复合材料泡沫夹层结构在汽车外饰中的应用和发展
- 格式:docx
- 大小:142.94 KB
- 文档页数:7
结构泡沫芯材的历史回顾(复材在线原创文章)玻璃钢/复合材料(FRP/CM)中常用的泡沫芯材有聚氯乙烯(PVC)、聚苯乙烯(PS)、聚氨酯(PUR)、丙烯腈-苯乙烯(SAN)、聚醚酰亚胺(PEI)及聚甲基丙烯酰亚胺(PMI)等泡沫,其中PS和PUR泡沫通常仅作为浮力材料,而不是结构用途。
目前PVC 泡沫已几乎完全代替PUR泡沫而作为结构芯材,只是在一些现场发泡的结构中除外。
严格意义上讲,第一种用在承载构件夹层结构中的结构泡沫芯材是使用异氰酸酯改性的PVC泡沫,或称交联PVC。
第一个采用PVC泡沫夹芯的夹层结构是保温隔热车厢。
交联PVC的生产工艺是由德国人林德曼在上世纪30年代后期发明的。
二次大战以后法国将该工艺列入战争赔偿中,由克勒贝尔蕾洛雷特塑料公司(Kleber Renolit)开始生产Klegecell®交联PVC泡沫,主要是一些用在保温隔热车厢中的低密度产品。
上世纪50-60年代,克勒贝尔蕾洛雷特塑料公司给几家欧洲公司发放了PVC泡沫的生产许可证。
另外两家美国公司,B.F歌德雷奇(B.F Goodrich)和佳士迈威(Johns-Manville)也买到了许可证开始生产,但是几年以后就停产。
当所有的生产许可证都过期以后,交联PVC的生产工艺过程转为公开。
进入70年代以后,多数原来的欧洲许可生产厂家也已停产。
目前两个主要的生产厂家是戴博(Diab)公司的Divinycell®和Klegecell®系列PVC泡沫及爱瑞柯斯(Airex)公司的Herex®系列PVC泡沫。
20世纪40年代后期,林德曼使用高压气体作为发泡剂,制造出未经过改性的PVC泡沫,也叫线性PVC泡沫。
英国于1943年首先制成聚苯乙烯泡沫塑料,1944年美国道化学有限公司用挤出法大批量的生产聚苯乙烯泡沫塑料。
第二次世界大战期间,德国拜尔的试验人员对二异氰酸酯及羟基化合物的反应进行研究,制得了PUR硬质泡沫塑料、涂料和粘合剂。
夹层结构复合材料设计原理及其应用
夹层结构复合材料是一种由两层或多层材料组成的复合材料,其中夹层材料通常是一种轻质、高强度的材料,如泡沫塑料、蜂窝结构、铝合金等,而外层材料则通常是一种高强度、高刚度的材料,如碳纤维、玻璃纤维等。
夹层结构复合材料的设计原理是通过组合不同的材料,以达到优化材料性能的目的。
夹层结构复合材料的应用非常广泛,特别是在航空航天、汽车、建筑等领域。
在航空航天领域,夹层结构复合材料被广泛应用于飞机机身、机翼、尾翼等部件中,以提高飞机的强度和刚度,同时减轻重量,提高燃油效率。
在汽车领域,夹层结构复合材料被应用于车身、底盘等部件中,以提高汽车的安全性能和燃油效率。
在建筑领域,夹层结构复合材料被应用于建筑外墙、屋顶等部件中,以提高建筑的抗风、抗震性能,同时减轻建筑重量,降低建筑成本。
夹层结构复合材料的设计原理是通过选择不同的材料,以达到优化材料性能的目的。
例如,在航空航天领域,夹层结构复合材料通常由碳纤维和泡沫塑料组成,碳纤维提供高强度和高刚度,泡沫塑料提供轻质和吸能性能。
在汽车领域,夹层结构复合材料通常由玻璃纤维和铝合金组成,玻璃纤维提供高强度和高刚度,铝合金提供轻质和耐腐蚀性能。
在建筑领域,夹层结构复合材料通常由钢板和聚氨酯泡沫组成,钢板提供高强度和高刚度,聚氨酯泡沫提供轻质和隔热性能。
夹层结构复合材料是一种非常重要的材料,它具有轻质、高强度、高刚度、吸能性能等优点,被广泛应用于航空航天、汽车、建筑等领域。
夹层结构复合材料的设计原理是通过选择不同的材料,以达到优化材料性能的目的。
未来,随着科技的不断发展,夹层结构复合材料将会得到更广泛的应用。
复合材料在汽车行业的应用研究在当今汽车工业的快速发展中,复合材料凭借其独特的性能优势,逐渐成为汽车制造领域的重要材料。
复合材料不仅能够减轻车辆重量、提高燃油效率,还能增强汽车的安全性和耐久性。
本文将对复合材料在汽车行业的应用进行深入研究。
一、复合材料的特点与分类复合材料是由两种或两种以上具有不同物理和化学性质的材料组合而成的一种多相固体材料。
其特点主要包括高强度、高刚度、低密度、良好的耐腐蚀性和抗疲劳性能等。
常见的复合材料在汽车行业的应用主要有纤维增强复合材料和聚合物基复合材料。
纤维增强复合材料如碳纤维增强复合材料(CFRP)和玻璃纤维增强复合材料(GFRP),具有优异的力学性能。
聚合物基复合材料则以其良好的成型性能和成本优势,在汽车内饰和非结构部件中得到广泛应用。
二、复合材料在汽车车身结构中的应用汽车车身是复合材料应用的重要领域之一。
采用复合材料制造车身结构,可以显著减轻车身重量,从而提高燃油经济性和降低尾气排放。
例如,一些高端汽车品牌已经开始使用碳纤维增强复合材料来制造车身框架和覆盖件。
碳纤维的高强度和低重量特性,使得汽车在保持结构强度的同时,大幅降低了整车重量。
此外,玻璃纤维增强复合材料也常用于车身部件的制造,如保险杠、车门和引擎盖等。
这些部件在碰撞时能够吸收能量,提高汽车的被动安全性。
三、复合材料在汽车动力系统中的应用在汽车动力系统中,复合材料也发挥着重要作用。
例如,复合材料可以用于制造发动机缸体、缸盖和曲轴等部件。
这些部件需要具备高强度、耐高温和良好的耐磨性,而复合材料的性能能够满足这些要求。
同时,复合材料还可以用于制造涡轮增压器叶片和排气管等部件。
由于其良好的耐热性和耐腐蚀性,能够延长部件的使用寿命,提高动力系统的可靠性。
四、复合材料在汽车内饰中的应用汽车内饰对于舒适性和美观性有着较高的要求,复合材料在这方面也有着出色的表现。
聚合物基复合材料可以制成各种形状和颜色的内饰部件,如仪表板、座椅靠背和中控台等。
夹层结构复合材料的应用
夹层结构复合材料广泛应用于各个领域,包括航空航天、汽车、船舶、建筑、体育用品等。
在航空航天领域,夹层结构复合材料被广泛应用于飞机机身、机翼、尾翼等部件上,以提高飞机的强度、刚度和降低重量。
复合材料具有高强度和优秀的抗腐蚀性能,能够满足航空航天领域对材料的高要求。
在汽车领域,夹层结构复合材料被用于汽车车身和结构件中,以提高汽车的强度和安全性能,减少燃料消耗和碳排放。
复合材料具有高比强度和高比刚度,可以减轻汽车的自重,提高燃油利用率。
在船舶领域,夹层结构复合材料被应用于船体、桅杆、舵柄等部件中,以提高船舶的强度和耐久性。
复合材料具有良好的抗海水腐蚀性能和防霉性能,能够延长船舶的使用寿命。
在建筑领域,夹层结构复合材料被用于建筑的外墙、屋顶和构件中,以提高建筑的防火性能、抗地震性能和节能性能。
复合材料具有低导热性能和优异的耐磨性能,能够减少建筑的能耗。
在体育用品领域,夹层结构复合材料被应用于运动器材如高尔夫球杆、网球拍、滑雪板等中,以提高器材的强度、刚度和耐用性。
复合材料具有优秀的振动吸收性能和抗冲击性能,能够提供更好的运动体验。
总体而言,夹层结构复合材料在各个领域中都有广泛应用,通过其独特的性能和优势,为各行业带来了许多创新和发展机会。
复合材料夹层结构复合材料夹层结构的主要组成部分是纤维增强复合材料和基体材料。
纤维增强复合材料是指将纤维与基体材料相结合,形成具有特定性能和性质的材料。
常见的纤维包括碳纤维、玻璃纤维、聚合物纤维等,而基体材料则常常是树脂基材料。
夹层结构的设计要根据具体的应用需求来确定,一般包括夹层材料的选择、厚度的确定和夹层界面的处理。
在选择材料时,要综合考虑夹层的强度、刚度、耐热性、耐腐蚀性等性能。
对于不同的应用领域,要针对其特定环境和工况来选择夹层材料,以确保结构的可靠性和稳定性。
夹层结构的优势主要有以下几个方面。
首先,夹层结构能够结合不同材料的优点,提供更好的力学性能。
例如,纤维增强复合材料具有高强度、高刚度和低密度的特点,而基体材料则能提供耐磨损、耐腐蚀等特性。
其次,夹层结构可以提高整体结构的韧性和抗疲劳性能,减少开裂和断裂的风险。
此外,通过选择不同的夹层材料和界面处理方法,夹层结构还可以具有防火、隔热、隔音等功能,满足不同应用领域的要求。
然而,夹层结构在实际应用中也存在一些挑战和问题。
首先,夹层结构的复杂性增加了制造难度和成本。
其次,夹层结构的失效机制和破坏行为也较难预测和分析,对设计和维护提出了较高的要求。
此外,夹层结构的性能与结构参数之间存在一定的相互影响,需要通过研究和实验验证来进行优化和改进。
综上所述,复合材料夹层结构作为一种具有重要应用前景的结构形式,在不同领域和行业中发挥着重要的作用。
随着不断的研究和发展,夹层结构的性能和可靠性将会得到进一步提升,为实现更高效、更可靠的结构设计和应用提供了新的可能性。
高分子复合材料的应用场景随着科技的不断进步,高分子复合材料在各个领域得到了广泛的应用。
它具有轻质、高强度、耐腐蚀等优点,使得它成为了替代传统材料的理想选择。
下面将以人类的视角,介绍高分子复合材料在不同领域的应用场景。
1. 轻量化汽车制造高分子复合材料在汽车制造领域得到了广泛应用。
与传统金属材料相比,高分子复合材料具有更轻的重量和更高的强度,能够减轻汽车的整体重量。
这不仅能够提升汽车的燃油效率,减少尾气排放,还能提高汽车的安全性能。
高分子复合材料在汽车车身、车门、座椅等部件上的应用,使得汽车更加节能环保,同时保证了车辆的舒适性和安全性。
2. 航空航天领域航空航天领域对材料的要求非常高,高分子复合材料凭借其良好的物理性能和化学性能,在航空航天领域得到了广泛的应用。
例如,高分子复合材料可以用于制造飞机机身、翼面、螺旋桨等部件,能够大幅度减轻飞机的重量,提高燃油效率,同时还能提高飞机的强度和耐久性。
此外,高分子复合材料还可以用于制造航天器的外壳和热防护材料,能够承受极端的温度和压力,保护航天器的安全。
3. 建筑领域高分子复合材料在建筑领域的应用也越来越广泛。
在地震频发的地区,高分子复合材料可以用于制造抗震支撑结构,提高建筑物的抗震能力。
此外,高分子复合材料还可以用于制造外墙保温材料,能够有效隔热保温,提高建筑物的能源利用效率。
高分子复合材料还可以用于制造建筑物的屋顶、地板等部件,具有轻质、强度高的特点,提高了建筑物的整体质量。
4. 医疗器械领域高分子复合材料在医疗器械领域的应用也非常广泛。
例如,高分子复合材料可以用于制造人工关节、骨修复材料等,具有良好的生物相容性和机械性能,能够有效替代传统的金属材料。
高分子复合材料还可以用于制造医用导管、缝线等,具有良好的柔韧性和耐腐蚀性,能够提高手术的安全性和舒适性。
高分子复合材料在汽车制造、航空航天、建筑和医疗器械等领域都有广泛的应用。
它的轻质、高强度、耐腐蚀等优点使得它成为了替代传统材料的理想选择。
复合材料在建筑结构中的应用分析在当今的建筑领域,复合材料正逐渐崭露头角,凭借其独特的性能优势,为建筑结构带来了创新和变革。
复合材料由两种或两种以上具有不同物理和化学性质的材料组成,通过特定的工艺结合在一起,形成一种性能优于单一材料的新型材料。
复合材料在建筑结构中的应用具有诸多显著优势。
首先,它们具有出色的强度重量比。
相较于传统的建筑材料如钢材和混凝土,复合材料在提供同等强度的情况下,重量往往更轻。
这对于高层建筑和大跨度结构来说意义重大,可以减轻结构自身的重量,降低基础的承载要求,从而节省建筑成本。
其次,复合材料具有良好的耐腐蚀性。
在恶劣的环境条件下,如海边、化工厂等,传统材料容易受到腐蚀而影响结构的安全性和耐久性。
而复合材料能够抵抗化学侵蚀,延长建筑结构的使用寿命,减少维护和修复的费用。
再者,复合材料具有可设计性强的特点。
通过调整材料的组成、纤维的排列方向和层数等,可以根据具体的建筑需求定制出具有特定性能的复合材料。
例如,在需要承受拉伸应力的部位,可以增加纤维的含量和方向,以提高材料的抗拉强度。
在建筑结构中,常见的复合材料包括纤维增强复合材料(FRP)和夹层复合材料。
纤维增强复合材料(FRP)主要由纤维和树脂基体组成。
纤维通常采用玻璃纤维、碳纤维或芳纶纤维等,而树脂基体则有聚酯树脂、环氧树脂等。
FRP 具有高强度、高模量和轻质的特点,被广泛应用于建筑结构的加固和新建项目中。
在加固方面,FRP 可以用于加固混凝土柱、梁和板等构件。
通过在构件表面粘贴 FRP 片材或布材,可以显著提高构件的承载能力和抗震性能。
例如,对于受损的混凝土柱,可以在其四周包裹碳纤维布,增加柱的抗压能力和延性。
在新建项目中,FRP 也有出色的表现。
比如,FRP 筋可以替代传统的钢筋用于混凝土结构中。
FRP 筋具有非磁性、耐腐蚀性强等优点,适用于特殊环境下的建筑,如磁共振成像室、海洋平台等。
此外,FRP 还可以用于制造桥梁的箱梁、拉索等部件,提高桥梁的跨越能力和耐久性。
复合材料泡沫夹层结构在汽车外饰中的应用和发展作者:赢创德固赛范海涛汽车外饰目前的材料体系汽车外饰件,即汽车外部的功能性或装饰性部件,主要包括保险杠、翼子板、车身裙板、外侧围、进气道、车顶盖、车门、散热器格栅、发动机罩、扰流板、防擦条、后门拉手和脚踏板等。
由于其所处的位置(外部)和具有的功能(防撞等),这些部件所用材料要求具有较高的强度、韧性、耐环境条件的性能及抗冲击性能。
随着汽车工业和材料工业技术水平的不断提高,汽车外饰材料已逐渐走向多元化。
除了普通钢材以外,高强度钢、铝镁合金、工程塑料和各种复合材料也正得到越来越多的应用。
其中,复合材料以其质量轻、可设计性好和抗腐蚀等优点日益得到广泛应用。
图1 夹层结构的概念一般,选用汽车外饰材料的决定因素包括:材料成本、生产率、加工难度、设计方法的成熟性以及汽车重量等。
根据汽车类型的不同,所用复合材料种类也不尽相同。
对于普通轿车而言,成本和生产率是着重考虑的因素。
因此,除了金属材料外,目前此类汽车最常用的外饰材料是热塑性塑料(有时加入短玻璃纤维增强)。
这类材料可以通过注射模塑工艺实现量产,具有较高的生产率。
与热塑性塑料相比,热固性塑料的应用较少。
一般,只有两种工艺能够实现热固性复合材料的中高规模的量产:即片状模塑成型(SMC)和树脂转移模塑成型(RTM)。
图2 ROHACELL在雷诺第三代和第四代Espace汽车上的应用运动型和概念验证型轿车通常对低重量、高强度/刚度的要求较高,一般不需要实现大规模量产(即对生产率要求不高),其面向的市场可承受较高的成本,因此此类汽车的外饰广泛采用了纤维增强复合材料。
而承担运输任务的卡车和拖车,其车体重量对运输成本有较大的影响,因此此类汽车也有采用复合材料(纤维增强复合材料、夹层板等)的实例。
表中列出了复合材料在某些车型外饰上的应用。
其中SMC为片状模塑成型,RTM为树脂转移模塑成型,RIM为反应注射成型,VI为真空树脂注入成型。
可以看出,纤维增强复合材料等已随着技术的成熟而得到广泛应用,应用部件包括车门、发动机罩、前格栅、翼子板、保险扛骨架、门柱护板、通风百叶窗和导流罩等近20种外饰件。
多材料混合结构体系复合材料在汽车外饰上的应用动力来自于汽车的轻量化趋势。
图3 ROHACELL71 IG在奔驰McLaren SLR汽车上的应用汽车的轻量化包括材料的轻量化和结构的轻量化。
材料的轻量化一般通过采用轻量化的金属和非金属材料来实现,主要包括高强度钢、铝镁合金、工程塑料以及各种复合材料。
目前,尽管钢铁材料仍在汽车材料中占据主导地位,但其比例逐年下降,而铝合金、镁合金、工程塑料和复合材料等轻量化材料的应用比例则逐年上升。
材料轻量化,尤其是基于复合材料的材料轻量化,已成为世界汽车材料技术发展的主要方向之一。
自20世纪60年代复合材料被引入汽车制造业后,其在提高汽车性能及减轻重量方面的优点已得到证实。
复合材料具有比强度高、比刚度高、性能可设计和易于整体成形等许多优异特性,将其用于汽车结构上,可凭借比常规金属结构低的重量达到同等的性能,这是其他材料无法或难以实现的。
美国先进汽车技术能源事务部曾与美国汽车研究委员会联手,从事有关汽车结构的先进材料、加工方法和装配技术的开发项目,其重点之一就是汽车结构用复合材料的开发。
20世纪80年代末,USCAR下设的汽车复合材料委员会也开展了此方面的研究。
最近德国Paderborn大学的O.Hahn等人提出“多材料轻量化结构”及“合适材料用在合适的部位”两个概念,指出了车身材料的发展趋势,即通过对多材料复合体系进行结构优化,在改进汽车性能的同时,显著减轻车身重量。
当前,材料的组合以高强度钢、铝、镁和复合材料为主。
目前汽车中使用的复合材料形式主要有:金属基复合材料、纤维层压板、编织复合材料以及夹层板等。
图4 ROHACELL在Lancer Evolution 8上的应用基于复合材料的多材料轻量化应用的一个典型实例是道奇SRT-10。
该型轿车采用了多种复合材料及多种制造工艺。
其翼子板采用了玻璃纤维增强复合材料(反应注塑成型工艺),发动机盖采用了玻璃纤维增强复合材料(SMC工艺),翼子板支撑面、挡风玻璃窗框和门板采用了碳纤维增强复合材料(SMC工艺)。
但是,基于复合材料的多材料轻量化尚未在汽车领域得到广泛应用,主要原因是:复合材料的加工工艺大多不能适应高产量的生产需求,因此需要在工艺上进行改进,以缩短目前复合材料部件的生产时间;复合材料加工工艺的自动化水平有待提高(特别是增强材料铺放的自动化),以降低制造成本、缩短生产周期及实现质量控制的自动化;原材料价格较高,影响了复合材料的大量应用;目前能够满足新的报废汽车法规的复合材料及工艺十分有限;汽车用复合材料的检测方法还不够完善;需要开发专门的汽车合成材料的设计程序,尽管所有汽车制造厂都已开发了用于金属零件的设计程序,但该程序一般不能为复合材料所用;还需要开发新的复合材料数字模拟,并要求这些模拟在3个方面具有判定能力,即典型材料性能的可用性、材料模拟的精确性以及要求的计算结果。
基于多材料结构体系的轻量化过程的最终目的是:在基于多材料多结构体系基础上,实现模块化制造和装配,其中包括复合材料夹层结构。
图5 ROHACELL在宝马X5上的应用PMI泡沫夹层结构的特点夹层结构是一种多材料混合结构体系,通常由上下面板及中间的芯材组成,如图1所示。
芯材一般采用轻质材料(通常为蜂窝或者泡沫),它既可承受剪切载荷,也能起到减震和吸收噪音的作用。
面板一般采用强度和刚度均较高的复合材料,可以是层压板,也可以是缠绕或编织成型的复合材料板。
夹层结构传递载荷的方式类似于工字梁,上下面板提供面内的刚度和强度,承受由弯矩或面内拉压引起的面内拉压应力和面内剪应力,芯材提供面板法向方向的刚度和强度,承受压应力和横向力产生的剪应力,并支持面板,使其不失去稳定性,并可较大幅度地减轻构件的重量。
并且,由于芯材较轻,面板较强,从而能同时达到重量轻和性能好的要求。
复合材料夹层结构可以采用聚甲基丙稀酰亚胺(简称“PMI”)泡沫作为芯材。
PMI泡沫最早由德国罗姆公司于1972年开发研制出来,经过30多年的发展,目前已形成了一系列的产品。
现在市场上的PMI泡沫产品主要是德国赢创德固赛公司(前身为罗姆公司)生产的ROHACELL。
PMI泡沫是通过固体发泡工艺制作而成的,其孔隙基本一致,且为均匀的100%闭孔泡沫。
在相同密度条件下,PMI是已知泡沫材料中强度和刚度最高的泡沫材料之一。
PMI泡沫具有如下性能特点:不含氟里昂和卤素;易于机械加工,不需要特殊的机具;能够热成形,并保证100%闭孔泡沫,且具有各向同性;与各种树脂系统兼容(湿法和预浸料);具有较高的热变形温度、强度-重量比和耐疲劳性能;在加工过程中,具有很好的抗压缩蠕变性能,可以适用于包括中温环氧、高温环氧以及BMI树脂预浸料等的复合材料夹层结构共固化工艺。
该泡沫在高温下具有优异的耐蠕变性能,因而能够应用于需要高温固化的构件。
经适当的高温处理后,PMI泡沫能适应190℃的固化工艺并保持尺寸稳定性,适用于与环氧或BMI树脂共固化的夹层结构构件中。
PMI泡沫自身的优势结合复合材料层压板,就可以构成结构效率高、具有高比刚度和高比强度的复合材料夹层结构。
根据设计和工艺要求,通常可以采用的结构形式有PMI泡沫夹层结构板和PMI泡沫夹层结构加强筋。
应用实例近年来,ROHACELLPMI泡沫已在在汽车外饰件上得到了应用。
1999年至2001年,雷诺汽车公司采用RTM工艺,先后成功地在Espace第三代汽车的发动机罩和第四代汽车的车顶加强筋部位使用了ROHACELL 51 IG,并采用了玻璃纤维进行增强,如图2所示。
此外,奔驰McLaren SLR汽车的车门槛板和后保险杠底杆等部件则使用了ROHACELL 71 IG,如图3所示。
在Lancer Evolution 8中,ROHACELL 51 IG被用作扰流板的夹层结构芯材,它比原来的ABS部件减轻了2kg,如图4所示。
在宝马X5中,通过热压罐工艺固化成型的以ROHACELL 为芯材的夹层板发动机盖,其重量仅为金属制发动机盖的1/4左右,如图5所示。
2006年,赢创(中国)投资有限公司联合上海同济大学一起,就“采用复合材料设计和制造大型汽车覆盖件”进行了一系列的探索和研究。
其中,PMI泡沫夹心帽筋条结构的复合材料发动机盖和后背门部件已被安装在上海燃料电池汽车动力系统有限公司的新一代燃料电池汽车上。
与传统的金属结构部件相比,二者分别减重37.7%和34.6%。
在其开发过程中,通过采用最新的夹层结构帽筋条设计,以及树脂转移模塑工艺,实现了一步整体成型。
该项目的成功使得汽车复合材料的概念不再是单纯的短纤维增强复合材料(例如SMC、GMT),而是将纤维增强复合材料、设计与制造工艺相结合,并与其他材料相结合,实现了最终的多材料结构方案。
由上述实例可以看出,采用ROHACELL 泡沫芯材的夹层结构能大大减少汽车外饰件的重量。
总结将PMI泡沫与其他材料及加工工艺结合,有利于汽车的轻量化发展。
随着材料轻量化技术,包括设计、生产工艺、装配、连接及材料性能等的不断发展和成熟,未来基于复合材料的多材料轻量化结构是汽车轻量化及汽车外饰件材料的发展趋势。
通过不同材料、结构和制造工艺的相互结合和补充,可以简单方便地实现设计和制造的模块化,以使所用材料和零件的功能达到最佳的组合。
目前,汽车的轻量化技术还处于不成熟阶段,在未来将有很大的发展空间。