高等数学 重积分的计算及应用习题课
- 格式:ppt
- 大小:2.00 MB
- 文档页数:6
例 利用二重积分的性质,估计积分2222(2)d Dx y x y σ+-⎰⎰ 的值,其中D 为半圆形区域224,0x y y +≤≥.解 我们先求函数2222(,)2f x y x y x y =+-在区域22{(,)4,0}D x y x y y =+≤≥上的最大值和最小值.由22220,420,x yf x xy f y x y '⎧=-=⎪⎨'=-=⎪⎩解得D 内驻点为(2,1)±,(2,1)2f ±=. 在边界1:0L y =(22)x -≤≤上,2()(,0)g x f x x ==在1L 上(,)f x y 的最大值为4,最小值为0.在边界222:4L x y +=(0)y ≥上,242()(,4)58(22)h x f x x x x x =-=-+-≤≤由3()4100h x x x '=-=得驻点123550,,22x x x ==-=,(0)(0,2)8h f ==. 5537()(,)2224h f ±=±=. 综上,(,)f x y 在D 上的最大值为8,最小值为0.又D 的面积为2π,所以由二重积分的估值性质知222202(2)d 82Dx y x y πσπ⋅≤+-≤⋅⎰⎰,即22220(2)d 16Dx y x y σπ≤+-≤⎰⎰.例 设D 为xoy 平面上以(1,1),(1,1),(1,1)---为顶点的三角形区域,1D 为D 在第一象限的部分,则(cos sin )()Dxy x y dxdy +=⎰⎰.(A )12cos sin D x y dxdy ⎰⎰ (B )12D xy dxdy ⎰⎰(C )14(cos sin )D xy x y dxdy +⎰⎰ (D )0解 区域D 如图所示,并记0D 为以(1,1),(1,1),(0,0)-为顶点的三角形区域,则0D 关于y 轴对称,且1D 为0D 在y 轴右侧的部分区域,区域0D D -关于x 轴对称.又xy 关于x 和y 均为奇函数;而cos sin x y 关于x 为偶函数.关于y 为奇函数,由二重积分的奇偶对称性得0,0D D D xy dxdy xy dxdy -==⎰⎰⎰⎰,故0Dxy dxdy =⎰⎰;1cos sin 2cos sin ,cos sin 0D D D D x ydxdy x y dxdy x y dxdy -==⎰⎰⎰⎰⎰⎰,故1cos sin 2cos sin DD x y dxdy x y dxdy =⎰⎰⎰⎰.所以1(cos sin )cos sin 2cos sin DDDD xy x y dxdy xy dxdy x y dxdy x y dxdy +=+=⎰⎰⎰⎰⎰⎰⎰⎰.因此我们选(A ).例 设区域}0,0,4),{(22≥≥≤+=y x y x y x D ,()f x 为D 上的正值连续函数,,a b 为常数,则Dσ= .解 由题意知,D 关于直线y x =对称,由二重积分轮换对称性得DσDσ=12D d σ=⎰⎰ 211()π2π22242D D a b a b a b a b d d σσ+++=+==⋅⋅=⎰⎰⎰⎰. 因此,我们应填“π2a b+.”例 计算二次积分220sin xydx dy yππ⎰⎰解 积分区域如图,则 原式20sin yydy dx yπ=⎰⎰2200sin sin sin y dy ydy ydy ππππ==+-⎰⎰⎰4=;例设D为椭圆区域22(1)(2)149x y--+≤,计算二重积分()Dx y dxdy+⎰⎰.解令12cos,23sin,x ry r=+⎧⎨=+⎩θθ则D的极坐标表示为01,02r≤≤≤≤θπ,且(,)6(,)x yrrθ∂=∂.由式(10.2.8),可得2100()6(32cos3sin)Dx y dxdy d r r rdr+=++⎰⎰⎰⎰πθθθ2326(cos sin)1823d=++=⎰πθθθπ.例计算二重积分⎰⎰+Dyxyx dd)(,其中D为.122++≤+yxyx解解法1 D的边界曲线为,2/3212122=⎪⎭⎫⎝⎛-+⎪⎭⎫⎝⎛-yx这是一个以⎪⎭⎫⎝⎛21,21为圆心,23为半径的圆域,采用一般的变量代换,令⎪⎪⎩⎪⎪⎨⎧-=-=,21,21yvxu即作变换⎪⎪⎩⎪⎪⎨⎧+=+=,21,21vyux于是D变为.2/3:22≤+'vuD.111),(),(==∂∂=vuyxJ所以,()d d(1)1d dD Dx y x y u v u v'+=++⋅⋅⎰⎰⎰⎰(再用极坐标).23023d d )cos (sin d d d )1sin cos (d 222/30202/3020ππθθθθθθθππ=+⎪⎪⎭⎫ ⎝⎛⋅=++=++=⎰⎰⎰⎰⎰⎰r r r r rr r r D解法2 由于积分区域D :23212122≤⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-y x 关于21=x (即)021=-x 对称,故⎰⎰=⎪⎭⎫ ⎝⎛-D y x x .0d d 21 类似地,由于D 关于⎪⎭⎫⎝⎛=-=02121y y 即对称,故 ⎰⎰=⎪⎭⎫ ⎝⎛-D y x y .0d d 21 从而.2323d d d d 1d d 21d d 21d d )(2ππ=⎪⎪⎭⎫ ⎝⎛⋅===⋅+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰面积D y x y x y x y y x x y x y x D D D DD例 计算y x e I Dy xd d },max{22⎰⎰=,其中,}10,10|),{(≤≤≤≤=y x y x D解 D 由x y =分为D 2,D 2两部分,如图.⎪⎩⎪⎨⎧≤≤≤≤≤≤≤≤=1,10:,0,10:,21},max{2222y x x D e x y x D e e y x y x x e y y e x y x e y x e I yy xx D y D x d d d d d d d d 01010222212⎰⎰⎰⎰⎰⎰⎰⎰+=+=21110d d 2d d 2222x e x xe y e x x x xx ⎰⎰⎰⎰===.1102-==e e x例 利用二重积分计算定积分1(,0)ln b ax x I dx a b x-=>⎰解 因为1ln ln bb a btt aa x x x dt x x x-==⎰所以 ⎰⎰⎰⎰⎰⎪⎭⎫⎝⎛++=+=+===bab aba batta b t dt t dx x dt dx dt x I 11ln )1ln(11)(11例 ],[)(b a x f 为上的连续函数,且0)(>x f ,试利用二重积分证明.)()(1d )(2a b x f x x f baba-≥⎰⎰证 因为x x f y y f x x f x x f b a b a babad )(1d )(d )(1d )(⎰⎰⎰⎰=,d d )()(d d )()(y x y f x f y x x f y f DD⎰⎰⎰⎰≥= 其中 所以},,|),{(b y a b x a y x D ≤≤≤≤=⎰⎰⎰⎰⎰⎰+=DD bab ay x y f x f y x x f y f x x f x x f d d )()(d d )()(d )(1d )(2 y x y f x f y f x f y x y f x f x f y f DDd d )()()()(d d )()()()(22⎰⎰⎰⎰≥+=,)(2d d 22a b y x D-==⎰⎰亦即.)(d )(1d )(2a b x x f x x f baba-≥⎰⎰例 计算⎰1d )(x x xf ,其中⎰=21d int)(x t tS x f 解 当10,102≤≤≤≤x x 时⎰⎰⎰-===111222,d sin d sin d sin )(x x x y yy y y y t t tx f从而x y y y x x x xf x d d sin d )(101102⎰⎰⎰⎥⎦⎤⎢⎣⎡-= 图y x y yx y y y x x xDd d sin d sin d 1102⎰⎰⎰⎰-=⋅-=,其中D 曲线1,2==y x y ,和0=x 所围成,如图10-8。
习题 9.41. 求下列平面闭区域D 的面积.(1) D 由曲线e ,e x x y y -==及1x =围成;(2) D 由曲线21,1y x y x =+=--围成;(3) D 由双纽线22222()4()x y x y +=-围成;(4) {(cos ,sin )|24sin }D r r r θθθ=≤≤;(5) 1(cos ,sin )1cos 2D r r r θθθ⎧⎫=≤≤+⎨⎬⎩⎭; (6) D 由曲线2223()2(0)x y ax a +=>围成;(7) D 由椭圆22(234)(567)9x y x y +++++=围成;(8) D 是由曲线3y x =,34y x =,3x y =,34x y =所围成的位于第一象限部分;2. 利用二重积分计算下列各题中立体Ω的体积.(1) Ω为第一卦限中由圆柱面224y z +=与平面2,0,0x y x z ===所围成;(2) Ω由平面0,0,y z y x ===及6236x y z ++=围成;(3) 22{(,,)|1x y z x y z Ω=+≤≤+;(4) 222{(,,)|1,11}x y z x y z z Ω=+≤+-≤≤;(5) Ω由平面0,0,0,1x y z x y ===+=及抛物面226x y z +=-围成.3. 设平面薄片所占的闭区域是由直线2,x y y x +==和x 轴所围成,它的面密度22(,)x y x y ρ=+,求该薄片的质量.4. 在一半径为R 的球体内,以某条直径为中心轴用半径为r 的圆柱形钻孔机打一个孔(r R <),求剩余部分的体积. 若圆柱形孔的侧面高为h ,证明所求体积只与h 有关,而与r 和R 无关.5. 利用三重积分求所给立体Ω的体积.(1) Ω是由柱面2x y =和平面0z =及1x z +=所围成的立体;(2) Ω是由抛物面22z x y =+和所2218z x y =--围成的立体;(3) Ω为圆柱体cos r a θ≤内被球心在原点、半径为a 的球所割下的部分;(4) Ω是由单叶双曲面2222x y z R +-=和平面0,z z H ==围成的立体;(5) 1Ω是Oxyz 坐标系中体积为5的立体,Ω为1Ω在变换448u x y z =++,274v x y z =++,43w x y z =++下的像.6. 已知物体Ω的底面是xOy 平面上的圆域222{(,)|}x y x y R +≤,当用垂直于x 轴的平面截Ω均得到正三角形, Ω的体密度函数为(,,)1x x y z Rρ=+,试求其质量. 7. 计算下列曲面的面积.(1) 平面63212x y z ++=位于第一卦限部分的曲面;(2) 正弦曲线的一拱sin y x =(0πx ≤≤)绕x 轴旋转一周而成的曲面;(3) 球面2222x y z a ++=含在圆柱面22x y ax +=内部的曲面;(4) 曲面222z x y =+被柱面22222()x y x y +=-所截下部分的曲面;(5) 抛物面22z y x =-夹在圆柱面221x y +=和224x y +=之间部分的曲面;(6) 球面22223x y z a ++=(0z >)和抛物面222x y az +=(0a >)所围成立体的表面;(7) 圆柱面229x y +=,平面4312y z +=和4312y z -=所围成立体的表面;(8) 两个底面半径都为R , 轴相互正交的圆柱所围立体的表面.8. 求占有下列区域D , 面密度为(,)x y μ的平面薄片的质量与质心:(1) D 是以(0,0),(2,1),(0,3)为顶点的三角形闭区域, (,)x y x y μ=+;(2) D 是第一象限中由抛物线2y x =与直线1y =围成的闭区域, (,)x y xy μ=;(3) D 是由心脏线1sin r θ=+所围成的闭区域, (,)2x y μ=;(4) 22{(,)|(1)1}D x y x y =+-≤, (,)|1|x y y y μ=+-.9. 计算下列立体Ω的体积和形心:(1) 2222{(,,)|3633}x y z x y z x y Ω=+≤≤--;(2) 2222(,,)1x y x y z z a b ⎧⎫⎪⎪Ω=+≤≤⎨⎬⎪⎪⎩⎭; (3) Ω位于锥面3πϕ=上方,球面4cos ρϕ=下方.10. 若半径为R 的半球体上任一点密度与该点到底面之距离成正比(比例系数为k ), 求其质量与质心.11. 求下列平面薄片或物体对指定轴的转动惯量.(1) 均匀薄片{(cos ,sin )|2sin 4sin }D r r r θθθθ=≤≤(面密度为1)对极轴;(2) 底长为a ,高为h 的等腰三角形均匀薄片(面密度为1)对其高;(3) 质量为M , 半径为R 的非均匀球体(其上任一点的密度与球心到该点的距离成正比)对其直径;(4) 密度为1的均匀物体2222x y z ++≤,222x y z +≥对Oz 轴.12. 设物体Ω占有的区域为222{(,,)|,||}x y z x y R z H +≤≤,其密度为常数. 已知Ω关于x 轴及z 轴的转动惯量相等. 证明:2H R =.13. 求下列密度为1的均匀物体对指定质点的引力(引力常数为k ).(1) 高为h ,半顶角为α的圆锥体对位于其顶点的单位质量质点;(2) 柱体222x y R +≤(0z h ≤≤)对位于点0(0,0,)()M a a h >处的单位质量质点;(3) 半径为R 的球体对球内的单位质量质点P .。
习题课二重积分的计算一、主要内容二重积分的计算方法是累次积分法,化二重积分为累次积分的步骤是:①作出积分区域的草图②选择适当的坐标系③选定积分次序,定出积分限1。
关于坐标系的选择这要从积分区域的形状和被积函数的特点两个方面来考虑看图定限 —穿越法定限 和不等式定限先选序,后定限①直角坐标系ⅰ。
先 y 后 x ,过任一x ∈ [ a , b ],作平行于 y 轴的直线穿过D 的内部从D 的下边界曲线)(1x y ϕ=穿入—内层积分的下限从上边界曲线)(2x y ϕ=穿出—内层积分的上限ⅱ。
先 x 后 yy 过任一 yy ∈[ c , d ] 作平行于 x 轴的直线定限左边界)(1y x ψ=——内层积分的下限右边界)(2y x ψ=——内层积分的上限则将D 分成若干个简单区域再按上述方法确定每一部分的上下限分片计算,结果相加②极坐标系积分次序一般是θ后先r 过极点O 作任一极角 为 θ]),[(βαθ∈的射线从D 的边界曲线 )(1θr 穿入从 )(2θr 穿出ⅲ。
如D 须分片)(1θr ——内下限)(2θr —内上限具体可分为三种情况)()(,21θθβθαr r r ≤≤≤≤⑵极点在D 的边界上)()(,21θθβθαr r r ≤≤≤≤是边界在极点处的切线的极角βα,)(1θr 绝大多数情况下为0⑶极点在D 的内部)(0,20θπθr r ≤≤≤≤化累次积分后外限是常数内限是外层积分变量的函数或常数极坐标系下勿忘 r⑴极点在D 的外部∫∫∫∫=D Ddxdy x y f dxdy y x f ),(),(——称为关于积分变量的轮换对称性是多元积分所独有的性质奇函数关于对称域的积分等于0,偶函数关于对称域的积分等于对称的部分区域上积分的两倍,完全类似于 对称区间上奇偶函数的定积分的性质简述为“你对称,我奇偶”①、②、③简单地说就是④若 DD 关于直线 y = x 对称。
习题3.2132122.,1.43(.22xy x y yyS y d y y===⎛⎫=+=+=⎪⎝⎭⎰与解222232132313.21 1.21(1)21,140,0,1;4, 3.11(1)23116.2263y x x yy xx xx yx x x y x yS y y d xyy y--=+-=⎧=+-=+⎨-=⎩-===-==⎛⎫=+--⎪⎝⎭⎛⎫=+-=⎪⎝⎭⎰与解2222225.42.442,2y x y x xy xx x xy x x=-=--⎧=-⎪-=--⎨=--⎪⎩与解2224221123/22: 1..,,(1)(1)0,0, 1.211).333 y x x yy xx xx yx x x x x xS x d x x x==⎧=⎪=⎨=⎪⎩-++===⎛⎫==-=⎪⎝⎭⎰求下列曲线所围成的的图形的面积与求交点解:22222242400/22422(sin)4.0 02(a>0)(1co s)(1co s)(sin)(1co s)4sin8sin2316sin164223.x a t ty ty a tS a t d a t ta t d tta d t a ud ua ud u aaππππππππ=-⎧=≤≤⎨=-⎩=--=-=====⎰⎰⎰⎰⎰与212122212213222240,(22)(2)0,2, 1.(24)(224)249.3x x x x x x S x x x d xx x d xx x x ---+-=-+==-==---+=--+⎛⎫=--+= ⎪⎝⎭⎰⎰222222424222222122212220216.8().28181424320,4320,(8)(4)08()4,4,2,212122424arcsin23x y y x x y x x y xx x x uu u u u u u x x x S x d x x d x Sπ-+==⎧+=⎪+=⎨=⎪⎩+-==+-=+-==-===-=⎛⎫=⎪⎝⎭⎛⎫= ⎪⎝⎭⎛==+⎝⎰⎰与分上下两部分舍解244826.33πππ⎛⎫=-+=- ⎪⎝⎭22221211222213227.4 2.442220,(2)(1)0,2, 1.(42)6()96.322yx y x y x x x y x x x x x x x S x x dx x x dxx x ---=-=+⎧=--=+⎨=+⎩+-=+-==-==---=-+⎛⎫=-+= ⎪⎝⎭⎰⎰与解22/422/42008.co s 2(0).1co s 22sin 2|.2r a a a d a a ππϕϕϕϕ=>==⎰其求双纽线所围图形的面积1解S =422/32/32/333/2226200/2372/23723:9.(0).co s ,02.sin 22sin 3co s sin 6sin co s 6sin (1sin )6428326175391a x y a a x a t t y a t V y d x a ta t td ta t td t at t d ta πππππππππ+=>⎧=⎪≤≤⎨=⎪⎩====-⎛⎫⎛⎫=-= ⎪⎪⎝⎭⎝⎭⎰⎰⎰⎰求下列曲线围成的平面图形绕轴旋转所成旋转体的体积解3.05a πln 3ln 3220ln 32010.1,ln 3,.(1)(21)12ln 3.2xxxxx xy e x y e V e d x ee d xe e x ππππ=-===-=-+⎛⎫=-+= ⎪⎝⎭⎰⎰231/32/31/32/322/37/32/37/3:11.,0(0,0).,()33.77b b a y x x y b a b x ayV ay d y a y abπππ===>>====⎰求下列平面曲线围成的平面图形绕轴旋转所成旋转体的体积及解13.()[,](0)()2().2(),2().b ab ay f x a b a y f x x a x b y V xf x d x d x d V xf x d x V xf x d x πππ=>======⎰⎰设在区间上连续且不取负值,试用微元法推导:由曲线,直线,及轴围成的平面图形绕轴旋转所成立体的体积为厚度的圆筒的体积解21111111211112.0,.8ln 8ln 8ln |ln 1812881.eeee ee x x y e yy V d yyyd y y y y d y yd ye y e e ππππππ-----====⎡⎤=-⎢⎥⎣⎦⎡⎤=-+⎢⎥⎣⎦⎡⎤=-+⎢⎥⎣⎦⎡⎤⎡⎤=--=-⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰⎰⎰解2211222211122214.,1,22222222()2.xx xx x xy e x x x y V xe d x xd e x e e d x e e ee e e e e ππππππ===⎡⎤==⎢⎥⎣⎦⎡⎤⎡⎤=-=--⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤=---=⎣⎦⎰⎰⎰求曲线及轴所围成的平面图形绕轴旋转所成的立体的体积.解22223233215.:.3().1()|31(())33aa a ha ha h h V h a y f x a h x a V a x d x a h x h a h a a h h a πππππ--⎛⎫=-⎪⎝⎭==-≤≤⎡⎤=-=-⎢⎥⎣⎦⎡⎤⎛⎫=---=- ⎪⎢⎥⎣⎦⎝⎭⎰证明半径为高为的球缺的体积为证3230320/22017.sin .3sin co s ,33sin 3136sin 6.222r a r a s a a d a d a a πππθθθθθθπθθπ='======⎰⎰⎰ 求曲线的全长解3322/22/218.cos ,sin .3cos (sin ),3sin cos 143sin cos 12sin |6.2x a t y a t x a t t y at t s a t tdx a t a ππ==''=-====⎰ 求向星形线的弧长解322313433211116.13.621.221114.2623x y x x xx y xs x x xd x x x =+=='=-=⎡⎤+==-=⎢⎥⎣⎦⎰⎰求曲线在到之间的弧长解12220.2co s 2(0)d x ra a L L θ=>=⎰试证双纽线的全长可表为2022202/4522222221.1(02)4.2214144co s sec sectan sec tan (2)sectan sec tan (2)(2),1nn n n n n n n n xy x x x y x S xd x d x xI xd x xd xx x n x xd xx x n I n I I n ππππ-----=+≤≤'=⎛⎫=+ ⎪⎝⎭=====--=--+-=-⎰⎰⎰⎰⎰⎰求抛物线绕旋转所得的旋转体的侧面积.解 222sectan .11n n n x x I n ---+-00019.(1co s ).(sin )24co s 8sin8.22r a r a s a a d x a a πππθθθθθ=+'=-====⎰⎰求心脏线的全长解22/40/40/40/40/40/4024sin 2,2sin 2/,4)rr a r a r s d xππππππθθθθθθ''=-=-========⎰⎰⎰⎰⎰⎰证10⎰335313131311sec tan sec tan sec tan 444422133sec tan sec tan ln(tan sec ).488I x x I x x x x I x x x x x x C ⎛⎫=+=++ ⎪⎝⎭=++++3/41334(sec tan sec tan ln(tan sec ))|4883ln(12S x x x x x x πππ=+++=+2222/20/201022.(0),.co s ,02,sin ,co s .sin 224co s 444a x yb a abxa tt x a ty b t y b t S b td t b t b uua bππππππππ+=<≤=⎧''≤≤=-=⎨=⎩===-====⎰⎰⎰ 求1分别绕长短轴旋转而成的椭球面的面积解12/20/201222arcsin 2arcsin 2.22s 4sin 444ln 2()b u aa b S a td ta t a uuba b ππεεεπεπππππ-⎤⎥⎣⎦⎛⎫= ⎪⎝⎭=====-⎰⎰⎰ 122(22ln(1).u ba ab ππεε⎤+⎥⎥⎦⎡⎤=++⎢⎥⎣⎦22223.(,0)x y a a h y a h a y +=-≤≤<<计算圆弧绕轴旋转所得球冠的面积.101020025.10m ()(70.2)(70.2)70.180(k g ).26..co s 0.,0sin sin 2[co s ]|.2(0,).27.,x x m x d x x x a x a tt y a t a ta d taay t aaππρπππππ=+⎡⎤=+=+=⎣⎦=⎧=≤≤⎨=⎩==-=⎰⎰0有一细棒长已知距左端点x 处的线密度是k g /m 求这细棒的质量.求半径为的均匀半圆周的重心坐标由对称性,x 重心坐标有一均匀细杆解解/54/522../5./.l l l M l M M M l J x d x x d xllρ==+⎰⎰长为质量为计算细杆绕距离一端处的转动惯量解/54/533213.3375l l M x M x M l ll=+=[]2arcsin 22arcsin22arcsin2co s arcsin .sin 222co s sin 212.a haa h aa ha x a t a h t y a ta S t a td ta t a h a a h a πππππππππ---=⎧-≤≤⎨=⎩===-⎡⎤=-=⎢⎥⎣⎦⎰⎰解a h -a ()23/23/2123/21125/21224.(1co s ).2(1co s )sin 2(1co s )sin 21co s co s 2(1)2)32.5r a S a a d a d a x d x a x a πππθθπθθθπθθθπθθπππ--=+'=+=+=-+=+=+=⎰求心脏线绕极轴旋转所成的旋转体的侧面积000解r =-a s i n.222422222223228.,,,.2.2.221.4229.,,,,33,,13aa a M MMM xd x d m xd x aaa M xd x M x J xM a aaM a h aMMa M y x d m x d x x d x h a h h h a h d ρπππρρπππ=====⎛⎫===== ⎪⎝⎭⎰设有一均匀圆盘半径为质量为求它对于通过其圆心且与盘垂直的轴之转动惯量有一均匀的圆锥形陀螺质量为底半径为高为试求此陀螺关于其对称轴的转动惯量.解=解2245225425555201132213133.2251030.,2k g /m.29.8.29.89.8259.8().hha a M J d m x x d x h h a M a M x J x d x M a hhd W xd x W xd x x J ⎛⎫== ⎪⎝⎭=======⎰⎰楼顶上有一绳索沿墙壁下垂该绳索的密度为若绳索下垂部分长为5m ,求将下垂部分全部拉到楼顶所需做的功.解2231.()[,],,(),,,(),(),().32.48m ,64m ,164,06424,,9b a y f x a b y f x x a x b x y d S f x d x d F p d S g xf x d x F g xf x d x y a x a a x ρρρ=========-=-=⎰ 设在上连续非负将由及轴围成的曲边梯形垂直放置于水中使轴与水平面相齐求水对此曲边梯形的压力.一 水闸门的边界线为一抛物线,沿水平面的宽度为最低处在水面下求水对闸门的的压力.解解642828356,64,08,64,0.6(64)(2)126452428.8.35F g y u y u y u y u F g u u u d y u ug g ρρρρ=±===-=====-⎡⎤=-=⎢⎥⎣⎦⎰⎰ 时时6424。
习题 9.21. 将二重积分(,)d Df x y σ⎰⎰化为两种不同次序的二次积分, 其中D 是:(1) 由曲线ln y x =,直线2x =及x 轴所围成的闭区域;(2) 由抛物线2y x =与直线23x y +=所围成的闭区域;(3) 由曲线sin y x =(0πx ≤≤)与x 轴所围成的闭区域;(4) 由曲线3y x =与直线1x =-及1y =所围成的闭区域.2. 计算下列二重积分.(1) 22()d d D x y x y +⎰⎰,其中(){},||1,||1D x y x y =≤≤;(2) 22(e )d d x y Dxy x y ++⎰⎰,其中(){},|11,01D x y x y =-≤≤≤≤;(3) 2e d d xy Dxy x y ⎰⎰,其中(){},|01,01D x y x y =≤≤≤≤; (4) 22sin()d d D x y xy x y ⎰⎰,其中()π,0,022D x y x y ⎧⎫=≤≤≤≤⎨⎬⎩⎭; (5) 22d d D x x y y ⎰⎰,D 是由曲线2x =,y x =,1xy =所围成的闭区域; (6) cos()d d Dx x y x y +⎰⎰,D 是顶点为(0,0),(π,0),(π,π)的三角形闭区域;(7) d d Dxy x y ⎰⎰,D 是由抛物线2y x =与直线2y x =-所围成的闭区域;(8) sin d D x xdy y ⎛⎫ ⎪⎝⎭⎰⎰,D 是由直线y x =,2y =与曲线3x y =所围成的闭区域; 3. 设[,][,]D a b c d =⨯,证明:()()()()d d ()d ()d b d a c D f x g y x y f x x g y y =⎰⎰⎰⎰. 4. 交换下列二次积分的次序(假定(,)f x y 为连续函数).(1)1 0 d (,)d yy f x y x ⎰⎰; (2) 2 1 2 2 0 0 1 0d (,)d d (,)d x x x f x y y x f x y y -+⎰⎰⎰⎰; (3) 21 22 d (,)d y y y f x y x --⎰⎰; (4)2 0d (,)d x f x y y ⎰.5. 通过交换积分次序计算下列二次积分.(1)1/3 1 10 d y y x ⎰⎰;(2) π π 0 sin d d xy x y y ⎰⎰; (3) 2 1 3 0 3d e d x y y x ⎰⎰;(4) 2 22 0 d 2sin()d x x y xy y ⎰⎰;(5)π 1 2 0 arcsin d cos y y x ⎰⎰; (6)π0d x y ⎰⎰. 6. 利用积分区域的对称性和被积函数关于x 或y 的奇偶性, 计算下列二重积分.(1) ||d d D xy x y ⎰⎰,其中{}222(,)D x y x y R =+≤;(2) 23(tan 4)d d D x x y x y ++⎰⎰,其中{}22(,)4D x y x y =+≤;(3) 2(1)arcsind d D y x x x y R ++⎰⎰,其中{}222(,)()D x y x R y R =-+≤; (4) (||||)d d Dx y x y +⎰⎰,其中{}(,)||||1D x y x y =+≤.7. 将二重积分(,)Df x y d σ⎰⎰化为极坐标形式下的二次积分,其中积分区域D 为:(1) 22x y ax +≤ (0a >);(2) 2214x y ≤+≤;(3) 01x ≤≤,01y x ≤≤-;(4) 222()x y x y +≤+;(5) 2224x x y ≤+≤.8. 利用极坐标计算下列二重积分.(1)d Dx y ,其中22{(,)}D x y x y Rx =+≤;(2) arctan d d Dy x y x ⎰⎰,其中22{(,)|14D x y x y =≤+≤, 0,}y y x ≥≤; (3) 22()d d D x y x y +⎰⎰,其中{}222222(,)()()D x y x y a x y =+≤-;(4)d D x y ,其中22{(,)|1,0,0}D x y x y x y =+≤≥≥; (5) d d Dxy x y ⎰⎰,其中D 是第一象限中由圆周221x y +=与222x y x +=所围成的闭区域;(6) 22()d d Dx y x y +⎰⎰,其中D 是第一象限中由圆周222x y y +=,224x y y +=及直线x,y 所围成的闭区域.9. 设,r θ为极坐标,交换下列二次积分的次序: (1)π2cos 2π 02d (,)d a f r r θθθ-⎰⎰(0a >);(2)π20 0d (,)d f r r θθ⎰⎰(0a >); (3)00d (,)d a f r r θθθ⎰⎰(02πa <<).10. 将下列二次积分化为极坐标形式的二次积分, 并计算积分值.(1)22 1 0 0d d x y x y +⎰⎰; (2)2 0 d d y y y x x⎰⎰; (3)222 0d d y y x ⎰⎰; (4)2 0d x y ⎰⎰; (5)1 22 1 0 0d d d d x x y x xy y x y ++⎰⎰⎰; (6)2210d d xyx y y x +⎰.11. 作适当的变量变换,计算下列二重积分.(1) 22sin(94)d d Dx y x y +⎰⎰,其中D 是椭圆形闭区域22941x y +≤位于第一象限内的部分;(2) 22d d Dx y x y ⎰⎰, 其中D 是由双曲线1xy =,2xy =与直线x y =,4x y =所围成的位于第一象限的闭区域;(3) 2222d d D x y x y ab ⎛⎫+ ⎪⎝⎭⎰⎰,其中D 是椭圆形闭区域22221y x a b +≤; (4) e d d x y Dx y +⎰⎰,其中D 是闭区域||||1x y +≤.(5) 32()cos ()d d Dx y x y x y +-⎰⎰,其中D 是以(π,0),(3π,2π),(2π,3π),(0,π)为顶点的平行四边形闭区域.12. 利用两种给定的变换(1) ,u x y v x y =+=-; (2) 22,u x y v xy =+=,计算二重积分222()()e d d x y D x y x y +-⎰⎰,其中(,)D x y y x y ⎧⎪=≤≤≤≤⎨⎪⎪⎩⎭.。