy xy z += (4)yxy z )1(+=解 (1)23323, 3z z x y y x xy x y ∂∂=-=-∂∂.(2)z x x ∂∂==∂∂同理z y ∂=∂(3)sin(2)z y xy x ∂=-∂同理sin(2)z x xy y ∂-∂.(4) 21(1)y zy xy x -∂=+∂设在已知函数两端取对数,有 l n l n (1)z y x y =+ 两边对y 求导,得11ln(1)1z xy y x z y xy ∂⋅=++⋅⋅∂+故 =∂∂y zyxy )1(+]1)1[ln(xy xy xy +++. 2.设ln x y y u x y x -=+,验证0u ux y x y ∂∂+=∂∂.证 因为221ln ()y y x y u x x x x y x y -∂=-⋅∂++221ln ()y x y u x y x y x y x y -∂=-+⋅∂++所以0u u xy x y ∂∂+=∂∂.3.设)11(yx ez +-=,验证+∂∂x z x 2z y z y 22=∂∂.证 因为 1111()()22, x y x y z z e x e y x y -+-+--∂∂==∂∂所以+∂∂xz x 2=∂∂y z y 2)11(y x e +-+)11(y x e +-=)11(2y x e +-z 2=. 4. 设=),(y x f y xy x arcsin)1(-+,求'(,1)x f x .解 因为=),('y x fx 11y +=所以 '(,1)1x f x =.5.设=),(y x f 22y x y x +-+,求)4,3('x f . 解 因为'(,)x f x y ==-所以'2(3,4)5x f =. 6.求下列函数的二阶偏导: (1)x yz arctan= (2)xy z =解 (1)22221()1()y y z y xx x y x ∂=⋅-=-∂++22211()1()z x y y x x y x ∂=⋅=∂++22222222222()2()()y y xy z x x x x y x y x y -∂∂=-=-⋅=∂∂+++22222222()()xy z xy y x y x y ∂∂==-∂∂++22222222()()y x z xx y y x y x y -∂∂==∂∂∂++.(2) ''1ln , x x x y z y y z xy -== ''2''2(ln ), (1)x x xx yy z y y z x x y -==-=''xy z 1-x xy y ln +y y x1= 1-x y )1ln (+y x .7. 设=),,(z y x f z x yz xy 222++,求)1,0,0('x f ,)0,1,0('y f , ''(0,0,1)x x f ,''(1,0,2)x z f ,''(0,1,0)y z f -和'''(2,0,1)z z x f .解 因为'2'2'22,2,2x y zf y x z fx yzf y z x=+=+=+'''''''''''2,2,2,2,0xx xz yz zz zzx f z f x f z f y f ===== 所以 ''''(0,0,1)0,(0,1,0)0,(0,0,1)2x y x x f f f === '''''''(1,0,2)2,(0,1,0)0,(2,0,1)x z y z z z xf f f=-==. 8. 设)ln(xy x z =,求32z x y ∂∂∂与32zx y ∂∂∂.解 因为 1l n ()l n ()1z x y x y x y x x y ∂=+⋅⋅=+∂22211(ln 1)11(ln 1)z xy y x xy xx z xy x x y yxy y ∂∂=+=⋅=∂∂∂∂=+=⋅=∂∂∂ 所以 3322210,z z x yx y y ∂∂==-∂∂∂∂. 9. 验证2sin kn ty e nx -=满足22x yk t y ∂∂=∂∂. 证 因为=∂∂t y2222sin ()sin kn t kn t e nx kn kn e nx ---=- 22222cos , sin kn t kn t y y ne nx n e nxx x --∂∂==-∂∂=∂∂22xy k 22sin kn t kn e nx --=t y∂∂ 所以22x y k t y ∂∂=∂∂. 10. 设),(y x u 有一阶连续偏导数,且x x u=∂∂, 2(,)(,)|1x x u x y =, 求y u ∂∂.解 由x x u =∂∂,两边对x 积分,得21(,)()2u x y x g y =+?? 由 2(,)(,)|1x x u x y =,得 =),(2x x u 1)(2122=+x g x即=)(2x g 2211x - 于是 ),(y x u =+221x y211-故 12u y∂=-∂. 11. 设33222222,0(,)0, 0x y x y f x y x yx y ⎧-+≠⎪=+⎨⎪+=⎩,求)0,0('xf )0,0('y f . 解 由在一点的偏导数定义,得'00(0,0)(0,0)(0,0)lim lim 1x x x f x f xf x x ∆→∆→+∆-∆===∆∆'00(0,0)(0,0)(0,0)lim lim 1y y y f y f yf y y ∆→∆→+∆--∆===-∆∆. 12 .设1()()y z f xy xf y x =+,f 具有连续二阶偏导数,求''x y z .解 设,y u xy v x ==, 则1()()z f u xf v y =+于是'''21()()()()x u v y z f u y f v xf v y x =⋅⋅++⋅-''()()()u v y f u f v f v x =+=-故''''''''111()()()()xy y z f u x f v f v f v x x x x =+⋅-⋅-⋅⋅''''2()()y yf xy x f x x =⋅-⋅.习题 8-41. 求下列函数的全微分:(1)xz xy y =+(2)y x e z 2-= (3)z (4)y z u x =(5)2ln()z x xy = (6)221z x y =- 解 (1)因为 21, z z x y x xy y y ∂∂=+=-∂∂ 所以 21d ()d ()d xz y x x yy y =++-.(2)因为 =∂∂x z yx e 2-,=∂∂y z y x e 22--所以 222d d 2d (d 2d ).x yx y x y z ex e y e x y ---=-=- (3)因为223222()y xy zx x y x y ∂=-=-∂++23222()z x y x y ∂==∂+ 所以233222222d d d ()()xy x z x yx y x y =-+++3222(d d ).()x y x x y x y =--+(4)因为=∂∂x u 1y z yzx -, =∂∂y u ln y z zx x , =∂∂zu ln y z yx x 所以 1d d ln d ln d y z y z y z u yzxx zx x y yx x z -=++. (5)因为 22l n ()2l n ()y zx x y x x x y x x x y ∂=+=+∂22z x x x y xy y ∂=⋅=∂ 所以 2d [2ln()]d d x z x xy x x yy =++.(6) 因为 22222222, ()()y z x zxy x y x y ∂∂=-=∂∂--所以22222222d d d ()()y x z x yx y x y =-+--2222(d d ).()x x y y x y =---2 .求函数)1ln(22y x z ++=在1,2x y ==的全微分.解 因为 2221z x x x y ∂=∂++, 2221y zy x y ∂=∂++所以 1213x y z x==∂=∂, 1223x y z y==∂=∂故1212d d d 33x y z x y ===+.3. 求函数x yz =, 当2,1x y ==、0.1x ∆=、0.2y ∆=-的全增量z ∆和全微分d z . 解 因为 x y x x y y z -∆+∆+=∆, 21d y z x y x x =-∆+∆所以, 当2,2x y ==、0.1x ∆=、0.2y ∆=-时1(0.2)10.11920.12z +-∆=-=-+ 11d 0.1(0.2)0.12542z =-⨯+⨯-=-.*4. 已知(cos )d (sin )d ay by x x x x y +++是函数(,)u x y 的全微分,求,a b 及(,)u x y .解 因为 d u =(c o s )d a y b y x x +(s i n )d x x y ++所以 x by ay u x cos '+=, ='y u x x sin +则 =''xy u x b a cos +, =''yx u x c o s 1+ 而''xy u 与''yx u 均为连续函数,则必有≡+x b a cos x cos 1+ 解得 1,1==b a .故 ),(y x u =d ux x ∂∂⎰=(cos )d y y x x +⎰=c x y xy ++sin (c 为任意常数).5.在例3的条件下, 求产品B 的边际成本,并阐明其经济意义.解 因为 30.010.04Cx y y ∂=++∂所以 (100,50)30.011000.04506Cy ∂=+⨯+⨯=∂其经济意义为:当产品A 的产量x = 100不变时, 产品B 的产量在y = 50的基础上, 再增加一个单位, 成本C 将增加6个单位.6.已知某商品的需求量Q 是该商品的价格p 1、另一相关商品的价格p 2及消费者收入y的函数, 且325852121200Q p p y--=,试求需求量分别关于自身价格p 1、、相关价格p 2及消费者收入y 的弹性, 并阐明其经济意义.解1112511852121133()20088p p p Q p p y Q p Q η--∂=⋅=⋅⋅-=-∂375228522122122()20055p p p Q p p y Q p Q η--∂=⋅=⋅⋅-=-∂32385212155()20022y y Q y p p y Q y Q η--∂=⋅=⋅⋅=∂其经济意义分别为:在相关商品的价格p 2及消费者收入y 不变时, 该商品的价格p 1上涨(或下降)1%,需求量下降(或上升)37.5%; 在某商品的价格p 1及消费者收入y 不变时, 相关商品的价格p 2上涨(或下降)1%,需求量下降(或上升)40%; 在某商品的价格p 1及相关商品的价格p 2不变时, 消费者收入y 上涨(或下降)1%, 需求量上升 (或下降)250%.7*. 在边长为6,8x m y m ==的矩形中,若x 增加5cm ,y 减少10cm ,试求该矩形的对角线和面积变化的近似值.解 设对角线长为l ,面积为s ,则有22y x l +=, xy s = 于是d )z z l l x y x x y y x y ∂∂∆≈=∆+∆=∆+∆∂∂d ()s s y x x y ∆≈=∆+∆当6,8,0.05,0.1x m y m x m y m ==∆=∆=-时,有680.05(0.1)0.051010l m ∆≈⨯+-=-280.056(0.01)0.2s m ∆≈⨯+⨯-=- .8*. 设有一无盖圆柱形容器, 其壁与底厚均为0.1cm, 内高为20cm, 内半径为4cm, 求该容器外壳体积的近似值.解 设容器的内半径为r ,高为h ,体积为V , 则圆柱体的体积为 2V r h π=因为圆柱形容器的外壳就是圆柱体积的增量V ∆,所以2d 2V V rh r r h ππ∆≈=∆+∆ 于是当4,20,0.1r h r h ==∆=∆=,时, 有2324200.140.155.3()V cm πππ∆≈⨯⨯⨯⨯+⨯⨯≈.故该容器外壳体积大约为355.3().cm π9*. 求下列各式的近似值:(2) 1.05(1.07)(ln 20.693)=(3) 00sin 29tan 46解 (1)设(,)f x y =2f x ∂=∂,2f y ∂=∂于是(,)f x x y y +∆+∆f fx yx y ∂∂≈+∆+∆∂∂22=+当1,2,x y x ==∆=时, 有(1.02,1.97)f =2 2.95≈=.(2) 设(,)f x y =yx ,则'1y x f yx -=, 'ln y yf x x =于是 (,)f x x y y +∆+∆()y y x x +∆=+∆≈y x ''x y f x f y +∆+∆=yx 1ln y y yx x x x y -+∆+∆当1,1,0.07,0.05x y x y ==∆=∆=时, 有(1.07,1.05)10.07 1.07f =+=. (3) 设(,)f x y =sin tan x y ,则'cos tan x f x y =,'2sin sec y f x y = 于是00sin 29tan 46sin()tan()61804180ππππ=-+ 当,,,64180180x y x y ππππ==∆=-∆=时, 有00''(29,46)(,)(,)(,)646464x y f f f x f y ππππππ=+∆+∆2sintancostan()sinsec646418064180ππππππππ=+-+ = 0.50235.10*. 设222232222,0(,)()0,0x y x y f x y x y x y ⎧+≠⎪⎪=⎨+⎪⎪+=⎩ 求证:(,)f x y 在点(0,0)处连续且偏导数存在,但不可微分.证 设cos sin x r y r θθ=⎧⎨=⎩, 则43(,)(0,0)cos sin lim (,)lim0(0,0)x y r r f x y f r θθ→→===故(,)f x y 在点(0,0)处连续. 而'0(0,0)(0,0)(0,0)limx x f x f f x →+-==同理 '(0,0)0y f =故(,)f x y 在点(0,0)处偏导数存在.由函数可微的定义和性质可知:f 可微的充要条件是''()x y f f x f y o ρ∆-∆-∆=其中ρ=而''0(0,0)(0,0)limx y f f x f yρρ→∆-∆-∆''0(,)(0,0)(0,0)(0,0)limx y f x y f f x f yρρ→∆∆--∆-∆=2222222222000()limlim[][()]x x y y k x x y x k x x y x k x ∆→∆→∆→∆=∆→∆∆∆∆==∆+∆∆+∆222lim0(0)(1)x y k x k k k ∆→∆=∆→=≠≠+故(,)f x y 在点(0,0)处不可微.习题 8-51. 设2ln ,32x z u v u v x y y ===-而求,.z z x y ∂∂∂∂ 解 212l n 3z z u z v u u v x u x v x y v ∂∂∂∂∂=⋅+⋅=⋅+⋅∂∂∂∂∂22223ln(32)(32)x x x y yx y y =⋅-+- 222ln ()(2)z z u z v x u u v y u y v y v y ∂∂∂∂∂=⋅+⋅=⋅-+⋅-∂∂∂∂∂223222ln(32)(32)x x x y y x y y =-⋅---. 2.设2x yz e -=,而sin x t =, 3y t =,求d z .解 因为 3sin 2t t z e-=所以 3sin 23d d(sin 2)t tz et t -=- 32sin 2(cos 6)d t t t t et -=-.3. 设arctan()z xy =,而xy e =, 求d d zx .解d d d d d d d d y y z z z x z z x y x x x x y x ∂∂∂∂=⋅+⋅=+⋅∂∂∂∂22222222111(1).11xx x x xy x e x y x y x e xe e x yx e=+⋅++++==++4.设2()1ax e y z u a -=+, 而sin ,cos y a x z x ==, 求d d u x . 解 d d d d d d d d u u x u y u z x x x y x z x ∂∂∂=⋅+⋅+⋅∂∂∂=222()cos (sin )111ax ax ax ae y z e e a x x a a a -=+⋅-⋅-+++=22(sin cos cos sin )1axe a x a x a x x a -+++=sin axe x .5.设arctanxz y =,而x u v =+,y u v =-,求证:z z u v ∂∂+=∂∂22u v u v -+.证 因为''22222221()()11x y xy x x xy y u y uy y x z ux x y x yy ∂∂-⋅+⋅∂∂-∂===∂+++''22222221()(1)()()11x y xy x x xy y v y vyy x z vx x y x y y ∂∂+-⋅-⋅+⋅∂∂+∂===∂+++所以 2222222y xy x y z zu v y xy x y x -+∂∂+=+=∂∂+++ 22222()()()u v u v u v u v u v --==++-+.6. 设f 具有一阶连续偏导数, 求下列函数的一阶偏导数: (1)222()u f x y z =++ (2) 22(,)xyu f x y e =-(3) (,)x y u f y z = (4) (,,)u f x xy xyz = 解 (1)'''2',2',,2'.x y z u xf u yf u zf === (2) ''22'''1212()()2xy xy x u f x y f e xf ye f x x ∂∂=⋅-+⋅=+∂∂ ''22'''1212()()2.xy xy y u f x y f e yf xe f y y ∂∂=⋅-+⋅=-+∂∂'''11'''''12122'''2221(3)()1()() ().x y z x u f f x y y x x x u f f f f y y y y z yyy u f f z z z∂==∂∂∂=+=-+∂∂∂==-∂, ,.'''''''123123'''''2323'''33(4)1 .x y z u f f y f yz f yf yzf u f x f xz xf xzf u f xy xyf =⋅+⋅+⋅=++=⋅+⋅=+=⋅= .7. 设f 具有二阶连续偏导数, 求下列函数的二阶偏导数:(1)(,)z f xy y = (2) (,)xz f x y =解 (1) '''11(),x z f xy yf x ∂=⋅=∂'''''1212d ()()d y y z f xy f xy xf f y y ∂=⋅+⋅=+∂ '''''2''11111()()xx z yf yf xy y f x x ∂∂==⋅=∂∂''''''''111112'''''11112d ()[()]d xy y z yf f y f xy f y x yf xyf yf ∂∂==+⋅+⋅∂∂=++''''12''''''''11122122''''''''''''2''211122122111222()d d [()][()]d d 2.yy z xf f yy y x f xy f f xy f y y y y x f xf xf f x f xf f ∂=+∂∂∂=⋅+⋅+⋅+⋅∂∂=+++=++(2)'''''1212d 1()d x x x z f f f f x x y y ∂=⋅+⋅=+∂, '''222()y x x z f f y y y ∂=⋅=-∂ ''''12''''''''11122122''''''''''''''11122122111222221[]d 1d ()[()]d d 11121 .xx z f f x yx x x x f f f f x x y y x x y f f f f f f f y y y y y ∂=+∂∂∂=⋅+⋅+⋅+⋅∂∂=+++=++ ''''12'''''''''2111221222'''''21222222'''''212222231[]11 ()()[()()]11 ()1xy z f f y yx x f x f f f x f y y y y y y y y x x f f f y y yy x xf f f y y y ∂=+∂∂∂∂∂=⋅+⋅-+⋅+⋅∂∂∂∂=--+-=---''''''''2221222322''''''222222322342()[()()]22 ().yyx x x x z f f f x f y y y y y y y x x x x x f f f f y y y y y ∂∂∂=-=⋅-⋅+⋅∂∂∂=⋅+⋅=⋅+⋅8 .设()z xy xF u =+,而()F u 为可导函数且yu x =, 求证:z z x y z xy x y ∂∂+=+∂∂.证 因为 ''2()()()u u y y zy F u x F y F u F xx x ∂=++⋅-⋅=+-∂''1u u z x x F x F y x ∂=+⋅⋅=+∂ 所以''()u u z zxy xy x F u y F xy y F x y ∂∂+=+⋅-⋅++⋅∂∂=2().xy xF u z xy =+=+9. 设2()3y z xy x ϕ=+, 验证:220z z x xy y x y ∂∂-+=∂∂.证 因为 2''22, 33y yz z y x x y x x ϕϕ∂∂=-+⋅=+⋅∂∂所以 2222''222()()33y y z z x xy y x y xy x yx y x x ϕϕ∂∂⋅-+=⋅-+-⋅++∂∂22'22'2233y x y y x y y ϕϕ=-+--+=10. 设sin()(,)xz xy x y ϕ=+,(,)u v ϕ有二阶偏导数, 求''xy z .解'''121cos()()x z y xy y ϕϕ=++⋅'''''''2122222211cos()sin()()()x y x xz xy xy xy y yy y ϕϕϕ=-+⋅--⋅+⋅-'''''222122231cos()sin().x x xy xy xy y y y ϕϕϕ=--⋅-⋅-⋅11. 设(,)()y xz f xy y x ϕ=+,且f 与ϕ具有二阶连续偏导数, 求''xy z .解 ''''1221x y z yf f y x ϕ=+⋅-⋅'''''''''''11211212222''2222'''''''''12112223321()()111 "11 .xy x x z f y f x f f x f y y yyf x y x xy x f xy f f f y y x x ϕϕϕϕ=+⋅-+⋅---⋅⋅-=+⋅-⋅-⋅-⋅-⋅习题 8-61 .设下列方程所确定的函数为()y f x =,求d d yx .(1)ln 0xy y -= (2)2sin 0x y e xy +-= (3)ln ln 0xy x y ++=解 (1)设(,)ln F x y xy y =-, 则'x F y =,'1y F x y =-故'2'd .1d 1x yF yyy x xy F x y =-=-=--(2) 设2(,)sin xF x y y e xy =+-, 则'2',cos 2x x y F e y F y xy =-=-故'22'd d cos 2cos 2x xx yF y e y y e x y xy y xy F --=-=-=--.(3) 设(,)ln ln F x y xy x y =++, 则''11, x y F y F x x y =+=+故 ''1d .1d x yy F y y x x x F x y +=-=-=-+2. 对下列隐函数, 求,,z z x x y y ∂∂∂∂∂∂及d z .(1)20x y z ++-= (2)0ze xyz -= (3)lnx z zy = 解 (1)设(,)2F x y x y z =++-, 则'121x F =-='222y F =-=-'zF=1-于是''x z F zx F∂=-=∂''y z F zy F ∂=-=∂''y x F xy F ∂=-=∂ 故d d d z z z x yx y ∂∂=+∂∂(2) 设(,)zF x y e xyz =-, 则'x F yz =-, 'y F xz =-, 'z F =z e xy -于是 ''x zz F z yz xF e xy ∂=-=∂- ''y z z F z xz y F e xy ∂=-=∂-''y x F x xz y yz F ∂=-=-∂ 故(d d )d d d zz z z y x x y z x y x y e xy ∂∂+=+=∂∂-. (3) 设(,)ln x zF x y z y =-, 则'''2111, , x y z x F F F z y z z===--, 于是 ''x z F z z xx z F ∂=-=∂+, '2'()y z F z z y y x z F ∂=-=∂+ ''y xF x z y y F ∂=-=-∂ 故 2d d d ()z z z x yx z y x z =+++.3 .设333z xyz a -=, 求2z x y ∂∂∂.解 设33(,,)3F x y z z xyz a =--, 则'''23,3,33x y z F yz F xz F z xy =-=-=-于是 ''22333x z F yz yz zxF z xy z xy -∂=-=-=∂-- ''22333y z F z xz xz y F z xy z xy ∂-=-=-=∂--故 22()()z z yzx y y x y z xy ∂∂∂∂==∂∂∂∂∂-222()()(2)()z zz y z xy yz z x y yz xy ∂∂+---∂∂=-2222222()()()()xyz xz z z xy yz x z xyz xyz xy +-----=-422223(2)()z z xyz x y z xy --=-.4.设0x e xyz -=, 求22zx ∂∂.解 设(,,)xF x y z e xyz =-, 则 'x x F e yz =-, 'y F xz =-, 'z F =xy -于是 z x ∂∂=''x z F F -=x e yz xy ---=xe yzxy - 故 222()()()()x x ze yxy e yz y zz xx xxxy ∂---∂∂∂∂==∂∂∂22()()(2)2()x xx x e yze y xy e yz yxyx e yzxy x y-----+==.5.设2sin(23)23x y z x y z +-=+-, 求证:1z z x y ∂∂+=∂∂. 证 设(,,)2sin(23)23F x y z x y z x y z =+---+, 则'2cos(23)1x F x y z =+--, '4cos(23)2y F x y z =+--'6cos(23)3z F x y z =-+-+于是''2cos(23)116cos(23)33x z F x y z zx x y z F +--∂=-=-=∂-+-+ ''4cos(23)226cos(23)33y zF x y z zy x y z F +--∂=-=-=∂-+-+ 故 1z z x y ∂∂+=∂∂.6 .设(,)x x y z =, (,)y y x z =, (,)z z x y =,都是由方程(,,)0F x y z =所确定的具有连续偏导数的函数, 求证:1y x zy z x ∂∂∂⋅⋅=-∂∂∂.证 因为 ''y x F x y F ∂=-∂, ''z y F y z F ∂=-∂,''x z F z x F ∂=-∂ 所以''''''()()()1y x z x y zF F F y x zy z x F F F ∂∂∂⋅⋅=-⋅-⋅-=-∂∂∂.7. 设(,)u v ϕ具有连续偏导数,证明由方程(,)0cx az cy bz ϕ--=所确定的函数(,)z f x y =满足 z z a b cx y ∂∂+=∂∂.证 设(,,)(,)F x y z cx az cy bz ϕ=--, 则''1x F c ϕ=, ''2y F c ϕ=, '''12z F a b ϕϕ=--于是 z x ∂∂=''1'''12x z F c F a b ϕϕϕ-=---='1''12c a b ϕϕϕ+zy ∂∂=''y z F F -='2''12c a b ϕϕϕ---='2''12c a b ϕϕϕ+ 故 ''12''''1212c c z za b a b c x y a b a b ϕϕϕϕϕϕ∂∂+=+=∂∂++.习题 8-71.在点(1,2)-的邻域内, 根据泰勒公式, 展开函数22(,)2635f x y x xy y x y =----+解 因为''(1,2) 5 , 46, 23x y f f x y f x y -==--=--- ''''''4, 1, 2xx xy yy f f f ==-=-则(,)f x y 的3阶及3阶以上的各偏导数均为0, 且''(1,2)0 , (1,2)0x y f f -=-= 故函数(,)f x y 在点(1,2)-的邻域内的泰勒公式为(,)[1(1),2(2)]f x y f x y =+--++''2''''2''2222(1,2)(1)(1,2)(2)(1,2)1[(1)(1,2)2(1)(2)(1,2)2!(2)(1,2)]15[4(1)2(1)(2)2(2)]2!52(1)(1)(2)(2).x y xx xy yy f x f y f x f x y f y f x x y y x x y y =-+--++-+--+-+-++-=+---+-+=+---+-+2 .当自变量从5,6x y ==,变到115,6x h y k =+=+时,求函数32(,)639184f x y x y xy x y =+--++的增量.解 因为 (5,6)(5,6f f h k f ∆=++- 23639, 2618f f x y y x x y ∂∂=--=-+∂∂22232236, 6, 2, 6ff f fx x y x y x ∂∂∂∂==-==∂∂∂∂∂3332230, 0, 0f f fx y x y y ∂∂∂===∂∂∂∂∂则(,)f x y 的4阶及4阶以上的各阶偏导数均为0, 且225556660,8,30x x x y y y fff xyx======∂∂∂===∂∂∂故223110(8)[302(6)2]62!3!f h k h hk k h∆=⋅+-+⋅+-++⋅223156h hk k h=-++.3.设||x与||y均很小,求coscosxy的准确到二次项的近似表达式. 解设cos(,)cosxf x yy=, 则22sin cos,cos cosf fx xx y yx∂∂=-=-∂∂22cos sin1cos()(sin)cos cosf x yx yy y y∂=-⋅-=∂222sin sin1sin()(sin)cos cosf x yx yx y y y∂=--⋅-=-∂∂222423cos cos sin2cos(sin)coscoscos(cos2sin)cosf y y y y yxy yx y yy∂-⋅-=⋅∂+=于是()(0,0)(0,0)(0,0)0f fx y f x yx y x y∂∂∂∂+=+=∂∂∂∂2()(0,0)x y fx y∂∂+∂∂222222222(0,0)(0,0)(0,0)2f f fx xy yx yx yy x∂∂∂=++∂∂∂∂=-故2(,)(0,0)()(0,0)()(0,0)f x y f x y f x y fx y x y∂∂∂∂≈++++∂∂∂∂2222110()12!2y xy x-=++-=+.4. 按1x-和2yπ-的正整数幂, 展开函数(,)sinf x y xy=, 到二次项为止. 解因为c o s,c o sf fy xy x xyx y∂∂==∂∂2222222sin,cos sin,sinf f fy xy xy xy xy x xyx yx y∂∂∂=-=-=-∂∂∂∂于是[(1)()](1,)22x y fx yππ∂∂-+-∂∂(1,)(1,)22(1)()02f fx yx yπππ∂∂=-+-=∂∂2[(1)()](1,)22x y f x y ππ∂∂-+-∂∂2222(1,)(1,)22(1)2(1)()2f f x x y x y x πππ∂∂=-+--∂∂∂ 222(1,)2()2f y y ππ∂+-∂ 222(1)2(1)()()()(1)4222x x y y ππππ=--+---+--故将(,)sin f x y xy =在(1,)2π处展开成含有2次幂的泰勒多项式为2222(,)(1,)[(1)()](1,)2221 [(1)()](1,)2!221 1[(1)(1)()()]2422f x y f x y f x y x y f x y x x y y πππππππππ∂∂=+-+-∂∂∂∂+-+-∂∂=+------- 22211 1(1)(1)()().82222x x y y ππππ=-------5.按x 和y 的乘幂展开函数(,)ln(1)xf x y e y =+到三次项为止.解 因为l n (1), 1x xf f e e y x y y ∂∂=+=∂∂+ 222222ln(1), , 1(1)x x xff f e e e y x y y x y y ∂∂∂=+==-∂∂+∂∂+3333222ln(1), , 1(1)x x xf f f e e e y y x x y x y y ∂∂∂=+==-+∂∂∂∂∂+3332(1)xf e y y ∂=∂+于是 (0,0)(0,0)[](0,0)f f x y f x y y x y x y ∂∂∂∂+=+=∂∂∂∂ 2222222223333332233223223[](0,0)(0,0)(0,0)(0,0) 22[](0,0)(0,0)(0,0)(0,0)(0,0) 33 332x y f x yf f f x xy y xy y x y x yxy f x y f f f f xx yxyyxx yx yy x y xy y ∂∂+∂∂∂∂∂=++=-∂∂∂∂∂∂+∂∂∂∂∂∂=+++∂∂∂∂∂∂=-+故 2223311(,)(2)(332)()2!3!f x y y xy y x y xy y R θ=+-+-++(01)θ<<.综合习题八1.选择题:(1) 设(,)ln ,(,)ln ln ,f x y xy g x y x y ==+则(,)f x y ( )(,).g x y ① > ② < ③ = ④ ≠ (2) 设00(,)(,)f x y x y 在点的偏导数存在,则00(,)( ).x f x y '=① 00000(,)(,)limx f x x y y f x y x ∆→+∆+∆-∆② 00000(,)(,)limx f x x y f x y x ∆→+∆-∆③ 0000(,)(,)limx x f x y f x y x x →--④ 00000(,)(,)limx x f x y f x y x x →--(3) 设0000(,)(,)0,x y f x y f x y ''==则( ).① 00(,)x y 为极值点 ② 00(,)x y 为驻点 ③ (,)f x y 在00(,)x y 有定义 ④ 00(,)x y 为连续点(4) 在空间中,下列方程( )为球面, ( )为抛物面, ( )为柱面.① 2425x y z -+= ② 2221444y x z ++=③ 2y x = ④ 221x y +=⑤ 2z y = ⑥ 22222x y y x z ++=-(5) 设(,)f x y 在00(,)x y 处偏导数存在,则(,)f x y 在该点( ).① 极限存在 ② 连续③ 可微 ④ 以上结论均不成立 解 (1) ④; (2) ②④; (3) ②③; (4) ②⑥、①③⑤、④; (5) ④.2.设(,)f x y 的定义域为1,1,x y <<试求(,)xf x y y 的定义域并在xy 平面上画出该定义域的图形.解 因(,)f x y 的定义域为11x y <<且所以(,)x f x y y 中的,x y 必须满足||1||1xy xy ⎧<⎪⎨⎪<⎩则函数(,)xf x y y 的定义域为(,)11,11xD x y xy y ⎧⎫=-<<-<<⎨⎬⎩⎭且D 在xy 平面上的图形如图8-13. 图8-133.计算下列极限:222(,)(0,0)22(,)(0,1)ln(2)(1) lim 1cos sin cos (2) limx y x y x y x y e y xyxy xy x x y x +→→+-+-解 222222(,)(0,0)(,)(0,0)2ln(2)ln(2)(1)lim lim 11cos ()2x y x y x y x y x y e y x y e y xyxy ++→→++=-2(,)(0,0)lim2ln(2)2ln 2.xyx y e y +→=+=22(,)(0,1)2(,)(0,1)(,)(0,1)(,)(0,1)(,)(0,1)sin cos (2) limsin lim lim cos lim sin lim 1 2.x y x y x y x y x y xy xy x x y xxyy x xy xxyy xy →→→→→+-=+-=⋅+= 4.已知()(),()()0,(,x y x f z y g z x f z y g z z z x y ''=++≠=且x y 是和 的函数.求证:())(()).z zx g z y f z x y ∂∂-=-∂∂(证 (,,)()(),F x y z xy xf z yg z =--令则(), (), ()()x y z F y f z F x g z F xf z yg z '''''=-=-=--于是 ()()()()()()x z F y f z y f z zxF xf z yg z xf z yg z '--∂=-=-='''''∂--+ ()()()()()()y z F x g z x g z z yF xf z yg z xf z yg z '--∂=-=-='''''∂--+ 故()[()][()]()()y f z zx g z x g z x xf z yg z -∂-=-''∂+ ()[()]()()[()].x g z y f z xf z yg z zy f z y -=-''+∂=-∂ 125. ,)0F x z y z F F z ''+++-≠设(可微且,求方程 2221,)()22F x z y z x y z ++-++=((,)d .z z x y z =所确定的函数的微分解 2221(,,),)()2,2G x y z F x z y z x y z =++-++-令(则。
第八章多元函数微分法及其应用教学与考试基本要求1.理解多元函数、多元函数偏导数的概念,会求多元函数的定义域、二重极限;2.会求多元函数的偏导数、全微分、全导数等;3.会求空间曲线的切线及法平面、空间曲面的切平面及法线方程;4.会求方向导数和梯度5.会用多元函数微分法解决简单的最大值最小值问题.8.1多元函数的概念二、常考题型1.多元复合函数的定义域例1.函数224arctanyx xy z --=的定义域是_____________.2.求二元函数极限例2 求极限1)222200sin()lim x y x y x y →→++ 2)x y x xy 100)1(lim -→→; 3)22001sin lim y x xy y x +→→.、 4)22123lim x y xy x y x y→→++3.证明极限不存在例3 证明下列极限不存在(1) y x y x y x +-→→00lim (2)36200lim x y x yx y →→+4. 求偏导数及全微分例4 求下列函数的偏导数(1)44224z x y x y =+-; (2)u (3)22sin()x y z e xy +=; (4)ln tan x z y=; 例5 求下列函数的全微分 (1)z =; (2)(1)y z xy =+;(3)y zu x =;例6 求下列函数的偏导数1) 设4422(,)4f x y x y x y =+-,求(0,1),(0,1)x y f f . 2)(,)(f x y x y =+-(,1)x f x .3)讨论函数22,(,)(0,0)(,)0,(,)(0,0)xyx y f x y x y x y ⎧≠⎪=+⎨⎪=⎩在点)0,0(处的可导性,连续性与可微性.例7 1)求)ln(xy y z x =的二阶偏导数。
2)证明函数u =满足方程:22220u ux y∂∂+=∂∂.例8设ln()z x xy =,求32zx y∂∂∂ 。
例9 (多元复合函数求导)1)2u v z e -=,其中2sin ,,u t v t ==,求dz dt2)arctan()z xy =,其中xy e =,求dz dx3)22z u v uv =-,其中cos ,sin u x y v x y ==,求,z z dz x y∂∂∂∂, 4)arcsin()z x y u =++,其中sin()u xy =,求z z x y∂∂∂∂,例10(外层函数是抽象函数的多元复合函数求导)1)22(,)xyz f x y e =-,求222z z z zx y x yx ∂∂∂∂∂∂∂∂∂,,,2)设)()(1y x yf xy f x z ++=,其中f 具有二阶连续导数,求22xz ∂∂.例11(隐函数求导)1)求由方程2222x xy y a +-=确定的函数()y x 的导数dy dx: 2)求由2222221x y z a b c++=方程确定的函数(,)z z x y =的偏导数;3)设)3sin(z xy u +=,其中),(y x z z =由方程132=-xz yz 确定,求xu ∂∂ 4)设),(y x z z =是由方程333a xyz z =-确定,求yx z∂∂∂25)设 ⎩⎨⎧=+-+-=--+01,0222xy v u y x v u ,求y v x v y u x u ∂∂∂∂∂∂∂∂,,,.5.微分法在几何上的应用 例11 1)求空间曲线23421,31,41t z t y t x ===上相应于1=t 处的切线及法平面方程.2)求曲线2226x y z x y z ⎧++=⎪⎨++=⎪⎩在点(1,2,1)-处的切线与法平面方程3)求曲面3=+-xy z e z 在(2,1,0)处的切平面及法线方程.4)求曲面2132222=++z y x 平行于平面064=++z y x 的切平面方程.6.求极值例12 1)求函数)2(),(22y y x e y x f x ++=的极值2)在平面xOy 上求一点,使它到0162,0,0=-+==y x y x 三直线的距离的平方和最小.3)将正数12分成三个正数z y x ,,之和 使得z y x u 23=为最大.4)求函数22y x z +=在圆9)2()2(22≤-+-y x 上的最大值与最小值.7.方向导数及梯度例13 求 32yz xy u += 在)1,1,2(0-P 的梯度及沿)1,2,2(-=l ρ方向的方向导数.答案:例1. 解:2240x x y ≠⎧⎪⎨-->⎪⎩ ,所以 }0,4|),{(22≠<+=x y x y x D . 例2.解:1)222200sin()lim 1x y x y x y →→+=+. 2)x y x xy 100)1(lim -→→=1)(])1[(lim 01100==--→→e xy y xy y x 3) 因为 xy yx xy ≤+≤221sin0,且0lim 0=→→xy y x ,由夹逼法则知,01sinlim 220=+→→yx xy y x .4) 3103lim 2221=++→→y x y x xy y x例3.解:(1)因为 )1(11lim≠-+=-+=→k kky x y x kxy x ,所以 yx yx y x -+→→00lim不存在. (2)因为226301lim3k k y x y x kx y x +=+=→, 所以26300limy x y x y x +→→不存在.例4.解:(1)2384xy x xz-=∂∂,y x y y z 2384-=∂∂. (2)222zy x x xu++=∂∂ ,222zy x y yu ++=∂∂,222zy x z zu ++=∂∂(3))cos()sin(22222xy y e xy e x z y x y x +++=∂∂,)cos(2)sin(22222xy xye xy e x z y x y x +++=∂∂. (4))2csc(21sec cot 2y x y y y x y x x z =⋅⋅=∂∂,)2csc(2)(sec cot 222y x yx y x y x y x y z -=-⋅=∂∂.例5.解:(1)2222()y z z xyxyy x y x y ∂∂===-=∂∂++2222()y z z xydz dx dy dx dy x y x y y x y ∂∂=+=-∂∂++ (2)121)1()1(--+=⋅+=∂∂y y xy y y xy y xz. 为求z y∂∂,方程(1)yz xy =+两边取对数,得)1ln(ln xy y z +=,两边对y 求导,得 11ln(1)1z xy y x z y xy∂=++⋅∂+, 所以(1)[ln(1)]1y z xyxy xy y xy∂=+++∂+. 21(1)(1)[ln(1)]1y yz z xy dz dx dy y xy dx xy xy dyx y xy -∂∂=+=+-+++∂∂+ (3)1-=∂∂z yx z y x u ,x x z z x x y u z yz yln 11ln =⋅=∂∂,x x zy z y x x z u z yz y ln )(ln 22-=-=∂∂ 121ln ln y y y z z zu u u y y du dx dy dz x dx x xdy x xdzx y z z z z-∂∂∂=++=+-∂∂∂例6.解:1)2384xy x xz-=∂∂,y x y y z 2384-=∂∂,(0,1)=0,(0,1)=4x y f f 2)因为(,1)f x x =,所以 (,1)1x f x =. 3)因为 0)0,0()0,0(lim)0,0(0=∆-∆+=→∆xf x f f x x ,0)0,0()0,0(lim )0,0(0=∆-∆+=→∆y f y f f y y ,所以),(y x f 在)0,0(处两个偏导数都存在. 又 22201limk k y x xy kxy x +=+=→,故 在)0,0(处的极限不存在,从而),(y x f 在)0,0(处不连续.(法一)而22)()(])0,0()0,0([y x yx f y f x f f y x ∆+∆∆∆=∆=∆+∆-∆当0,0→∆→∆y x 时,上式极限不存在,因而不是ρ的高阶无穷小,故),(y x f 在)0,0(处不可微.(法二) 因为),(y x f 在)0,0(处不连续,故),(y x f 在)0,0(处不可微例7解:1)xy xy y y y xy y xy y y x z x x x x 1)ln(ln 1)ln(ln +=⋅+=∂∂. yy xy xy y z x x 1)ln(1+=∂∂-. 2222]2)ln([ln ln 1ln 1)1)ln(ln (ln x y x xy y y y y x y y x x y xy y y y x zx xx x xx-+=-++=∂∂. 211111ln ln()ln()ln [ln ln()ln()ln 1]x x x x x zxy y xy y xy y y y y x y xy xy y x y -----∂=+++=+++∂∂.211111ln()ln ln()ln [ln()ln ln()1ln ]x x x x x zy xy xy y xy y y y y xy x y xy y y x-----∂=+++=+++∂∂ 22222(1)ln()(1)x x x zx x y xy xy x y y---∂=-++-∂ 2)证2222221y x x yx x yx xu +=+⋅+=∂∂,2222221y x y yx y yx yu +=+⋅+=∂∂2222222222222)()(2y x x y y x x y x x u +-=+-+=∂∂,2222222222222)()(2y x y x y x y y x y u +-=+-+=∂∂02222=∂∂+∂∂yu xu .例8 解:1)ln()ln(+=+=∂∂xy xyy x xy x z, xxy y x z 122==∂∂, 023=∂∂∂yx z .例9 1)3222sin 22cos 23(cos 6)u v u v t t dz z du z dv e t e t e t t dt u dt v dt---∂∂=+=-=-∂∂ 2)222(1)1()1()1()x x x dz z dy z x y x e e dx y dx x xy xy xe ∂∂+=+=+=∂∂+++ 3)22(2)cos (2)sin z z u z vuv v y u uv y x u x v x ∂∂∂∂∂=+=-+-∂∂∂∂∂23sin cos (cos sin )x y y y y =-.22(2)(sin )(2)sin z z u z vuv v x y u uv x yy u y v y∂∂∂∂∂=+=--+-∂∂∂∂∂ 333[cos sin sin 2(sin cos )]x y y y y y =+-+.23333sin cos (cos sin )[cos sin sin 2(sin cos )]z zdz dx dy x y y y y dx x y y y y y dy x y∂∂=+=-++-+∂∂4)cos()z f u f y xy x u x x ∂∂∂∂=+=+∂∂∂∂=.cos()z f u f xy y u y y ∂∂∂∂=+=+∂∂∂∂=例10 解:1)设xy e v y x u =-=,22,则122xyz f u f v f x f yex u x v x∂∂∂∂∂''=+=+∂∂∂∂∂, 12(2)xy z f u f v f y f xe y u y v y∂∂∂∂∂''=+=-+∂∂∂∂∂. 221212222xy xyf f z x f ye f y e x x x''∂∂∂''=+++∂∂∂ 11111122xy f f f u v f x f ye x u x v x '''∂∂∂∂∂''''=+=+∂∂∂∂∂,22221222xy f f f u vf x f ye x u x v x'''∂∂∂∂∂''''=+=+∂∂∂∂∂ 22111212122222222xy xy xy xyz f x f ye x f f x f ye ye f y e x∂''''''''''=+++++∂()() 212222xy xy xyf f z x ye f e f yxe x y y y''∂∂∂''=+++∂∂∂∂ 1111112(2)xy f f f u v f y f xe y u y v y '''∂∂∂∂∂''''=+=-+∂∂∂∂∂,2222122(2)xy f f f u vf y f xe y u y v y'''∂∂∂∂∂''''=+=-+∂∂∂∂∂ 21112212222(2)2(2)xy xy xy xy xyz f y f xe x f y f xe ye f e f yxe x y ∂''''''''''=-++-+++∂∂()() 2))()(1)(12y x f y y xy f x xy f xx z +'+'+-=∂∂, 2232221()()()()()()z z y yf xy f xy y f xy f xy y yf x y x x x x x x x ∂∂∂''''''==--+++∂∂∂ 23222()()()()y y f xy f xy f xy yf x y x x x'''''=-+++例11 解:1)设2222),(a y xy x y x F --+=, 则 y x F y x F y x 22,22-=+=, 从而x y y x F F dx dy y x -+=-=. 2)设1),,(222222-++=c z b y a x z y x F ,则 2222,2,2czF b y F a x F z y x ===,从而 zb yc F F y zz a x c F F x z z y z x 2222,-=-=∂∂-=-=∂∂ 3)方程132=-xz yz 两边对x 求导,03223=∂∂--∂∂xzxz z x z yz, 得 2332xzyz z x z -=∂∂. 故 32cos(3)3cos(3)23u f f z z y xy z xy z x x z x yz xz ∂∂∂∂=+=+++∂∂∂∂- 323cos(3)()23z xy z y yz xz =++- 4)设333),,(a xyz z z y x F --=,则yz F x 3=,xz F y 3=,xy z F y 332-=, 2z xy yz F F x z z x -=-=∂∂,2z xy xzF F y z z y -=-=∂∂.2222522223()()(2)()()()z z z yxy z yz x z z yzx y z z y yx y y xy zxy z xy z ∂∂+---∂∂-∂∂===∂∂∂---. 5)解 方程组两端对x 求导,得⎩⎨⎧=-+-=-+.0,0222y v u x vv uu x x x x 即⎩⎨⎧=+-=+y v u x vv uu x x x x ,222 则 v u yv x v u y vx xu +-=-=∂∂1122122,vu yux v u yxu x v ++=--=∂∂1122122. 同样方程组两端对y 求导,得v u xv y u 2221+-=∂∂, vu xu y v 2221++=∂∂例11解(1)t z t y t x ='='=',,23,切向量为}1,1,1{,切点为)21,31,41(,切线方程为121131141-=-=-z y x .法平面方程为 0213141=-+-+-z y x ,即1213=++z y x .2)222022210-1dy dz dydz x y z y z x dx dx dx dxdy dz dy dz dx dx dx dx⎧⎧++=+=-⎪⎪⎪⎪⇒⎨⎨⎪⎪++=+=⎪⎪⎩⎩-2222-1111=,=22221111x z y x dy z x dz x yy z y z dx y z dxy z ----⇒==--故切向量T={1,,z x x yy z y z----},(1,2,1)|T -={1,0,-1} 切线方程为 12110-1x y z -+-==, 法平面方程为 (1)-(1)0x z --=,即0=-z x(3) 设3),,(-+-=xy z e z y x F z ,则1,,-===z z y x e F x F y F , 法向量为 {1,2,0},切平面方程为 0)1(2)2(=-+-y x ,即042=-+y x . 法线方程为2112zy x =-=-. 4)解 令 2132),,(222-++=z y x z y x F , 曲面在点),,(z y x 处的法向量为)6,4,2(),,(z y x F F F n z y x ==ρ,已知平面的法向量为)6,4,1(1=n ρ,而切平面与已知平面平行,所以1//n n ρρ,从而有664412zy x ==, (1) 又因为点在切面上,应满足曲面方程2132222=++z y x (2)(1)、(2)联立解得切点为)2,2,1(及)2,2,1(---,所以所求切平面方程为:0)2(6)2(4)1(=-+-+-z y x ,或 0)2(6)2(4)1(=+++++z y x .例12解1)令222(,)(2421)0(,)(22)0x x xyf x y e x y y f x y e y ⎧=+++=⎪⎨=+=⎪⎩, 解之得驻点)1,21(-,x yy x xy x xx e y x f y e y x f y y x e y x f 22222),(),1(4),(,0)12(4),(=+==+++=,04,2,0,022<-=∆==>=e e C B e A ,所以函数(,)f x y 在)1,21(-取得极小值2)1,21(ef -=-.2)解设所求点的坐标为),(y x ,它到三直线的距离的平方和为z ,则 5)162(222-+++=y x y x z ,令 ⎪⎪⎩⎪⎪⎨⎧=-++=∂∂=-++=∂∂05)162(4205)162(22y x y y z y x x x z ,解之得 ⎪⎪⎩⎪⎪⎨⎧==51658y x .)516,58(是惟一驻点,)516,58(即为所求. 3)解:令)12(),,(23-+++=z y x z y x z y x F λ,则⎪⎪⎩⎪⎪⎨⎧=++=+==+==+=.12,0,02,0323322z y x y x F yz x F z y x F z y x λλλ 解得唯一驻点)2,4,6(,故最大值为.691224623max =⋅⋅=u4)解 先求函数在圆内部可能的极值点.令⎩⎨⎧====02,02y z x z yx 解得点)0,0(,而0)0,0(=z .再求函数在圆周上的最值.为此做拉格朗日函数]9)2()2[(),(2222--+-++=y x y x y x F λ,⎪⎩⎪⎨⎧=-+-=-+==-+=.9)2()2(,0)2(22,0)2(2222y x y y F x x F y x λλ 解之得)22,22(),225,225(--,而1)22,22(,25)225,225(=--=z z . 比较)22,22(),225,225(),0,0(--z z z 三值可知,在圆9)2()2(22≤-+-y x 上函数最大值为25=z ,最小值为0=z .例13解 k zu j y u i x u u ϖρρ∂∂+∂∂+∂∂=grad , 而2323,2,yz zuz xy y u y x u =∂∂+=∂∂=∂∂ 故 k zu j y u i x u u ϖρρ∂∂+∂∂+∂∂=grad k yz j z xy i y ϖρρ2323)2(+++=, 则在)1,1,2(0-P 处的梯度为 k j i u ϖρρ35grad -+=. 又)1,2,2(-=l ρ,故其方向余弦为31cos ,32cos ,32cos -===γβα, 所以 沿l ρ方向的方向导数为38cos cos cos grad 0=∂∂+∂∂+∂∂==∂∂γβαz u y u x u u lu l P。