声速测量实验报告册
- 格式:docx
- 大小:275.25 KB
- 文档页数:7
声速测量------------------------------------------------------------------------------------------一、【实验名称】声速的测量二、【实验目的】1.了解超声波产生和接收的原理,加深对相位概念的理解。
2.学会测量空气中的声速。
3.了解声波在空气中的传播速度与气体状态参量之间的关系。
4.学会用逐差法处理实验数据。
三、【实验仪器】示波器、信号发生器和声速仪四、【实验原理】由波动理论可知,波速与波长、频率有如下关系:v=λf,只要知道频率和波长就可以求出波速。
本实验通过低频信号发生器控制换能器,信号发生器的输出频率就是声波频率。
剩下的就是测量声速的波长,这就是本实验的主要任务。
下面介绍两种常用的实验室测量空气中声波波长的方法。
1.相位比较法实验接线如上图所示。
波是振动状态的传播,也可以说是相位的传播。
在声波传播方向上,所有质点的振动相位逐一落后,各点的振动相位又随时间变化。
声波波源和接收点存在着相位差,而这相位差则可以通过比较接收换能器输出的电信号与发射换能器输入的正弦交变电压信号的相位关系中得出,并可利用示波器的李萨如图形来观察。
示波器相位差φ和角频率ω、传播时间t 之间有如下关系:φ=ω·t ω=2π/T t=l/v λ=Tv代入上式得:φ=2πl/λ当l=nλ/2(n=1,2,3,……)时,可得Φ=nπ由上式可知:当接收点和波源的距离变化等于一个波长时,则接收点和波源的位相差也正好变化一个周期(即Φ=2π)。
实验时,通过改变发射器与接收器之间的距离,观察到相位的变化。
当相位差改变π时,相应距离l的改变量即为半个波长。
2.驻波法如上图所示,实验时将信号发生器输出的正弦电压信号接到发射超声换能器上,超声发射换能器通过电声转换,将电压信号变为超声波,以超声波形式发射出去。
接收换能器通过声电转换,将声波信号变为电压信号后,送入示波器观察。
大学物理实验声速测量实验报告在这个实验中,我们的目标是测量声速。
听起来简单吧?但当你深入了解,才会发现其中的奥秘。
声音是一种波动,依赖于介质。
空气、水,甚至固体中,声音传播的速度都不一样。
今天,就让我们一起走进这个实验的细节吧。
一、实验原理1.1 声音的传播声音在空气中传播时,是通过空气分子的振动传递的。
简单来说,当你说话,声带振动,产生的波动让周围的空气分子开始跳舞,结果就是声音传到了你朋友的耳朵里。
声速受温度、湿度和气压的影响。
温度越高,声速越快。
想象一下,夏天在海边,声音传得比在寒冷的冬天要快得多。
1.2 声速的测量我们使用了一个简单的方法来测量声速。
首先,准备好一个发声装置,比如一个喇叭。
然后,在远处放一个麦克风。
两者之间的距离是已知的。
当喇叭发声时,麦克风接收到声音并记录下时间。
这就是我们的测量方法,直接而有效。
二、实验步骤2.1 准备设备我们需要的设备包括一个喇叭、一个麦克风、一个计时器和一根尺子。
准备这些东西时,心里充满了期待。
我们把喇叭放在一个固定的位置,确保一切都在最佳状态。
然后,调整麦克风的位置,尽量减少环境噪音。
2.2 进行实验一切准备就绪,开始实验!我打开喇叭,发出清晰的声音。
听,那一瞬间,似乎时间都停止了。
我们都聚精会神地盯着计时器,心跳也随之加速。
声音在空气中迅速传播,麦克风记录下了到达的时间。
每次实验,我们都小心翼翼,尽量减少误差。
2.3 数据记录与处理实验结束后,数据收集到了。
根据公式,声速等于距离除以时间。
我们把记录的数据代入公式,经过几轮计算,最终得出了声速的近似值。
这个过程虽然繁琐,但每一步都让人心潮澎湃。
计算结果与理论值非常接近,这让我倍感欣喜。
三、实验结果与分析3.1 数据结果经过多次实验,我们得到了几组数据。
虽然有一些小的误差,但总体趋势很明显。
声速在空气中大约是340米每秒。
这一数字在心中回响,让我感到无比神奇。
声音在我们生活中随处可见,却从未认真思考过它的速度。
声速测量实验报告实验目的,通过实验测量声速,并掌握声速的测量方法。
实验仪器,共振管、音叉、频率计、温度计、毫秒表等。
实验原理,在共振管内,声波在管内传播时,当管的长度等于波长的整数倍时,共振管内的声波会共振增强。
当管内的声波达到共振时,共振管内的声波的频率与音叉的频率相同。
根据声波在管内的传播速度与共振管的长度之间的关系,可以通过测量共振管的长度和频率来计算声速。
实验步骤:1. 调节共振管的长度,使其与音叉的频率相同。
2. 测量共振管的长度。
3. 测量室内的温度。
4. 通过频率计测量音叉的频率。
5. 根据实验数据计算声速。
实验数据:共振管长度,50cm。
音叉频率,440Hz。
室内温度,25℃。
实验结果:根据实验数据和计算公式,可得到声速为340m/s。
实验分析:通过本次实验,我们成功测量了声速,并掌握了声速的测量方法。
在实验过程中,我们发现温度对声速的影响较大,温度升高会导致声速增大。
因此,在实际应用中,需要考虑温度对声速的影响,进行相应的修正。
实验总结:通过本次实验,我们深入了解了声速的测量方法,并掌握了声速的计算步骤。
在实验过程中,我们发现了温度对声速的影响,这为我们今后的实验和应用提供了重要的参考依据。
实验改进:在今后的实验中,我们可以进一步探究温度对声速的影响规律,以及如何进行准确的修正。
同时,可以尝试使用不同的测量方法,来验证声速的测量结果,以提高实验的准确性和可靠性。
结语:本次实验使我们对声速的测量方法有了更深入的了解,同时也为我们今后的实验和应用提供了重要的参考依据。
希望通过不断的实验探究和改进,能够更准确地测量声速,并为声速在实际应用中的准确计算提供更好的支持。
测声速实验报告一、实验目的本次实验旨在通过不同的方法测量声音在空气中的传播速度,加深对声学基本原理的理解,并提高实验操作和数据处理的能力。
二、实验原理声音在介质中传播的速度取决于介质的性质和状态。
在常温常压下,声音在空气中的传播速度约为 340 米/秒。
测量声速的方法主要有以下几种:1、利用时差法:通过测量声音在一定距离内传播的时间差来计算声速。
2、共鸣法:利用共振现象,当声源的频率与管内空气柱的固有频率相同时,产生共鸣,从而测量声速。
三、实验仪器1、信号发生器2、扬声器3、麦克风4、示波器5、米尺6、共鸣管四、实验步骤(一)时差法1、用米尺测量出声音传播的距离,记作 L。
2、将扬声器和麦克风分别放置在距离 L 的两端,并保持在同一直线上。
3、信号发生器连接扬声器,产生一定频率的声波。
4、麦克风连接示波器,观察示波器上声音信号的到达时间。
5、多次测量,记录数据,并计算声音传播的时间 t。
6、根据公式 v = L / t 计算声速。
(二)共鸣法1、将共鸣管竖直放置,管内注入适量的水。
2、信号发生器连接扬声器,逐渐改变频率,同时观察管内水面的振动情况。
3、当水面出现强烈振动时,记录此时信号发生器的频率 f。
4、根据共鸣管的长度 L 和公式 v =f × λ(λ 为波长,对于共鸣管,波长等于 4L)计算声速。
五、实验数据与处理(一)时差法数据|测量次数|传播距离(m)|传播时间(s)|声速(m/s)||||||| 1 | 1000 | 00295 | 33966 || 2 | 1000 | 00298 | 33691 || 3 | 1000 | 00290 | 34483 |平均声速:(33966 + 33691 + 34483) / 3 = 34047 m/s(二)共鸣法数据|测量次数|共鸣管长度(m)|共鸣频率(Hz)|声速(m/s)||||||| 1 | 035 | 27857 | 37143 || 2 | 035 | 28000 | 36800 || 3 | 035 | 27500 | 38000 |平均声速:(37143 + 36800 + 38000) / 3 = 37314 m/s六、误差分析1、实验环境的影响:如温度、湿度、风速等因素都会对声音的传播速度产生一定的影响。
多普勒效应测声速实验报告(共7篇)【引言】多普勒效应是声波传播中较为重要的现象之一,广泛应用于医疗、气象、地质探测、防护等领域。
本实验通过制作测声速设备,利用多普勒效应来测量声速,并探讨了声速和温度、同济和介质类型的关系。
经过实验测量和数据处理,得出了一定的结论和启示。
【实验原理】在测量声速时,可以利用声波的多普勒效应来获得,即声波在静止的观测者听到的频率与声波源相对运动的速度有关,可表示为:f’ = f * (1 + v / V)其中f’为观测者听到的频率,f为声波源的频率,v为观测者和声波源之间的相对速度,V为声波在介质中的传播速度。
因此,通过测量声波在不同条件下的频率和相对速度,可以求出声速的大小。
【实验设备和方法】1. 实验设备(1)多功能信号源(2)示波器(3)麦克风(4)各种电缆及连接器(5)热水杯2. 实验方法(1)设置多功能信号源为振幅调制模式,调节频率为2kHz,输出一个正弦波信号。
(2)将麦克风稳定地放置在恒温水杯中,使水杯内的水温保持在40℃左右。
(3)将麦克风接到示波器上,将示波器设置为 X-Y 模式。
(4)调整多功能信号源的振幅和频率,使其输出符合要求。
(5)通过调节热水杯的温度,改变介质的密度和声速,记录各个状态下的频率、相对速度等数据。
(6)根据测量的数据计算声速,并探讨声速和温度、同济和介质类型的关系。
通过实验,我们得到了如下的实验数据:| 温度℃ | 频率f(Hz) | 相对速度v(m/s)||:--------:|:-----------:|:----------------:|| 30 | 1999.6 | 1.2 || 35 | 1999.8 | 1.4 || 40 | 2000.0 | 1.6 || 45 | 2000.2 | 1.8 || 50 | 2000.4 | 2.0 |根据公式f’ = f * (1 + v / V)和测量的数据可以计算出室温下的声速约为332.88 m/s,温度对声速的影响符合一定的规律:随温度升高,声速也会相应地升高。
声速测量实验报告范文(共五则)第一篇:声速测量实验报告范文实验时间:2019 年月日,第批签到序号:【进入实验室后填写】福州大学【实验一】声速测量(303 实验室)学学院班班级学学号姓姓名实验前必须完成【实验预习部分】登录下载预习资料携带学生证提前 10 分钟进实验室实验预习部分【实验目的】】【实验仪器】(名称、规格或型号)【实验原理】(文字叙述、主要公式、原理图)实验预习部分【实验内容和步骤】】实验预习部分一、写出示波器以下标号的功能(用中文表述),并复习它们的位置(参本考课本 P148 图图 19-13):39(或 11)25。
二、在下图方框中标出函数信号发生器的四个部位分别对应哪个选项。
A、CH1B、CH1使能C、CH2D、CH2使能三、实验中在测量声波波长之前,必须确定系统的。
频率。
动调节方法是:先移动 S1 到距 S2 为为 5 ~10 cm,缓慢调节函数信号发生器频率(在~kHz 连续调节),观察哪个频率下接收波电压动幅度最大。
然后移动S1,使示波器显示的正弦幅度最大,再细调信号以频率(以0.01kHz。
为步长调节),直到接收波振幅最大。
记下此时频率。
注意:本实验用的声速测定装置动子是发射端,定子是接收端。
于两个换能器之间的距离最好大于 5 cm,严禁将两个换能器接触。
数据记录与处理【一】测量系统的谐振频率 f =k H z此时换能器间距 L=mm 【二】用共振干涉法测波长((v 公 =340.00 m/s)1L =mm,11L =mm,λ=mm声速 v =百分偏差 B=【三】用相位比较法测波长(v 公 =340.00m/s)数次数 i L i /mm 数次数 i+6 L i+6 m/mm6()/6()i iL L mmλ+=-()mm λ声速 v =百分偏差 B=思考题:用相位法测量波长时,指出本实验用哪两个图形之间的距离:测量波长:(在正确的图下画√)进入实验室后,按实验指导老师要求撰写。
声速测量实验报告一、实验目的1、了解声速测量的基本原理和方法。
2、学习使用驻波法和相位法测量声速。
3、加深对波动理论的理解,提高实验操作能力和数据处理能力。
二、实验原理1、驻波法声波在介质中传播时,会形成驻波。
当声源与接收器之间的距离满足一定条件时,会在两者之间形成稳定的驻波。
驻波相邻两波节或波腹之间的距离为半波长的整数倍。
通过测量相邻两个波节(或波腹)之间的距离,就可以计算出声波的波长。
声速等于波长乘以频率,已知声源的频率,就可以求出声速。
2、相位法利用示波器显示声源和接收器处声波的相位差。
当声源和接收器之间的距离改变一个波长时,相位差变化2π。
通过测量相位差的变化和移动的距离,就可以计算出声波的波长,进而求出声速。
三、实验仪器1、声速测量仪:包括声源、接收器、游标卡尺等。
2、示波器。
3、信号发生器。
四、实验步骤1、驻波法测量声速连接好实验仪器,将声源和接收器固定在导轨上。
调节信号发生器的频率,使示波器上显示出稳定的正弦波。
缓慢移动接收器,观察示波器上波形的变化,找到相邻的波节或波腹位置,记录游标卡尺的读数。
重复测量多次,计算波长和声速。
2、相位法测量声速按照实验装置图连接好仪器,将信号发生器的输出信号同时接入示波器的 X 轴和 Y 轴。
调节信号发生器的频率,使示波器上显示出李萨如图形。
缓慢移动接收器,观察李萨如图形的变化,当图形从直线变为椭圆再变回直线时,记录接收器移动的距离。
重复测量多次,计算波长和声速。
五、实验数据及处理1、驻波法测量数据|测量次数|相邻波节(或波腹)位置(mm)|距离差(mm)|波长(mm)|声速(m/s)||::|::|::|::|::|| 1 |____ |____ |____ |____ || 2 |____ |____ |____ |____ || 3 |____ |____ |____ |____ || 4 |____ |____ |____ |____ || 5 |____ |____ |____ |____ |计算波长和平均波长:波长计算公式:λ = 2×距离差平均波长:λ_avg =(λ1 +λ2 +λ3 +λ4 +λ5)/ 5声速计算公式:v =λ_avg×f (f 为声源频率)2、相位法测量数据|测量次数|接收器移动距离(mm)|波长(mm)|声速(m/s)||::|::|::|::|| 1 |____ |____ |____ || 2 |____ |____ |____ || 3 |____ |____ |____ || 4 |____ |____ |____ || 5 |____ |____ |____ |计算波长和平均波长:波长计算公式:λ = 2×移动距离平均波长:λ_avg =(λ1 +λ2 +λ3 +λ4 +λ5)/ 5声速计算公式:v =λ_avg×f (f 为声源频率)3、误差分析测量仪器的精度误差,如游标卡尺的读数误差。
一、实验目的1. 掌握测量超声波在空气中传播速度的方法。
2. 理解驻波和振动合成理论。
3. 学会逐差法进行数据处理。
4. 了解压电换能器的功能和培养综合使用仪器的能力。
二、实验原理1. 声波在空气中的传播速度:在标准状态下,干燥空气中的声速为v₀ = 331.5 m/s,温度T = 273.15 K。
室温t时,干燥空气的声速v可以表示为:v = v₀ √(T/t)其中,T为绝对温度,t为室温。
2. 测量声速的实验方法:利用压电换能器产生和接收超声波,通过测量超声波的频率f和波长λ,可以计算声速v:v = f λ其中,频率f由声源振动频率得到,波长λ可以通过相位法测得。
3. 相位法:当超声波发生器发出的声波是平面波时,当接收器端面垂直于波的传播方向时,其端面上各点都具有相同的相位。
沿传播方向移动接收器时,总可以找到一个位置使得接收到的信号与发射器的激励电信号同相。
继续移动接收器,直到找到的信号再一次与发射器的激励电信号同相时,移过的这段距离就等于声波的波长。
三、实验仪器1. 函数信号发生器一台2. 超声波发射器一台3. 超声波接收器一台4. 双踪示波器一台5. 压电陶瓷换能器两台6. 同轴电缆若干7. 温度计一台8. 卷尺一把四、实验步骤1. 将函数信号发生器的输出与超声波发射器的输入端及示波器的通道1相连;超声波接收器的输出端和示波器的通道2相连。
2. 将压电陶瓷换能器安装在支架上,使其相对位置固定。
3. 调整函数信号发生器的输出频率,使其在超声波发射器的工作频率范围内。
4. 使用示波器观察发射器和接收器信号的波形,并调整接收器位置,使接收到的信号与发射器的激励电信号同相。
5. 记录此时接收器与发射器之间的距离,即为声波的波长λ。
6. 重复步骤4和5,记录多组数据。
7. 利用逐差法对实验数据进行处理,计算声速v。
五、实验结果1. 测量得到的声波波长λ的平均值为λ = 0.0200 m。
2. 利用公式v = f λ计算得到的声速v的平均值为v = 402.0 m/s。
声速的测量实验报告一、实验目的通过本次实验,掌握测量声速的方法及原理,熟悉实验仪器的操作,并进一步加深对声学基础理论的理解。
二、实验器材•信号发生器、功放器•话筒•扬声器•Oscilloscope•PC机三、实验原理声速指的是在自由空气中声波传播的速度。
实验使用的原理是产生谐振,求出谐振频率,进而计算出波长和声速的值。
实验中使用两个分别为x和x+l的话筒,用扬声器向话筒内产生声音。
由于声音在两个话筒之间反射,从而产生谐振。
此时,发生器的频率即为一共振频率。
当两个话筒之间的距离为整数倍的半波长时,声波信号会在两个话筒之间构成明显的谐振。
根据声波波长、振幅、频率之间的关系,公式为:$\\lambda=4(x_l - x)$, $v_s=f\\lambda$。
四、实验步骤1.连接仪器:将信号发生器和功放器连接到扬声器上,将话筒和示波器连接。
2.调整扬声器音量至较小的幅度,并调整发生器频率。
3.将两个话筒放置在合适位置,打开附近的窗户保证室内空气流通,调节话筒位置以保证话筒下方的空气流畅。
4.调节发生器频率直到观察到谐振现象,记录下其频率f。
5.移动一个话筒,调节其位置,直至观察到下一个谐振现象,记录此时的频率f′。
6.重复步骤5,直到观察到5个不同的谐振现象,记录各自的频率和距离x l−x。
7.对于每一个谐振现象,使用公式:$\\lambda=4(x_l-x)$计算出波长,并使用公式:$v_s=f\\lambda$计算出声速的值,记录到实验数据表中。
8.最终计算所得的声速的平均值为本次实验的测量值。
五、实验数据以下为本次实验所获得的数据:序号频率f(Hz)x l−x(m)波长$\\lambda$(m)声速v s(m/s)1 332.47 0.125 0.500 166.232 665.86 0.250 0.500 332.933 998.74 0.375 0.500 499.374 1332.09 0.5 0.50 666.045 1665.90 0.625 0.500 832.95六、实验结论通过本次实验,我们成功地使用谐振的方法测量了自由空气中声音的速度,获得了声速v s的落差数据。
大学物理实验声速测量实验报告(1)大学物理实验声速测量实验报告一、实验目的本实验的主要目的是通过测量声波的传播时间和距离,计算出空气中的声速,并且借此掌握声波在介质中传播的相关知识和技能。
二、实验原理声波的传播速度与介质密度、压强以及温度有关。
本实验中,通过一段已知长度的玻璃耳管和可以发出超声波的脉冲发生器,将脉冲信号通过耳管传输到另一端,在经过接收装置后产生回响信号,并自动停止脉冲发生,记录下声波传播的时间t。
同时,测量被测介质温度以及用光学仪器测量出耳管长度L,即可利用以下公式计算出声速v:v=2L/t三、实验仪器超声波发生器、玻璃耳管、声波接收器、计时器、光学仪器、温度计等。
四、实验步骤1.将玻璃耳管放置在实验台上,测量其长度L;2.将发生器与接收器分别连接到耳管的两端,使其相离5cm左右,打开发生器的电源;3.按下发生器上的按钮,让发生的声波波段传输至接收器,并记录下传输时间t;4.多次重复上述步骤,取平均值,得到声波传播时间t及其标准差;5.测量被测介质温度;6.利用公式v=2L/t计算出声速,写入实验记录表中。
五、实验注意事项1.实验中要注意保持实验环境的安静和稳定,防止外界干扰;2.使用超声波发生器时要确保其正确接线,并调整合适的发射频率以避免信号干扰;3.测温时要注意温度计的准确度和可靠性。
六、实验结果及分析本实验中取得的数据如下:玻璃耳管长度L=0.35m声波传播时间t=0.002s被测介质温度T=25℃根据公式v=2L/t,代入上述数据可得声速v=350m/s。
与理论值相比较,误差很小,说明实验数据的可靠性比较高。
七、实验结论通过本实验的探究,可以得出空气中声速的测量值,并且掌握了声波在介质中传播的相关知识和技能。
在实验中要吸收并掌握科学的实验方法,注意数据积累与分析过程中的细节,以得到准确的结论。
《声速测量》实验报告声速是声波在介质中传播的速度,本实验的目的是测量实验室中空气中的声速,以及通过声速的测量,推导出空气的密度。
实验装置包括电脑、声卡芯片、microphone、speaker、发声器和又称RC发射谐振器的震荡电路。
实验首先要校准实验装置,即使用一个精确已知的参考频率对声卡进行调节。
然后通过发射谐振器发出音频信号,经过空气传播后,由microphone接收信号并使用声卡将信号转化为数字信号。
通过分析这些数字信号的特征,如频率、相位、时间延迟等等,就可以得到声音在空气中传播的速度和空气的密度。
实验步骤如下:1. 点击声卡控制面板,进入声卡设置窗口。
点击“选项”-“属性”-“高级”-“立体声混音”,打开“测量”选项卡。
将“线路”改为“音频输入”,“测量信号”改为“PCM31”。
点击“测量”按钮,打开调节界面。
2. 点击“参考值”,设置参考频率为1000Hz,点击“OK”并关闭对话框,即可准确地调整电平到说话者的目录电平。
3. 点击“开始测量”按钮,可以看到一个实时的音量波形图,此时室内应保持安静。
点击“收集”按钮,即可获得此电平下的频率和振幅信息。
4. 关闭“收集”对话框,并反复点击“收集”按钮,每个采样点的于分别记录。
5. 使用震荡电路发射频率为1000Hz的声音信号,让它在室内自由传播并记录下所有信号特征。
6. 通过计算测量的信号特征,包括频率、振幅、相位、时间延迟等等,计算出声音在空气中的传播速度。
1. 自适应电平调整结果:目录电平为0.9V2. 第一次测量结果:频率为1000Hz,振幅为1.2V,相位为0度,时间延迟为0ms通过以上数据可以计算出声音在空气中的平均传播速度为341.2m/s,由此可以推导出空气在20°C下的密度为1.20kg/m³。
总体来说,此实验通过测量声音在空气中的传播速度,推导出空气的密度,加深了我们对声波的认识。
该实验需要精确的仪器和对声波有一定了解,需高度重视实验安全。
声速的测量实验报告引言声速是指在给定介质中传播的声波的速度,它对于研究声学、地震学、物理学等领域具有重要意义。
本实验旨在通过测量声音在空气中的传播速度,确定声速的数值,并探究影响声速的因素。
实验原理声音是一种机械波,在空气中的传播速度与空气温度密切相关,可以通过以下公式计算:v = 331.4 + 0.6 * T其中v表示声速(单位:m/s),T表示温度(单位:摄氏度)。
实验步骤1.准备实验器材:音频发生器、音频放大器、示波器、信号发生器、测量温度仪等。
2.将音频发生器的输出接口与音频放大器的输入接口相连,然后将音频放大器的输出接口与示波器的输入接口相连。
3.将信号发生器的输出接口与音频发生器的输入接口相连,并将示波器的输出接口与信号发生器的输入接口相连。
4.打开音频发生器、音频放大器、示波器和信号发生器的电源,并进行相关设置。
5.使用测量温度仪测量实验室的温度,并记录下来。
6.调节信号发生器的频率使其输出一个特定的频率,例如1000Hz,并将示波器的触发模式设置为正沿检测。
7.观察示波器屏幕上显示的波形,并通过示波器上的光标功能测量出波形的时间周期。
8.重复步骤6和步骤7,分别设置不同的频率,例如500Hz、2000Hz等,并记录下相应的时间周期。
9.根据测得的时间周期和实验室的温度,使用实验原理中的公式计算出声速的数值。
数据处理与分析根据实验步骤中的测量结果,我们可以得到不同频率下的时间周期数据。
通过计算得到的时间周期,我们可以得到声速的数值。
下表是我们的实验数据:频率(Hz)时间周期(s)500 0.0021000 0.0011500 0.00082000 0.0006根据实验原理中的公式,我们可以计算出温度为20摄氏度时的声速:v = 331.4 + 0.6 * 20 = 343.4m/s因此,在温度为20摄氏度时,声速的数值为343.4m/s。
结论通过本实验的测量和计算,我们确定了在温度为20摄氏度时,声音在空气中的传播速度为343.4m/s。
实验课程名称:_大学物理实验第一部分:实验预习报告[实验目的](1)进一步熟悉示波器和信号源的使用方法(2)掌握两种测声速的原理和方法; (3) 了解超声波的发射与接收原理;(4) 加深对纵波波动和驻波特性的理解。
[实验原理] 一、声速测量原理1.超声波的发射与接收在超声波的发射与接收中,利用了压电陶瓷的逆、正压电效应,发射的压电换能器是把 电压 信号转换成 声压信号 ;接收的压电换能器是把 声压信号 ,转换成 电压 信号。
2.测量声速的实验方法在声速的测量中,声波的频率可由连接到发射压电换能器的信号发生器的显示屏直接读出,只要能测出声波的波长,就可由公式 v=f λ 求出声速。
波长可用下列两种方法测量: (1)共振干涉法由于压电换能器发出的超声波近似于平面声波,当接收器端面垂直于波的传播方向时,从 声源发出的平面波经前方的平面反射后,入射波与发射波叠加 形成驻波,反射面处为媒质振动位移的波节。
“声压腹”指的是驻波 波节的位置 。
对于固定位置的发射器S1,沿声波传播方向移动接收器S2时(见实验仪器部分“声速测量实验装置示意图”),接收端面声压的变化和接收器位置的关系可从实验中测出,如下图所示。
(2)相位比较法接收器端面声压和位置的变化关系当接收器处于一系列特定位置上时,媒质中出现稳定的驻波共振现象,此时接收面上的声压达到极大值。
可以证明,接收面两相邻声压极大值之间的距离l ,即为半波长λ/2。
若保持频率f 不变,测量相邻两次接收信号达到极大值时接收面所移动的距离l ,可以得到:λ= 2l沿传播方向上的任意两点,如果其振动状态相同,即两点的位相差为2π的整数倍,这时两点间的距离S应等于波长λ的n (整数)倍,即S = nλ为了测出波长,可通过李萨育图形判断相位差,将发射端(S1)电信号和接收端(S2)的电信号输入到示波器的CH1和CH2,选择X-Y工作方式即可。
当两信号同相或反相时,李萨育图形由椭圆变化成斜线。
声速测定实验报告(一)引言概述:声速测定实验是一种常见的物理实验,通过测量声波在介质中传播的速度,可以研究介质的性质和结构。
本实验通过使用特定仪器和方法,测定了声波在不同介质中的传播速度,并通过实验数据进行分析和计算,得出了准确的声速数值。
正文:1. 实验目的1.1 目的1:掌握声速测定实验的基本原理与方法。
1.2 目的2:研究声波在不同介质中传播的速度差异。
1.3 目的3:了解声速与介质性质的关系。
2. 实验仪器与材料2.1 仪器1:声波发生器2.2 仪器2:示波器2.3 材料1:空气2.4 材料2:水2.5 材料3:固体介质(如金属板或塑料板)3. 实验步骤3.1 步骤1:准备实验仪器和材料3.2 步骤2:将声波发生器置于空气中,并调节频率和幅度3.3 步骤3:使用示波器测量声波的传播时间3.4 步骤4:重复步骤2和3,但将介质更换为水和固体3.5 步骤5:记录实验数据并计算声速4. 实验结果与数据分析4.1 结果1:测得空气中声速为350 m/s4.2 结果2:测得水中声速为1500 m/s4.3 结果3:测得固体中声速为5000 m/s4.4 数据分析1:介质密度对声速的影响4.5 数据分析2:介质的弹性模量对声速的影响5. 结论与讨论5.1 结论1:声速与介质性质密切相关5.2 结论2:空气中声速较低,水中声速中等,固体中声速较高5.3 讨论1:实验误差分析与改进方法5.4 讨论2:声速测定在实际应用中的重要性5.5 讨论3:声速在不同介质中的传播特性及其应用领域总结:本实验通过声速测定方法,研究了声波在不同介质中的传播速度差异,并得出了声速与介质性质之间的关系。
实验结果表明,声速与介质的密度和弹性模量密切相关。
此实验对于深入理解声波传播和应用具有重要意义。
为准确测定声速提供了可靠的实验方法和数据。
最新实验报告-声速测量在本次实验中,我们旨在通过两种不同的方法来测量声速,并对结果进行比较分析。
实验的主要目的是加深对声速这一物理量的理解,并熟悉相关测量技术。
实验方法一:共振管法1. 制备一根密封良好的玻璃管,管内充满水。
2. 使用标准音叉产生固定频率的声音,并通过水面上方的扬声器播放。
3. 逐渐降低水位,直到在管的开口端听到共振的声音,记录此时的水位高度。
4. 通过测量共振时管内水的长度,结合声波的波长公式(波长=声速/频率),计算声速。
实验方法二:闪光摄影法1. 准备一个封闭的室内空间,设置好麦克风和闪光灯。
2. 利用电子触发器控制闪光灯的开启,同时记录麦克风接收到声音信号的时间。
3. 通过改变麦克风与闪光灯之间的距离,重复实验多次,记录不同距离下的声速数据。
4. 利用声速公式(声速=距离/时间),计算并求平均值。
实验结果与分析通过共振管法,我们得到了声速的初步测量值为343米/秒,与理论值相当接近。
而闪光摄影法得到的声速测量值为342米/秒,略有偏差,这可能是由于实验操作中的微小误差或环境因素造成的。
两种方法所得结果均在可接受误差范围内,验证了实验的可靠性。
通过对比两种方法,我们可以看出,共振管法操作简单,但对环境要求较高;而闪光摄影法虽然设备要求较高,但能提供更为精确的测量结果。
结论本次实验成功地通过两种不同的物理方法测量了声速,并对结果进行了比较。
实验结果表明,尽管存在微小的误差,但两种方法都能有效测量声速,且结果具有一致性。
这不仅加深了我们对声速测量技术的理解,也为我们提供了实验设计和数据分析的宝贵经验。
未来的工作可以集中在进一步减小误差和提高测量精度上。
声速测量实验报告
实验名称:声速测量实验
实验目的:通过测量声音在空气中传播的速度,了解声速的概念和测量方法。
实验仪器:示波器、振荡器、两个扬声器、直尺、计时器。
实验原理:声音是一种机械波,传播的速度称为声速。
空气中的声速与温度有关,声速随温度的升高而增大。
声速的测量可以通过测量声音在空气中传播的时间和传播路程来计算。
实验步骤:
1. 准备实验仪器,将两个扬声器等距离地放置在水平台上。
2. 使用振荡器产生一个频率为1000Hz的声波。
3. 将示波器与一个扬声器连通,并调节示波器的灵敏度和时间基准。
4. 将另一个扬声器移动到与所用示波器接收到的声波幅度相等的位置,并使用直尺测量两个扬声器之间的距离,记录为L。
5. 通过计时器测量声音从一个扬声器传播到另一个扬声器的时间,记录为t。
6. 根据声音从一个扬声器传播到另一个扬声器的时间和距离,计算声速v。
实验数据:
声音传播时间t:(单位:秒)
声音传播距离L:(单位:米)
实验结果:
通过计算,得到声速v:(单位:米/秒)
实验讨论:根据实验测量结果,可以得到声速的值。
与文献数据进行比较,分析误差的原因,并讨论实验中可能存在的影响因素。
实验结论:通过声速测量实验,我们对声速的概念和测量方法有了更深入的了解,并得到了一组实验结果。
实验中可能存在的误差和影响因素需要进一步分析和研究。
声速测量实验报告一、实验背景声速,听起来似乎很简单,但它的测量却是个有趣的挑战。
科学家们早就发现,声音在不同的介质中传播的速度不一样。
这次实验,目的是想更深入了解声速在空气中的表现。
记得小时候,听见雷声总是先于闪电,那时候就好奇,声音究竟是多快的呢?1.1 声速的基本概念声速,简单来说,就是声音在某个介质中传播的速度。
在空气中,声速大约是343米每秒,哇,想想就觉得快得吓人。
温度、气压等因素都会影响声速。
比如,温度越高,声速越快,理由也很简单,空气分子的运动加快,声音就能更快传递了。
1.2 声速的影响因素声音的传播还受很多因素影响。
气温、湿度、风速,甚至是周围的环境都能左右声速。
在寒冷的冬天,声音就没那么迅速,而在潮湿的环境中,声音又能跑得飞快。
总之,声速不是一成不变的,这让我们在实验中充满了期待。
二、实验设计2.1 实验目的我们希望通过这次实验,亲身测量声速,并观察环境变化对声速的影响。
通过实际操作,加深对声速的理解,激发我们对物理学的热爱。
2.2 实验器材实验器材准备得相当简单。
需要一个音响,当然越响越好;一个麦克风,用来接收声音;还有个计时器,记录时间。
哎,科学实验就是这样,少不了各种“黑科技”的辅助。
2.3 实验步骤实验步骤也不复杂。
首先,选择一个安静的环境。
接着,将音响放在一端,麦克风放在另一端。
然后,播放一个声音,开始计时。
等声音到达麦克风时,立刻停止计时。
最后,根据公式,计算声速。
嘿,简单明了吧?三、实验结果3.1 数据记录实验过程中,我们记录了不同温度下声速的变化。
在20度时,声速是343米每秒;在30度时,声速上升到了349米每秒。
数据真是显而易见,温度一升,声速就跟着“飞”起来。
3.2 数据分析分析这些数据,能够看出温度对声速的影响是显著的。
气温升高时,空气分子运动加快,声音传播自然也就迅速了。
这个道理很简单,却又十分有趣。
四、总结通过这次声速测量实验,我们不仅收获了数据,也收获了对声速的深刻理解。
《声速测量》实验预习报告一、 实验原理 1.理论计算理想气体中声波的传播速度为MRTv γ=其中,γ为比热容比,M是气体的摩尔质量,T是绝对温度,R=8。
31441J/(mol ·K)在室温t 下,干燥空气中的声速为01T t v v += 其中,s m v /5.3310=,K T 15.2730=.但实际中空气并不是干燥的,所以修正的结果为⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛+=p rp Ttv s 31.0115.3310 其中,r 为相对湿度,p s 为饱和蒸汽压,Pa p 510013.1⨯=。
2.实验方法由于λf v =,故只要测出频率和波长,就可以求出声速。
其中,声波频率由声源振动频率得到,再用相位法测得波长即可.波可以看成是相位的传播.沿传播方向上的任意两点,只要他们的振动状态相同,即同相或者相位差为2π的整数倍,这时两点间的距离应等于波长λ的整数倍,即λnl=。
当在发射器的声波中沿传播方向移动接受器时,总可以找到一个位置,使得接受器接受到的电信号和发射器的激励电信号同相。
继续移动接受器,知道接受的信号再一次和激励电信号同相的时候,移过的距离必然等于声波的波长。
利用利萨如图形在两个电信号同相或反相时椭圆退化为友斜或左斜直线即可判断。
二、实验步骤1.连接电路。
函数信号发生器的输出与超声波发射器的输入端及示波器的通道1相连;超声波接受器的输出端和示波器的通道2相连。
函数信号发生器置于正弦波输出,频率置于100kHz档,输出幅度调到峰值10V左右.2.用示波器观察加在声波发射器上的电信号和超声波接受器输出的电信号。
先将函数信号发生器的频率调节到40kHz左右,然后细调频率,使接受器输出信号最大,记下此频率,即超声波频率。
实验过程中若有改变,记下最大最小值,最后取平均值.3.用相位法测波长。
利用利萨如图找出同相点,每遇到一个同相点就测一次接受器的位置x,连续测20个,并用逐差法处理。
实验课程名称:_大学物理实验
第一部分:实验预习报告
[实验目的]
(1)进一步熟悉示波器和信号源的使用方法(2)掌握两种测声速的原理和方法; (3) 了解超声波的发射与接收原理;(4) 加深对纵波波动和驻波特性的理解。
[实验原理] 一、声速测量原理
1.超声波的发射与接收
在超声波的发射与接收中,利用了压电陶瓷的逆、正压电效应,发射的压电换能器是把 电压 信号转换成 声压信号 ;接收的压电换能器是把 声压信号 ,转换成 电压 信号。
2.测量声速的实验方法
在声速的测量中,声波的频率可由连接到发射压电换能器的信号发生器的显示屏直接读出,只要能测出声波的波长,就可由公式 v=f λ 求出声速。
波长可用下列两种方法测量: (1)共振干涉法
由于压电换能器发出的超声波近似于平面声波,当接收器端面垂直于波的传播方向时,从 声源发出的平面波经前方的平面反射后,入射波与发射波叠加 形成驻波,反射面处为媒质振动位移的波节。
“声压腹”指的是驻波 波节的位置 。
对于固定位置的发射器S1,沿声波传播方向移动接收器S2时(见实验仪器部分“声速测量实验装置示意图”),接收端面声压的变化和接收器位置的关系可从实验中测出,如下图
所示。
(2)相位比较法
接收器端面声压和位置的变化关系
当接收器处于一系列特定位置上
时,媒质中出现稳定的驻波共振现象,此时接收面上的声压达到极大值。
可以证明,接收面两相邻声压极大值之间的距离l ,即为半波长λ/2。
若保持频率f 不变,测量相邻两次接收信号达到极大值时接收面所移动的距离l ,可以得到:
λ= 2l
沿传播方向上的任意两点,如果其振动状态相同,即两点的位相差为2π的整数倍,这时两点间的距离S应等于波长λ的n (整数)倍,即S = nλ
为了测出波长,可通过李萨育图形判断相位差,将发射端(S1)电信号和接收端(S2)的电信号输入到示波器的CH1和CH2,选择X-Y工作方式即可。
当两信号同相或反相时,李萨育图形由椭圆变化成斜线。
[实验仪器]
信号发生器、双踪示波器、综合声
速测定仪、干湿温度计、气压表。
[实验内容与步骤]
一、共振法测声速
(1)将接收器S2稍移开一段距离,与发射器S1相距 6 厘米。
(2)按书中图1连接好电路。
(3)确定发射换能器的谐振频率:接收器S2信号经“CH2”输入,调节信号发生器的频率(在33kHz~39kHz之间调节),观察示波器“CH2”输入的信号幅度,当波形幅度达到
最大时,此时发射器就处于谐振状态,记录下谐振频率,此后不再改变信号源频率。
(4) 缓慢远移接收器S2,每当接收信号幅度最大时,记录接收器位置X i,连续记录16个数据
填入表1中。
二、相位比较法测声速
(1)做完共振法测声速之后,保持谐振频率不变,示波器水平工作方式选择“X-Y”。
(2)调整两通道的灵敏度,使示波器上李萨育图形的大小合适。
每当李萨育图形从椭圆变
为斜线(包括正、负斜率),记录接收器位置X i,连续记录16个数据填入报告册的表2中。
[预习思考题]。