误差理论与数据处理知识总结
- 格式:doc
- 大小:435.50 KB
- 文档页数:9
误差理论与数据处理1. 绪论1.1 数据测量的基本概念1.1.1 基本概念(1)物理量物理量是反映物理现象的状态及其过程特征的数值量。
一般物理量都是有因次的量,即它们都有相应的单位,数值为1的物理量称为单位物理量,或称为单位;同一物理量可以用不同的物理单位来描述,如能量可以用焦耳、千瓦小时等不同单位来表述。
(2)量值一般由一个数乘以测量单位所表示的特定量的大小。
无量纲的SI单位是“1”。
(3)测量以确定量值为目的的一组操作,操作的结果可以得到真值,即得到数据,这组操作称为测量。
例如:用米尺测得桌子的长度为1.2米。
(4)测量结果测量结果就是根据已有的信息和条件对被测物理量进行的最佳估计,即是物理量真值的最佳估计。
在测量结果的完整表述中,应包括测量误差,必要时还应给出自由度及置信概率。
测量结果还具有重复性和重现性。
重复性是指在相同的测量条件下,对同一被测物理量进行连续多次测量所得结果之间的一致性。
相同的测量条件即称之为“重复性条件”,主要包括:相同的测量程序、相同的测量仪器、相同的观测者、相同的地点、在短期内的重复测量、相同的测量环境。
若每次的测量条件都相同,则在一定的误差范围内,每一次测量结果的可靠性是相同的,这些测量服从同一分布。
重现性是指在改变测量条件下,对被测物理量进行多次测量时,每一次测量结果之间的一致性,即在一定的误差范围内,每一次测量结果的可靠性是相同的,这些测量值服从同一分布。
(4)测量方法测量方法是指根据给定的测量原理,在测量中所用的并按类别描述的一组操作逻辑次序和划分方法,常见的有替代法、微差法、零位法、异号法等。
总之,数据测量就是用单位物理量去描述或表示某一未知的同类物理量的大小。
1.1.2 数据测量的分类数据测量的方法很多,下面介绍常见的三种分类方法,即按计量的性质、测量的目的和测量值的获得方法分类。
(1)按计量的性质分可分为:检定、检测和校准。
检定:由法定计量部门(或其他法定授权组织),为确定和证实计量器是否完全满足检定规程的要求而进行的全部工作。
1)误差的定义及其表示法。
(1) 绝对误差:绝对误差=测得值-真值;(2) 相对误差:相对误差=绝对误差/真值≈绝对误差/测得值;(3) 引用误差:引用误差=示值误差/测量范围上限;2)误差的基本概念。
所谓误差就是测得值与被测量的真值之间的差。
误差=测得值-真值3)误差的来源。
(1) 测量装置误差; (2) 环境误差; (3) 方法误差; (4)人员误差; (5)被测量对象变化误差;4)误差分类:(1) 系统误差:在相同条件下,多次测量同一量值时,该误差的绝对值和符号保持不变,或者在条件改变时,按某一确定规律变化的误差。
(2) 随机误差:在相同测量条件下,多次测量同一量值时,绝对值和符号以不可预定方式变化的误差。
(3) 粗大误差:指明显超出统计规律预期值的误差。
又称为疏忽误差、过失误差或简称粗差。
5)测量的精度。
① 准确度:表征测量结果接近真值的程度。
系统误差大小的反映②精密度:反映测量结果的分散程度(针对重复测量而言)。
表示随机误差的大小③ 精确度:表征测量结果与真值之间的一致程度。
系统误差和随机误差的综合反映6)有效数字答: (1)有效数字:含有误差的任何近似数,若其绝对误差界是最末位数的半个单位,则从这个近似数左方起的第一个非零数字称为第一位有效数字。
且从第一位有效数字起到最末一位数止的所有数字,无论是零还是非零的数字,都叫有效数字。
论是零还是非零的数字,都叫有效数字1 .若舍去部分的数值大于保留末位的 0.5,则末位加 1 , (大于 5 进) ;2 .若舍去部分的数值小于保留末位的 0.5 ,则末位不变, (小于 5 舍) ;3 .若舍去部分的数值恰等于保留末位的 0.5,此时:①若末位是偶数;则末位不变,②若末位是奇数,则末位加 1 , (等于 5 奇进偶不进) 。
1 -1 研究误差的意义是什么?简述误差理论的主要内容。
答:研究误差的意义(1)正确认识误差的性质,分析误差产生的原因,以消除或减小误差。
第二章 误差的基本性质与处理2-1.试述标准差 、平均误差和或然误差的几何意义。
答:从几何学的角度出发,标准差可以理解为一个从 N 维空间的一个点到一条直线的距离的函数;从几何学的角度出发,平均误差可以理解为 N 条线段的平均长度; 2-2.试述单次测量的标准差 和算术平均值的标准差 ,两者物理意义及实际用途有何不同。
【解】单次测量的标准差σ表征同一被测量n 次测量的测量值分散性的参数,可作为测量列中单次测量不可靠性的评定标准。
2n δσ++=算术平均值的标准差xσ-是表征同一被测量各个独立列算术平均值分散性的参数,可作为算术平均值不可靠性的评定标准xσ-=在n ,当测量次数n 愈大时,算术平均值愈接近被测量的真值,测量精度也愈高。
2-3试分析求服从正态分布、反正弦分布、均匀分布误差落在中的概率 【解】(1)误差服从正态分布时2222(2)(2)()P ed ed δδσσδδ--==引入新变量t:,t tδσδσ==,经变换上式成为: 22()2()20.41950.8484%t t P edt t -==Φ=⨯==⎰(2)误差服从反正弦分布时因反正弦分布的标准差为:σ=,所以区间[],,a a ⎡⎤=-⎣⎦,故:1()1aaP δπ+-==⎰(3) 误差服从均匀分布时因其标准差为:σ=,⎡⎤⎡⎤=⎢⎥⎣⎦⎣⎦,故111()20.8282%22P d a a δπ==⨯==⎰2-4.测量某物体重量共8次,测的数据(单位为g)为236.45,236.37,236.51,236.34,236.39,236.48,236.47,236.40,是求算术平均值以及标准差。
0.05(0.03)0.11(0.06)(0.01)0.080.070236.48236.43x +-++-+-+++=+=0.0599σ=0.0212x σ==2-5用別捷尔斯法、极差法和最大误差法计算2-4,并比较2-6测量某电路电流共5次,测得数据(单位为mA )为168.41,168.54,168.59,168.40,168.50。
误差理论与数据处理笔记研究误差的意义:1)正确认识误差的性质,分析误差产生的原因,以消除或减小误差。
2)正确处理测量和试验数据,合理计算所得结果,以便在一定条件下得到更接近于真值的数据。
3)正确组织实验过程,合理设计仪器或选用仪器和测量方法,以便在最经济条件下,得到理想的结果。
误差=测得值-真值(真值可以分为理论真值和约定真值)(一)绝对误差某量值的测得值和真值之差为绝对误差,通常简称为误差,即绝对误差=测得值-真值,所在实际工作中,经常使用修正值,为消除系统误差而用代数法加到测量结果上的值成为修正值。
修正值与误差值的大小相等而方向相反,测得值加修正值后可以消除该误差的影响。
(二)相对误差(有大小、方向)绝对误差与被测量的真值之比值成为相对误差。
相对误差=绝对误差/真值≈绝对误差/测得值相对误差通常以百分数(%)来表示。
(三)引用误差:一种简化和使用方便的仪器仪表值的相对误差。
数据处理:object:array_like数组,公开数组接口的任何对象,array方法返回数组的对象,或任何(嵌套)序列。
dtype:数据类型,可选数组所需的数据类型。
如果没有给出,那么类型将被确定为保持序列中的对象所需的最小类型。
此参数只能用于“upcast”数组。
copy:bool,可选。
如果为true(默认值),则复制对象。
否则,只有当array返回副本,obj 是嵌套序列,或者需要副本来满足任何其他要求(dtype,顺序等)时,才会进行复制。
order:{‘K’,‘A’,‘C’,‘F’},可选指定阵列的内存布局。
如果object不是数组,则新创建的数组将按C顺序排列(行主要),除非指定了F,在这种情况下,它将采用Fortran顺序(专业列)。
如果object是一个数组,则以下成立。
list=source_data.values.tolist()csv转换为listnp.array整理成二维矩阵关于np.wherenp.where()[0]表示行的索引,np.where()[1]则表示列的索引。
误差理论与数据处理基础知识课程概述本课程是仪器类专业的专业基础课。
作为仪器类专业的学生,仪器设计的主线是设计合理的仪器原理方案、选择合适的器件、搭建可靠的测试系统以及进行准确的数据处理与误差分析,所以作为处理仪器测量结果和判断仪器性能的重要环节,本课程的学习将对引导学生灵活运用理论知识于实践环节起到重要的支撑作用。
通过本课程的学习,期望学生掌握误差分析的基本概念及意义,掌握测试系统静态测量及动态测量结果的误差分析与补偿算法,具有独立进行测量结果误差分析的能力,并能通过适当的误差补偿合理地改善测试系统的性能,最终具有初步改进测试系统设计的能力。
因此本课程是一门理论与实践紧密结合的综合性课程。
课程要求课程内容包括误差理论与数据处理两条主线。
误差理论要求掌握误差的基本概念,针对测量结果和测试系统能够进行针对性的误差分析,并对不确定度的基本概念有所了解;数据处理则要求掌握最小二乘法的基本思想,并能够将最小二乘法广泛应用到工程实践,对于动态测量结果的分析与处理则要求掌握随机分析的基本概念与方法。
课程最终希望学生能够灵活运用课程理论知识解决工程实践中出现的误差与数据处理问题。
课程总课时:48;每周4个课时,12周完成全部课程学习。
考核方式及成绩评定考核方式由平时成绩和考试成绩组成,平时成绩包括五次课堂测试、习题成绩和大作业的成绩,大作业就是学生自选科研题目,利用课程所授知识点完成题目当中涉及误差理论与数据处理的内容;考试成绩就是期末考试成绩。
百分制情况下,平时成绩和期末成绩比例为:60:40,即平时成绩为60分,期末考试成绩为40分。
平时成绩中:课堂测试成绩25分(每次5分,共5次),习题成绩20分,大作业成绩15分。
平时成绩和期末成绩比例根据每年的教学效果评价可以进行调整,调整方案在每年的授课环节结束后,由教学团队讨论后决定,并在新一轮授课前公示给学生。
1、随机误差产生的原因(装环人)2、随机误差具有统计规律性对称性:绝对值相等的正误差和负误差出现的次数相等。
单峰性:绝对值小的误差比绝对值大的误差出现的次数多有界性:在一定的测量条件下,随机误差的绝对值不会超过一定界限。
抵偿性:随着测量次数的增加,随机误差的算术平均值趋向于零。
3、算术平均值非X=X1+X2+...+XiVi(残余误差)=Xi-非X4、标准差(1)单次测量的标准差(δi)标准差=根号下(δi平方和/n)标准差的估计值=根号下(Vi平方和/n-1)(贝塞尔公式)评定单次测量不可靠的参数或然误差p=2/3标准差的估计值平均误差θ=4/5标准差的估计值(2)算术平均值的标准差标准差非x=标准差/根号下n或然误差R=2/3算术平均值标准差非x平均误差T=4/5标准差非x5、极差法Wn=Xmax-Xmino=Wn/dn6、最大误差法真值可代替o=|δi|/Kn真值未知o=|Vi|/Kn'7、权的确定方法:按测量的次数确定权8、单位权化的实质是使任何一个量值乘以自身权数的平方根,得到新的量值权数为1。
9、系统误差产生的原因(装环方人)10、系统误差的特征(服从某一确定规律变化的误差)不变的系统误差线性变化的系统误差周期性变化的系统误差复杂规律变化的系统误差11、系统误差的发现方法实验对比法残余误差观察法残余误差校核法不同公式计算标准差比较法计算数据比较法秩和检验法t检验法12、系统误差的减小和消除(1)从产生误差的根源上消除系统误差(2)用修正方法消除系统误差(3)不变系统误差消除法(代替法抵消法交换法)(4)线性系统误差消除法(对称法)(5)周期性系统误差消除法(半周期法)13、粗大误差产生的原因测量人员的主观原因客观外界条件的原因14、防止与消除粗大误差的方法(1)设法从测量结果中发现和鉴别而加以剔除(2)加强测量者的工作责任心和以严格的科学态度对待测量工作(3)保证测量条件的稳定(4)采用不等精度测量方法(5)互相之间进行校核的方法15、判别粗大误差的准则3o准则(莱以特准则)罗曼诺夫斯基准则格罗布斯准则狄克松准则计算题测量某电路电流共5次,测得数据(单位位mA)为168.41 168.54 168.59 168.40 168.50 试求算术平均值及标准差或然误差和平均误差。
误差理论与数据处理
1误差理论
误差(error)理论是科学测量中一项重要的理论,它描述了测量结
果与理论结果之间的差异,以及这种差异的大小和方向。
当一项测量
结果与理论相符时,这种差异就会减少到一定的程度,从而减少测量
不确定性,使测量结果更精确和准确。
误差分析也是一种重要的测量方法,它主要是根据实际测量结果
来估算实际测量数据与理论测量数据之间的差异,从而决定测量后的
数据处理方式[1]。
通过分析误差,可以有效估算测量数据的有效位数,进而使测量结果更加准确。
2数据处理
数据处理是控制实验测量的一个重要步骤,它可以改善实验测量
的精确程度。
通过数据处理,可以提供准确可靠的实验结果,这对于
建立精确的模型以及验证理论,都有着重要的意义。
数据处理有很多种方法,但最重要的一点是要确定准确的误差结果。
通常可以采用统计方法,如均值、标准差和变异系数,对实验数
据进行精确的数据分析,从而估算实验数据的有效位数和有效位数之
间的差值。
一旦变值较大,就可以采取一定的措施进行纠偏,使实验
数据趋于稳定,从而提高实验数据的准确性。
数据处理本身也可以用于处理和优化测量误差,从而提高测量精度。
这一过程通常包括:编辑测量误差数据,对某些超出预想范围的测量数据进行排除处理,将误差分布情况用图表展示出来,并从中分析出结论性结果。
综上所述,误差理论和数据处理在科学测量中起着非常重要的作用,准确的误差分析可以令实验结果更加有效可靠,而精确的数据处理也可以改善测量精度,可以提供准确的实验数据,为理论的验证和模型的建立提供有力支撑。
误差理论与数据处理知识总结-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第一章绪论研究误差的意义研究误差的意义为:1)正确认识误差的性质,分析误差产生的愿意,以消除或减小误差2)正确处理测量和试验数据,合理计算所得结果,以便在一定条件下得到更接近于真值的数据3)正确组织实验过程,合理设计仪器或选用仪器和测量方法,以便在最经济条件下,得到理想的结果。
误差的基本概念误差的定义:误差是测得值与被测量的真值之间的差。
绝对误差:某量值的测得值之差。
相对误差:绝对误差与被测量的真值之比值。
引用误差:以仪器仪表某一刻度点的示值误差为分子,以测量范围上限值或全量程为分母,所得比值为引用误差。
误差来源:1)测量装置误差 2)环境误差 3)方法误差 4)人员误差误差分类:按照误差的特点,误差可分为系统误差、随机误差和粗大误差三类。
系统误差:在同一条件下,多次测量同一量值时,绝对值和符号保持不变,或在条件改变时,按一定规律变化的误差为系统误差。
随机误差:在同一测量条件下,多次测量同一量值时,绝对值和符号以不可预定方式变化的误差称为随机误差。
粗大误差:超出在规定条件下预期的误差称为粗大误差。
精度精度:反映测量结果与真值接近程度的量,成为精度。
精度可分为:1)准确度:反映测量结果中系统误差的影响程度2)精密度:反映测量结果中随机误差的影响程度3)精确度:反映测量结果中系统误差和随机误差综合的影响程度,其定量特征可用测量的不确定度来表示。
有效数字与数据运算有效数字:含有误差的任何近似数,如果其绝对误差界是最末位数的半个单位,那么从这个近似数左方起的第一个非零的数字,称为第一位有效数字。
从第一位有效数字起到最末一位数字止的所有数字,不论是零或非零的数字,都叫有效数字。
测量结果应保留的位数原则是:其最末一位数字是不可靠的,而倒数第二位数字应是可靠的。
数字舍入规则:保留的有效数字最末一位数字应按下面的舍入规则进行凑整:1)若舍去部分的数值,大于保留部分的末位的半个单位,则末位加一2)若舍去部分的数值,小于保留部分的末位的半个单位,则末位不变3)若舍去部分的数值,等于保留部分的末位的半个单位,则末位凑成偶数。
数据运算规则:1)在近似数加减运算时,运算数据以小数位数最少的数据位数为准2)在近似数乘除运算、平方或开方运算时,运算数据以有效位数最少的数据位数为准3)在对数运算、三角函数运算时,数据有效位数应查表得到。
第二章误差的基本性质与处理随机误差随机误差的产生原因:1)测量装置方面的因素 2)环境方面的因素 3)人员方面的因素。
随机误差一般具有以下几个特性:对称性,单峰性,有界性,抵偿性。
正态分布:服从正态分布的随机误差均具有以上四个特征,由于多数随机误差都服从正态分布,因而正态分布在误差理论中占有十分重要的地位。
算术平均值:在系列测量中,被测量的n 个测得值的代数和除以n 而得到的值称为算术平均值。
残余误差:一般情况下,被测量的真值为未知,可用算术平均值代替被测量的真值进行计算:x l i i -=υ , υi 为l i 的残余误差。
算术平均值的计算校核:算术平均值及其残余误差的计算是否正确,可用求得的残余误差代数和来校核。
其规则为1)残余误差代数和应符合: 当x n lni i=∑=1,求得的x 为非凑整的准确数时,∑=ni i 1υ为零;当x n l ni i 〉∑=1,求得的x 为凑整的非准确数时,∑=ni i1υ为正,其大小为求x 是的余数;当x n l ni i 〈∑=1,求得的x 为凑整的非准确数时,∑=ni i1υ为负,其大小为求x 是的亏数。
2)残余误差代数和绝对值应符合: 当n 为偶数时,A nni i 21≤∑=υ; 当n 为奇数时,A n n i i ⎪⎭⎫ ⎝⎛-≤∑=5.021υ。
测量的标准差:测量的标准偏差简称为标准差,也可称之为方均根误差。
单次测量的标准差σ是表征同一被测量的n 次测量的测得值的分散性的参数,可作为测量列中单次测量不可靠性的评定标准。
在等精度测量列中单次测量的标准差按下式计算:nn1i 2i∑==δσ贝塞尔公式:1-n n1i 2i∑==υσ据此式可由残余误差求的单次测量的标准差的估计值。
评定单次测量不可靠性的参数还有或然误差1-n 32n1i 2i∑==υρ和平均误差1-n 54n1i 2i∑==υθ。
算术平均值的标准差x σ是表征同一被测量的各个独立测量列算术平均值分散性的参数,可作为算术平均值不可靠性的评定标准。
在n 此测量的等精度测量列中,算术平均值的标准差为单次测量标准差的n1,当测量次数n 愈大时,测量精度越高。
标准差的其他计算方法:1)别捷尔斯法 1-n n 253.1n1i i⨯⨯=∑=υσ2)极差法 min max nx -x =ω nn d ωσ=3)最大误差法 'max niKυσ=极限误差:测量的极限误差是极端误差,测量结果的误差不超过该极端误差的概率为P 。
单次测量的极限误差:x t xσδ±=lim 。
算术平均值的极限误差:正态分布:x t xσδ±=lim ;t 分布:x a t x σδ±=lim 。
不等精度测量:不同的测量条件、不同的仪器、不同的测量方法、不同的测量次数和不同的测量者。
权:各测量结果的可靠程度可用一数值来表示,这个数值即为权。
单位权化:使权数不同的不等精度测量列转化为具有单位权的等精度测量列。
随机误差的其他分布:均匀分布、反正弦分布、三角形分布、x 分布、t 分布、F 分布等。
系统误差系统误差的产生原因:系统误差是由固定不变的或按确定规律变化的因素所造成的。
这些因素可以是1)测量装置方面的因素 2)环境方面的因素 3)测量方法的因素 4)人员方面的因素。
系统误差的特征:在同一条件下,多次测量同一量值时,误差的绝对值和符号保持不变,或者在条件改变时,误差按一定的规律变化。
系统误差的种类:不变的系统误差,线性变化的系统误差,周期性变化的系统误差。
系统误差的发现:粗大误差的产生原因:测量人员的主观原因,客观外界条件的原因。
判别粗大误差的准则函数误差函数误差概念:间接测量的量是直接测量所得到的各个测量值的函数,而间接测量误差则是各个直接测得值误差的函数,称为函数误差。
函数系统误差计算公式:n nx x f x x f x x f y∆∂∂++∆∂∂+∆∂∂=∆ 2211 函数随机误差计算公式:2222222121xn nx x y xf x f x f σσσσ⎪⎪⎭⎫ ⎝⎛∂∂++⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂=相关系数:误差间的线性相关关系是指它们具有线性依赖的关系,,这种关系的强弱有相关系数ρ来反映。
相关系数的确定方法:直接判断法,实验观察和简略计算法,理论计算法。
随机误差的合成标准差的合成:()∑∑=≤+=qi qji ji j i ij iia a a 1122 σσρσσ极限误差的合成:∑∑=≤+⎪⎪⎭⎫⎝⎛±=qi qj i j j i i j i ij iii tt a a t a t 1122 δδρδδ系统误差的合成已定系统误差的合成:∑=∆=∆ri i i a 1未定系统误差的合成: 1)标准差的合成:()∑∑=≤+=si sji ji j i ij ii u u a a u a u1122 ρ2)极限误差的合成:∑∑=≤+⎪⎪⎭⎫⎝⎛±=s i sj i j j i i j i ij iii t e t e a a t e a t e 1122 ρ系统误差与随机误差的合成按极限误差合成:∑∑==+±=∆s1i q1i 2i2i e δ总按标准差合成:∑∑==+=si qi iiu 1122σσ误差分配误差分配步骤:1)按等作用原则分配误差即iyi x f n ∂∂=1σσ 或 iix f n ∂∂=1δδ2)按可能性调整误差 3)验算调整后的总误差微小误差的取舍准则对于随机误差和未定系统误差,微小误差舍去准则是被舍去的误差必须小于或等于测量结果总标准差的1/3-1/10。
最佳测量方案的确定选择最佳函数误差公式:选取包含直接测量值最少的公式。
使误差传递系数等于零或为最小:由函数误差公式可知,若使各个测量值对函数的误差传递系数为零或最小,则函数误差可相应减小。
第四章 测量不确定度 测量不确定度的基本概念测量不确定度定义:测量不确定度是指测量结果变化的不肯定,是表征被测值的真值在某个量值范围的一个估计,是测量结果含有的一个参数,用以表示被测量值的分散性。
测量不确定度与误差的联系:误差是不确定度的基础,只有对误差的分布规律、性质、相互联系及对测量结果的误差传递关系等有了充分的认识和了解,才能更好的估计各不确定度分量,正确的到测量结果的不确定度。
用不确定度代替误差表示测量结果,易于理解便于评定,具有合理性和实用性。
测量不确定度与误差的区别:1)从定义上,误差是测量结果与真值之差,它以真值或约定真值为中心;而测量不确定度是以被测量的估计值为中心,因此误差是一个理想概念,难以定量;而测量不确定度是反映人们对测量认识不足的程度,是可以定量评定的。
2)从分类上,误差按自身特征和性质分为系统误差、随机误差和粗大误差,并可采取不同的措施来减小或消除各类误差对测量的影响。
但各类误差之间并不存在绝对的界限,故在分类判别和误差计算时不易准确掌握;测量不确定度不按性质分类,而是按评定方法分为A 类评定和B 类评定,不考虑不确定度因素的来源和性质,从而简化了分类,便于评定和计算。
标准不确定度的评定标准不确定度:用标准差表征的不确定度。
A 类评定:A 类评定用统计分析法评定,其标准不确定度u 等同于由系列观测值获得的标准差。
B 类评定:B 类评定不用统计分析法,而是基于其他方法估计概率分布或分布假设来评定标准差并得到标准不确定度。
自由度:将不确定度计算表达式中总和所包含的项数减去各项之间存在的约束条件数,所得差值称为不确定度的自由度。
自由度的确定:A 类:根据标准差计算方法和n ,查表可获得自由度。
B 类:221⎪⎭⎫ ⎝⎛=u u συ。
测量不确定度的合成合成标准不确定度:当测量结果受多重因素影响形成了若干个不确定度分量时,测量结果的标准不确定度用各标准不确定度分量合成后所得的合成标准不确定度c u 表示。
∑∑=≤+=Ni Nji ji ij icu u uu 1122 ρ展伸不确定度:展伸不确定度由合成标准不确定度c u 乘以包含因子k 得到,记为U 。
其中k 由t 分布的临界值()υpt 给出,υ是合成标准不确定度的自由度。
不确定度的报告:当测量不确定度用合成标准不确定度表示时,应给出合成标准不确定度c u 及其自由度υ;当测量不确定度用展伸不确定度表示时,除给出展伸不确定度U 外,还应说明计算式所依据的合成标准不确定度c u 、自由度υ、置信概率P 和包含因子k 。