发电机(含双馈机)励磁控制系统综合实验实验报告
- 格式:docx
- 大小:384.75 KB
- 文档页数:15
发电机实验报告时代背景19世纪末期,电气工业的迅速发展使得电能的需求量越来越大,产生了电力工业这一新兴产业。
而发电机作为电力工业的核心设备之一,得到了广泛的应用和发展。
实验目的本实验旨在通过制作一个简单的直流电发生器,深入了解发电机的基本原理和工作原理,并掌握一定的实践操作技能。
实验器材铁芯、绕线、电池、电筒电池、电线、电容器、导轨、磁钢等。
实验步骤1. 准备工作:将铁芯通过磨光处理,使其表面光滑,并在铁芯的两端铺上小木块,以便固定在支架上;将绕线绕在铁芯上,绕线的圈数要求较多,以提高磁通量的大小。
2. 安装电容器:将电容器安装在支架上,并接上导线,接入电路。
3. 绕制定子:将铁芯绕制好后,开始绕制定子。
做定子时,用带有坑槽的圆木沿着定子绕制,使绕线逐渐平缓地围绕在定子上,直到绕完所需的圈数。
然后将定子插入铁芯内。
4. 安装电池和电筒电池:将电池和电筒电池放在相应位置上,并连接电路并接入电容器。
5. 安装磁钢:将磁钢安装在电池的负极和定子旁的支架上,使磁极的方向和定子相对应。
6. 调整电路并开始实验:将电路调整好后,开始旋转定子,观察电表显示电流是否正常,并测试输出的电压大小和频率。
根据观察结果,可以进一步调整电路,以获得更好的实验效果。
实验结果经过实验,我们制作的简单直流电发生器可以正常工作,并输出一定大小的电流和电压。
通过观察和测试,我们了解了发电机的基本原理和工作原理,并深入了解了电路的调整和操作技巧。
实验结论通过本次实验,我们了解了发电机的作用和工作原理,深入了解了电路调整和操作技巧,并对电气工业的发展和应用产生了更加深刻的认识和理解。
发电机的自动励磁调节装置及调节形式姓名:摘要Xxx年x月x日至x月x日,学校为我们组织了为期x天的电厂实习,地点是xxxxxxxxxxxx。
在实习期间,我们参观了电厂的每个部分,就比如:xxxxxxxxxxxxx,在这段期间我通过参观和向带队师傅的学习,认识了很多的生产设备,零件和工具,更加懂得了电厂的生产流程。
在那么多的学习中我选择了发电机的自动励磁调节装置及调节形式来写报告。
1自动励磁调节装置发电机励磁的原理:利用导线切割磁力线感应出电势的电磁感应原理. 自动励磁调节装置的工作原理:自动励磁装置根据发电机电压,负荷电流的变化,相应改变可控硅整流回路的可控硅导通角,使整流桥送入的电流发生变化。
为取得励磁调节的快速性主励磁机一般采用100---200Hz中频交流同步发电机,副励磁机采用400---500Hz中频发电机。
副励的励磁可用永磁机或自励恒压式。
自动调节励磁装置通常由测量单元、同步单元、放大单元、调差单元、稳定单元、限制单元及一些辅助单元构成。
被测量信号(如电压、电流等),经测量单元变换后与给定值相比较,然后将比较结果(偏差)经前置放大单元和功率放大单元放大,并用于控制可控硅的导通角,以达到调节发电机励磁电流的目的。
同步单元的作用是使移相部分输出的触发脉冲与可控硅整流器的交流励磁电源同步,以保证控硅的正确触发。
调差单元的作用是为了使并联运行的发电机能稳定和合理地分配无功负荷。
稳定单元是为了改善电力系统的稳定而引进的单元。
励磁系统稳定单元用于改善励磁系统的稳定性。
限制单元是为了使发电机不致在过励磁或欠励磁的条件下运行而设置的。
必须指出并不是每一种自动调节励磁装置都具有上述各种单元,一种调节器装置所具有的单元与其担负的具体任务有关。
自动励磁调节装置的作用:(1)电力系统正常运行时,能自动调节励磁装置,维持发电机或系统某点(如高压母线)电压水平。
大大提高电压调节质量以及减轻运行人员的劳动强度。
自动励磁调节装置的作用。
发电机励磁系统参数测试报告作者:武常涛来源:《中国科技博览》2015年第06期中图分类号:TM31 文献标识码:A 文章编号:1009-914X(2015)06-0093-011 概况江苏***有限公司1号发电机励磁系统属于自并励励磁系统, 2013年1月6~7日对发电机进行励磁系统模型和参数测试。
2 试验目的确定励磁系统模型及参数,为电力系统分析计算提供依据。
3 试验标准3.1 《大型汽轮发电机自并励静止励磁系统技术条件》DL/T843-20103.2 《同步发电机励磁系统建模导则》Q/GDW142-20124 试验仪器5 试验应具备的条件5.1 发电机空载试验发电机出口开关处于断开位置,发电机保持额定转速。
5.2 励磁系统最大最小α角校核试验用自动励磁调节器调整发电机电压为80%额定电压,进行20%阶跃(上、下)试验,用记录分析仪测录发电机电压、转子电压和电流。
5.3 发电机空载电压阶跃试验励磁调节器工作方式为自动,调整发电机电压为95%额定电压。
6 试验内容6.1 发电机空载试验发电机保持额定转速且稳定,合上励磁开关MK,缓慢增加励磁,将发电机电压从零升至1.05倍额定,同时录制发电机电压及转子电流曲线。
6.2 励磁系统最大最小α角校核试验用自动励磁调节器调整发电机电压为80%额定电压,进行20%阶跃(上、下)试验,用记录分析仪测录发电机电压、转子电压和电流。
6.3 发电机空载电压阶跃试验发电机维持额定转速,用自动励磁调节器调整发电机电压为95%额定电压,进行5%阶跃试验,用记录分析仪记录发电机电压、转子电压和电流即发电机空载阶跃响应曲线。
7 试验结果及分析7.1 发电机电压测量环节时间常数的测量测量环节的时间常数为0.01秒,满足电压测量环节的时间常数不大于0.03秒的标准技术条件要求。
7.2 发电机空载试验发电机维持额定转速,录制发电机电压及转子电流曲线,并将发电机电压升至1.05倍额定。
同步发电机励磁控制系统实验摘要:本课题主要针对如何提高和维持同步发电机运行的稳定性,是保证电力系统安全、经济运行,及延长发电机寿命而进行的同步发电机励磁方式,励磁原理,励磁的自动控制进行了深入的解剖。
发电机在正常运行时,负载总是不断变化的,而不同容量的负载,以及功率因数的不同,对发电机励磁磁场的作用是不同的,对同步发电机的内部阻抗压降也是不一样的。
为了保持同步发电机的端电压稳定,需要根据负载的大小及负载的性质调节同步发电机的励磁电流,因此,研究同步发电机的励磁控制具有十分重要的应用价值。
本课题主要研究同步发电机励磁控制在不同状态下的情况,同步发电机起励、控制方式及其相互切换、逆变灭磁和跳变灭磁开关灭磁、伏赫实验等。
主要目的是是同学们加深理解同步发电机励磁调节原理和励磁控制系统的基本任务;了解自并励励磁方式和它励励磁方式的特点;了解微机励磁调节器的基本控制方式。
关键词:同步发电机;励磁控制;它励第一章文献综述1.1概述向同步发电机的转子励磁绕组供给励磁电流的整套装置叫做励磁系统。
励磁系统是同步发电机的重要组成部分,它的可靠性对于发电机的安全运行和电网的稳定有很大影响。
发电机事故统计表明发电机事故中约1/3为励磁系统事故,这不但影响发电机组的正常运行而且也影响了电力系统的稳定,因此必须要提高励磁系统的可靠性,而根据实际情况选择正确的励磁方式是保证励磁系统可靠性的前提和关键。
我国电力系统同步发电机的励磁系统主要有两大类,一类是直流励磁机励磁系统,另一类是半导体励磁系统。
1.2同步发电机励磁系统的分类与性能1.2.1 直流励磁机励磁系统直流励磁机励磁系统是采用直流发电机作为励磁电源,供给发电机转子回路的励磁电流。
其中直流发电机称为直流励磁机。
直流励磁机一般与发电机同轴,励磁电流通过换向器和电刷供给发电机转子励磁电流,形成有碳刷励磁。
直流励磁机励磁系统又可分为自励式和它励式。
自励与他励的区别是对主励磁机的励磁方式而言的,他励直流励磁机励磁系统比自励励磁机励磁系统多用了一台副励磁机,因此所用设备增多,占用空间大,投资大,但是提高了励磁机的电压增长速度,因而减小了励磁机的时间常数,他励直流励磁机励磁系统一般只用在水轮发电机组上。
发电机励磁系统试验报告(静态)一、绝缘电阻检查励磁主回路用1000V摇表测的绝缘电阻500M直流操作回路,交流回路,低压电器及其回路,二次回路用5000V摇表测的绝缘电阻200MΩ二、电源检查对装置进行拉合电源检查,使电压缓慢的,和大幅度的变化,装置没有出现误调节、误动作。
三、电源切换试验断掉调节装置两路电源中的任一路电源,装置可以可靠的动作。
四、装置电源电压允许80%-115%波动校验1)测量X2:6-7电压为176V稳定电源的输出标准电压5V 12V -12V 24V1 24V2 CHA 5.02 12.09 -11.98 24.15 23.98 CHB 5.02 12.13 -11.94 24.09 24.012)测量X2:6-7电压为253V时稳定电压的输出标准电压5V 12V -12V 24V1 24V2 CHA 5.03 12.10 -11.99 24.16 23.99 CHB 5.03 12.14 -11.95 24.10 24.043)电磁操作和电动操作的电器,在在控制电源额定值85%-115%范围内均能可靠动作。
四、开入开出检查1)开入量检查:就地操作相应的开关、按钮、连片,经检查后与装置的开入状态显示相符。
远方操作开关,按钮的开关量在装置上可以正确显示。
2)开出量检查:进入调节器“传动试验画面”,做各项动作试验,经检查后装置的输出和LED显示对应,跳开关、起励动作可靠,动作可以正确输出到对应的端子排。
五、调节部分采样值检查1)电压、电流型号线性度试验(额定二次:PT=105V,CT=4.296A。
变比10500/105v,1200A/5A) 通道项目20% 80% 100% 120%CHA UG1 2.09 8.40 10.50 12.60 UG2 2.09 8.40 10.50 12.60 IG 0.20 0.82 1.03 1.24CHB UG1 2.09 8.40 10.50 12.60 UG2 2.09 8.40 10.50 12.60 IG 0.20 0.82 1.03 1.242)频率采样值检查(外加PT电压=1000V)通道频率40Hz 45Hz 50Hz 55Hz 60HzCHA 40.00 45.00 50.00 55.00 60.00 CHB 40.00 45.00 50.00 55.00 60.00 3)功率角度检查(发电机PT=100V、定子CT=2A)通道角度ɸ30度0度-30度-45度-90度CHAP 7.2 8.3 7.2 5.9 0 Q -4.2 0 4.1 5.9 0 cosɸ0.859 1.000 0.866 0.706 0.004CHBP 7.2 8.3 7.2 5.9 0 Q -4.2 0 4.1 5.9 0 cosɸ0.863 1.000 0.866 0.706 0.0004)转子电流(起励电流)检查,自并励输入毫伏(15/75mV),无刷系统直接输出电流检查。
发电机的实验报告发电机的实验报告引言:发电机是一种将机械能转化为电能的装置,广泛应用于生活和工业领域。
本次实验旨在通过搭建一个简单的发电机模型,探究其工作原理和性能特点。
实验材料和方法:1. 实验材料:铜线、磁铁、铁芯、电池、导线、电阻器等。
2. 实验方法:首先,将铁芯包裹在铜线上,形成一个线圈。
然后,将磁铁放置在线圈附近,并连接线圈的两端到电阻器上,再将电阻器连接到电池上。
最后,转动磁铁,观察线圈中是否产生电流。
实验结果和讨论:实验中,我们发现当磁铁旋转时,线圈中确实产生了电流。
这是由于磁铁的旋转改变了磁场的强度和方向,从而导致了线圈中的电荷运动,产生了电流。
这个现象被称为电磁感应。
进一步观察发现,当磁铁旋转的速度增加时,线圈中的电流也随之增加。
这是因为磁铁旋转的速度越快,改变的磁场越大,导致的电磁感应效应也就越强。
这说明发电机的输出电流与磁场的变化速度成正比。
同时,我们还发现,线圈中的电流方向会随着磁铁旋转的方向而改变。
这是由于电磁感应的法则,即法拉第电磁感应定律。
根据该定律,当磁场的变化方向与线圈中电流的方向相反时,会产生一个反向电流。
因此,在实际应用中,我们需要确保磁铁旋转的方向与我们需要的电流方向一致。
此外,我们还注意到,当线圈中的电流通过电阻器时,电阻器会发热。
这是因为电流通过电阻器时会产生电阻热,将电能转化为热能。
因此,在设计和使用发电机时,我们需要考虑电阻器的功率耗散和散热问题,以充分利用电能。
结论:通过本次实验,我们深入了解了发电机的工作原理和性能特点。
发电机利用电磁感应现象将机械能转化为电能,其输出电流与磁场变化速度成正比。
同时,我们还了解到发电机的电流方向与磁场变化方向相关,并且在实际应用中需要注意电阻器的功率耗散和散热问题。
通过进一步研究和改进,发电机可以广泛应用于能源转换和供电领域,为人类的生活和工业发展提供可靠的电力支持。
发电机励磁系统试验报告使用单位:机组编号:励磁装置型号:设备出厂编号:设备出厂日期:现场投运日期:广州电器科学研究院广州擎天电气控制实业有限公司励磁系统调试报告使用单位:机组号:设备型号:设备编号:出厂日期:发电机容量:额定发电机电压/电流:额定励磁电压/电流:励磁变压器: KVA三相环氧干式变压器励磁变额定电压:励磁调节器型号:型调节器一、操作回路检查1.励磁柜端子接线检查检查过柜接线是否与设计图纸相符,确认接线正确。
检查励磁系统对外接线是否正确,确认符合要求。
2.电源回路检查:厂用AC380V工作电源。
DC-220V电源检查励磁系统DC24V工作电源。
检查调节器A、B套工控机工作电源。
3.风机开停及转向检查:4.灭磁开关操作回路检查5.励磁系统信号回路检查6.串行通讯口检查二、开环试验试验目的:检查励磁调节器工作是否正常,功率整流器是否正常。
试验方法:断开励磁装置与励磁变压器及发电机转子的连接,用三相调压器模拟PT电压以及整流桥交流输入电源,以电阻或滑线变阻器作为负载,用小电流方法检查励磁装置。
1.检查励磁系统试验接线,确认接线无误。
2.将调压器电压升到100V,按增磁、减磁按钮,观察负载上的电压波形是否按照调节规律变化。
功率柜上桥的输出波形正常,无脉冲缺相。
功率柜下桥的输出波形正常,无脉冲缺相。
3.调节器通道切换试验:人工切换调节器工作通道,切换正常。
模拟A套调节器故障,调节器自动切换到备用通道。
模拟B套调节器故障,调节器自动切换到C通道。
4.励磁系统故障模拟试验调节器故障PT故障起励失败逆变灭磁失败功率柜故障快熔熔断风机故障交流电源消失直流电源消失三、空载闭环试验励磁系统无故障情况下,将发电机转速升到额定转速,将励磁系统投入,进行相关试验。
1、零起升压试验将调节器置于“零升”方式,按起励按钮,励磁系统将发电机电压升到额定电压的20%以下。
注意:第一次起励前,应测量PT残压三相是否对称,整流柜不同整流桥、同步变压器输入端对应相电压是否一致。
发电机(含双馈机)励磁控制系统综合实验实验报告专业班级:姓名:学号:实验地点:指导老师:一概述励磁控制系统实验接线图如图1可供选择的励磁方式有两种:自并励和他励。
当三相全(半)控桥的交流输入电源取自发电机机端时,构成自并励励磁系统。
而当交流输入电源取自380v市电时,构成他励励磁系统。
两种励磁方式的可控整流桥均是由微机自动励磁调节器控制的,全控时的触发脉冲为双脉冲,具有最大最小a限制。
以下实验操作均针对附录A 中的发电机控制系统实验平台而言。
图1励磁控制系统实验接线图U(保持机端电压为定值)、综合实验台中,微机励磁调节器的控制方式有四种:恒GI(保持励磁电流为定值)、恒Q(保持发电机无功功率为定值)和恒a(保持控制角恒L恒定)。
其中,恒a方式是一种开环控制方式,只限于他励方式下使用。
同步发电机并入电力系统之前,励磁调节装置能维持机端电压在给定水平。
当操作励磁调节器的增、减磁按钮,可以升高或降低发电机电压;当发电机并网运行时,操作励磁调节器的增、减按钮,可以增加或减少发电机的无功输出,其机端电压按调差特性曲线变化。
发电机正常运行时,三相全(半)控桥处于整流状态,控制角a 小于90°;当正常停机或事故停机时,调节器的控制角a 大于90°,实现逆变灭磁。
电力系统稳定器——P SS 是提高电力系统动态稳定性能的经济有效方法之一,已成为励磁调节器的基本配置;励磁系统的强励,有助于提高电力系统暂态稳定性;励磁限制器是保障励磁控制系统安全可靠运行的重要环节。
二 实验及思考实验一 不同a 角(控制角)对应的励磁电压波形观测实验在不起动机组的状态下,操作“增磁”按钮或“减磁”按钮即可逐渐减小或增加控制角a ,从而改变三相全控桥的电压输出及其波形。
实验时,调节励磁电流为表2-1规定的若干值,通过接在d U +、d U -之间的示波器观测全控桥输出电压波形,并由电压波形估算出a 角,另外利用数字万用表测出全控桥的直流输出电压fd U 和交流输入电压AC U ,将以上数据计入表,通过fd U ,AC U 和数学计算公式也可计算出一个a 角来;完成此表后,比较两种途径得出的a 角有无不同,分析其原因。
发电机实验报告
实验目的:通过实验了解发电机的工作原理,掌握发电机的基本性能参数,并探究不同工况下发电机输出电压和电流的变化规律。
实验器材:发电机、电阻箱、电压表、电流表、万用表、电源线等。
实验原理:发电机是将机械能转化为电能的装置,其工作原理是利用导体在磁场中运动时产生电动势的现象,从而实现电能的转换。
发电机的输出电压与磁场强度、导线长度及速度等因素有关。
实验步骤:
1.将发电机与电阻箱、电压表、电流表等接线连接好。
2.调节电阻箱的阻值,改变发电机的负载条件,记录不同负载下发电机的输出电压和电流。
3.改变发电机转速,记录不同转速下发电机的输出电压和电流。
4.利用万用表对发电机的输出电压和电流进行测量,并与电压表、电流表的测量结果进行比较。
实验结果:
1.发现发电机的输出电压随着负载的增加而降低,输出电流随着负载的增加而增加。
2.发现发电机的输出电压随着转速的增加而增加,输出电流随着转速的增加而基本保持不变。
3.利用万用表测量的结果与电压表、电流表测量结果相符,表明实验结果准确可靠。
实验结论:
1.发电机的输出电压和电流与负载条件有关,负载越大,输出电压越低,输出电流越大。
2.发电机的输出电压和电流与转速有关,转速越高,输出电压越高,输出电流基本保持不变。
3.发电机的工作性能与其磁场强度、导线长度及速度等因素有关,需要在实际应用中进行综合考虑。
课程名称:电力系统分析综合实验指导老师:成绩:实验名称:同步发电机励磁控制实验实验类型:同组同学:一、实验目的和要求(必填)二、实验内容和原理(必填)三、主要仪器设备(必填)四、操作方法和实验步骤五、实验数据记录和处理六、实验结果与分析(必填)七、讨论、心得一、实验目的和要求1.加深理解同步发电机励磁调节原理和励磁控制系统的基本任务2.了解自并励励磁方式和他励励磁方式3.熟悉三相全控整流、逆变的工作波形;观察出发脉冲及其相位移动4.了解微机励磁调节器的基本控制方式5.掌握励磁调节器的基本使用方法二、实验内容和原理同步发电机的励磁系统由励磁功率单元和励磁调节器两部分组成,它们和同步发电机结合在一起就构成了一个闭环反馈控制系统,成为励磁控制系统。
励磁控制系统的三大基本任务是:稳定电压、合理分配无功功率和提高电力系统稳定性。
实验用的励磁控制系统示意图如上图所示。
可供选择的励磁方式有两种:自并励和它励。
当三相全控桥的交流励磁电源取自发电机机端时,构成自并励励磁系统。
而当交流励磁电源取自380V市电时,构成它励励磁系统。
两种励磁方式的可控整流桥均是由微机自动励磁调节器控制的,触发脉冲为双脉冲,具有最大最小α角限制。
微机励磁调节器的控制方式有四种:恒UF (保持机端电压稳定)、恒IL(保持励磁电流稳定)、恒Q(保持发电机输出无功功率稳定)和恒α(保持控制角稳定)。
其中,恒α方式是一种开环控制方式,只限于它励方式下使用。
同步发电机并入电力系统之前,励磁调节装置能维持机端电压在给定水平。
当操作励磁调节器的增减磁按钮,可以升高或降低发电机电压;当发电机并网运行时,操作励磁调节器的增减磁按钮,可以增加或减少发电机的无功输出,其机端电压按调差特性曲线变化。
发电机正常运行时,三相全控桥处于整流状态,控制角α小于90︒;当正常停机或事故停机时,调节器使控制角α大于90︒,实现逆变灭磁。
三、主要仪器设备(1)WL-04B微机励磁调节器;(2)HGWT-03B微机准同期控制器;(3)TSG-03B微机调速装置(4)微机保护装置;(5)模拟实验台四、操作步骤与实验方法1.同步发电机起励实验同步发电机的起励有三种:恒UF方式起励,恒α方式起励和恒IL方式起励。
实验二 同步发电机励磁控制实验1.本次实验的目的和要求1)、了解微机励磁调节器的几种控制方式及其各自特点。
2)、了解强励的作用,掌握励磁电压上升速度和强励倍数等几个概念。
3)掌握可控励磁发电系统励磁系统电路原理及其工作特性。
2.实践内容或原理1)微机励磁调节器的几种控制方式及其各自特点励磁调节器具有四种控制方式:恒发电机电压U g ,恒励磁电流I e ,恒给定电压U R 和恒无功Q 。
其中,恒U R 为开环控制,而恒U g ,恒I e 和恒Q 三种控制方式均采用PID 控制,PID 控制原理框图如图2-3-1所示,系统由PID 控制器和被控对象组成,PID 算法可表示为:()()-()e t r t c t = (1)(){()1/() [()]/}P I D u t K e t T e t dt T d e t dt =+⎰+ (2)其中:u(t )—调节计算的输出; K P —比例增益;T I —积分常数; T D —微分常数。
因上述算法用于连续模拟控制,而此处采用采样控制,故对上述两个方程离散化,当采样周期T 很小时,用一阶差分代替一阶微分,用累加代替积分,则第n 次采样的调节量为:0(){()/() /[()- (-1)]}P I D u n K e n T T e i T T e n e n u =+∑++ (3)式中:u 0—偏差为0时的初值。
则第n-1次采样的调节量为:0(-1){(-1)/() /[(-1)- (-2)]}P I D u n K e n T T e i T T e n e n u =+∑++ (4)两式2-3-3和2-3-4式相减,得增量型PID 算法,表示如下:()()- (-1) [()- (-1)]()[()-2(-1)(-2)]P I D u n u n u n K e n e n K e n K e n e n e n ∆==+++ (5) 式中:K P —比例系数;K I —积分系数, I P IT K K T =; K D —微分系数, D D P TK K T =每种控制方式对应一套PID 参数(K P 、K I 和K D ),可根据要求设置,设置原则:比例系数加大,系统响应速度快,减小误差,偏大,振荡次数变多,调节时间加长,太大,系统趋于不稳定;积分系数加大,可提高系统的无差度,偏大,振荡次数变多;微分系数加大,可使超调量减少,调节时间缩短,偏大时,超调量较大,调节时间加长。
变速恒频双馈风力发电机励磁控制技术研究摘要:双馈电机变速恒频(VSCF)风力发电系统,是通过调节转子绕组励磁电流的频率、幅值、相位和相序来实现变速恒频控制的。
该文在分析双馈电机运行原理和励磁控制方法的基础上,设计和构建了基于80C196MC单片机的VSCF双馈风力发电机的励磁控制试验系统。
对变速恒频控制、恒压控制、并网控制以及亚同步速、同步速和超同步速三种不同运行状态之间的动态转换控制技术,进行了试验研究,为兆瓦级变速恒频双馈风力发电机励磁控制系统的设计奠定了基础。
关键词:风力发电机;变速恒频;双馈;励磁控制1.引言风力发电以其无污染和可再生性,日益受到世界各国的广泛重视,近年来得到迅速发展。
采用双馈电机的变速恒频风力发电系统与传统的恒速恒频风力发电系统相比具有显著的优势,如风能利用系数高,能吸收由风速突变所产生的能量波动以避免主轴及传动机构承受过大的扭矩和应力,以及可以改善系统的功率因数等。
变速恒频双馈风力发电系统的核心技术是基于电力电子和计算机控制的交流励磁控制技术。
尽管可采用理论分析和计算机仿真对变速恒频风力发电系统控制技术进行研究,然而由于仿真模型及其参数的非真实性和控制算法的非实时性,仿真研究往往难以代替模拟系统的试验研究。
本文在分析双馈电机运行原理和励磁控制方法的基础上,设计和构建了基于80C196MC单片机的VSCF双馈风力发电机的励磁控制试验系统,并对其控制技术进行了系统的试验研究。
2.VSCF风力发电机的工作原理2.1 双馈电机的VSCF控制原理VSCF风力发电系统主要由风力机、增速箱、双馈发电机、双向变流器和控制器组成,其原理框图如图1。
双馈发电机的定子绕组接电网,转子绕组由具有可调节频率的三相电源激励,一般采用交-交变流器或交-直-交变流器供电。
双馈发电机可在不同的转速下运行,其转速随风速的变化可作适当的调整,使风力机的运行始终处于最佳状态,以提高风能的利用率。
当电机的负载和转速变化时,通过调节馈入转子绕组的电流,不仅能保持定子输出的电压和频率不变,而且还能调节发电机的功率因数。
励磁电源实验报告一、实验目的研究和掌握励磁电源的原理、结构和工作特性,了解其在实际应用中的作用和意义。
二、实验设备和材料1. 励磁电源装置2. 示波器3. 电阻箱4. 直流电动机三、实验原理励磁电源是用来为发电机、电动机等设备提供所需的励磁电流的电源。
其原理是将直流电源的电能转换成交流电源,通过变压器变换电压,再经过整流、滤波等处理得到稳定的直流电流供应给励磁回路。
励磁电源由直流电源、交流电源、控制电路以及相关保护电路组成。
直流电源提供所需的直流电压,交流电源通过变压器将低电压变换为高电压,控制电路用于测量、调节和保护励磁电流的大小与稳定性。
四、实验步骤1. 将励磁电源装置、示波器和电阻箱等设备连接好,确保电路连接正确无误。
2. 打开励磁电源装置的电源开关,调节示波器的触发、增益等参数。
3. 通过调节电阻箱的电阻值,改变电路中的电阻大小,观察励磁电流的变化趋势。
4. 记录示波器上显示的励磁电流大小,根据实验数据绘制励磁电流与电阻值的关系曲线。
5. 关闭各设备的电源开关,整理实验用具,清理实验现场。
五、实验数据和结果分析实验中,我们根据步骤4记录了不同电阻值下的励磁电流大小,并绘制了励磁电流与电阻值的关系曲线。
从实验数据和曲线可以得出以下结论:1. 励磁电流随着电阻值的增加而减小,呈现出负相关的趋势。
2. 曲线的斜率较大,即励磁电流对电阻值的变化非常敏感。
3. 曲线的拐点处可以作为励磁电流的最低临界值,超过该值电动机就无法正常工作。
根据以上分析,我们可以推测励磁电流与电阻值之间存在一定的线性关系,且电阻值对励磁电流的影响较大。
这对于励磁电源的设计和应用具有重要的参考价值。
六、实验总结通过本次实验,我们对励磁电源的工作原理和特性有了更深入的了解。
励磁电源作为电动机等设备的重要配套设施,对于维持设备正常运行起着至关重要的作用。
在实验过程中,我们注意到励磁电流与电阻值之间存在一定的线性关系,且电阻值对励磁电流的影响非常敏感。
同步发电机励磁控制实验一、实验目的1.加深理解同步发电机励磁调节原理和励磁控制系统的基本任务;2.了解自并励励磁方式和它励励磁方式的特点;3.熟悉三相全控桥整流、逆变的工作波形;观察触发脉冲及其相位移动;4.了解微机励磁调节器的基本控制方式;5.了解电力系统稳定器的作用;观察强励现象及其对稳定的影响;6.了解几种常用励磁限制器的作用;7.掌握励磁调节器的基本使用方法。
二、原理与说明同步发电机的励磁系统由励磁功率单元和励磁调节器两部分组成,它们和同步发电机结合在一起就构成一个闭环反馈控制系统,称为励磁控制系统。
励磁控制系统的三大基本任务是:稳定电压,合理分配无功功率和提高电力系统稳定性。
图1 励磁控制系统示意图实验用的励磁控制系统示意图如图 1 所示。
可供选择的励磁方式有两种:自并励和它励。
当三相全控桥的交流励磁电源取自发电机机端时,构成自并励励磁系统。
而当交流励磁电源取自 380V 市电时,构成它励励磁系统。
两种励磁方式的可控整流桥均是由微机自动励磁调节器控制的,触发脉冲为双脉冲,具有最大最小α角限制。
微机励磁调节器的控制方式有四种:恒UF(保持机端电压稳定)、恒IL(保持励磁电流稳定)、恒Q(保持发电机输出无功功率稳定)和恒α(保持控制角稳定)。
其中,恒α方式是一种开环控制方式,只限于它励方式下使用。
同步发电机并入电力系统之前,励磁调节装置能维持机端电压在给定水平。
当操作励磁调节器的增减磁按钮,可以升高或降低发电机电压;当发电机并网运行时,操作励磁调节器的增减磁按钮,可以增加或减少发电机的无功输出,其机端电压按调差特性曲线变化。
发电机正常运行时,三相全控桥处于整流状态,控制角α小于 90°;当正常停机或事故停机时,调节器使控制角α大于 90°,实现逆变灭磁。
电力系统稳定器――PSS 是提高电力系统动态稳定性能的经济有效方法之一,已成为励磁调节器的基本配置;励磁系统的强励,有助于提高电力系统暂态稳定性;励磁限制器是保障励磁系统安全可靠运行的重要环节,常见的励磁限制器有过励限制器、欠励限制器等。
发电机实验报告引言:发电机是一种将机械能转化为电能的设备。
本实验旨在探究发电机的工作原理、结构和性能,并通过实验验证理论知识。
通过本实验,我们可以更深入地了解发电机的运行机制,为实际应用提供理论基础和技术支持。
一、实验目的:1. 理解发电机的基本结构和工作原理;2. 了解发电机的性能指标及其与运行条件的关系;3. 掌握发电机的实验测量方法。
二、实验仪器和材料:1. 发电机实验装置;2. 电源;3. 电阻箱;4. 直流电压表、电流表;5. 实验导线。
三、实验步骤:1. 搭建发电机实验装置,连接好各个元件;2. 将电源接入发电机,调节电压和电流大小;3. 使用电压表和电流表测量输出电压和电流;4. 调节电阻箱的阻值,记录不同负载下的电压和电流数据;5. 根据实测数据计算发电机的输出功率;6. 分析实验结果,总结发电机的性能特点。
四、实验结果与分析:通过实验测量得到的数据,我们可以计算出不同负载下的发电机输出功率。
根据实验结果,我们可以得出以下结论:1. 随着负载的增加,发电机的输出电压和电流呈现下降趋势;2. 发电机的输出功率与负载之间存在一定的关系,当负载达到一定值时,发电机的输出功率达到最大值;3. 不同负载下,发电机的效率也会不同,一般来说,负载越大,效率越低。
五、实验总结:通过本次实验,我们深入了解了发电机的工作原理和性能特点。
发电机是一种将机械能转化为电能的装置,其输出功率和效率与负载之间存在一定的关系。
在实际应用中,我们需要根据需求选择合适的发电机并调节负载,以达到最佳的工作效果。
六、实验感想:通过亲自搭建和操作发电机实验装置,我们对发电机的工作原理有了更深入的理解。
实验过程中,我们不仅学会了使用电压表和电流表进行测量,还掌握了计算发电机输出功率的方法。
通过实验,我们不仅获得了实际数据,还提高了动手能力和实验操作技巧。
七、改进方向:在今后的实验中,我们可以进一步探究发电机的性能特点,比如调节电压和电流对发电机输出功率的影响,以及使用不同类型的负载对发电机性能的影响等。
实验一励磁控制方式及其相互切换实验一、实验目的1 .加深理解同步发机电励磁调节原理和励磁控制系统的基本任务;2.了解自并励励磁方式和它励励磁方式的特点;3 .熟悉三相全控桥整流、逆变的工作波形;观察触发脉冲及其相位挪移;4 .了解微机励磁调节器的基本控制方式。
二、原理与说明同步发机电的励磁系统由励磁功率单元和励磁调节器两部份组成,它们和同步发机电结合在一起就构成一个闭环反馈控制系统,称为励磁控制系统。
励磁控制系统的三大基本任务是:稳定电压,合理分配无功功率和提高电力系统稳定性。
实验用的励磁控制系统示意图如图1 所示。
可供选择的励磁方式有两种:自并励和它励。
图1 励磁控制系统示意图三、实验项目和方法(一)不同 α 角(控制角)对应的励磁电压波形观测计算公式: Ud=1.35UacCOS α (0≤α ≤π /3) (二)控制方式及其相互切换选择它励恒 I 方式,开机建压不并网,改变机组转速45Hz ~55Hz ,记录频 内,即实现了恒 U =400V 的功能,满足要求。
G率在 50±5Hz 范围内变化时, 励磁调节器可将发电机电压恒定在 400±2V 的范围发机电频率发电机电压 (V )励磁电流(A )励磁电压(V )给定电压(V )45Hz 398.2 1.702 40.85 4.44 46Hz 400.9 1.628 39.82 4.51 47Hz 401.7 1.512 38.20 4.61 48Hz 400.0 1.433 36.57 4.70 49Hz 401.5 1.333 35.47 4.77 50Hz 400.8 1.250 34.00 4.85 51Hz 401.3 1.176 32.97 4.92 52Hz 400.6 1.106 31.7 4.99 53Hz 400.7 1.057 30.92 5.05 54Hz 400.61.00630.055.1155Hz400.70.95929.375.17励磁电流 Ifd 显示控制角 α励磁电压 Ufd交流输入电压 U AC 由公式计算的 α示波器读出的 α2.5A 38.49°63.460.838.49°42°1.5A62.73°38.161.462.73°66°0.5A86.6°14.3262.286.6°84° 0.0A120°62.7120°120° LG测试结论:由测试数据可知,整定励磁调节方式为恒U =400V 时,当发机电频率与发电机电压、励磁电流、控制角 α的关系数据。
发电机试验报告范文一、实验目的本次实验旨在了解发电机的结构、工作原理和特性,并通过实际操作验证发电机的发电效果以及对负载的适应能力。
二、实验器材和仪器1.直流发电机2.电压表、电流表3.变阻器4.负载电阻箱5.电源线、连接线三、实验原理发电机是将机械能转变为电能的装置。
其工作原理是利用磁场与导体之间的相互作用实现电能的转换。
通常情况下,发电机是利用线圈在磁场中产生感应电动势。
当线圈绕组旋转时,感应线圈中的导体与磁场发生相互作用,使导体中的自由电子在导体两端产生电位差,从而产生感应电动势。
这个感应电动势可用以下公式表示:E = B * v * L * sinθ其中,E为感应电动势,B为磁感应强度,v为导体速度,L为导体长度,θ为导体和磁场之间的夹角。
四、实验步骤1.将直流发电机连接到电源线上,并将电流表和电压表分别与发电机的输出端口相连。
2.调节电源线的电压,使电压表读数为所需电压值。
3.通过转动手柄,使发电机的转子旋转起来,并观察电表的示数。
4.根据转轴的转速和电压表的示数,计算出发电机的输出功率。
5.根据负载电阻箱的选择,将合适的负载接入发电机的输出端口。
6.观察负载电阻箱上的示数,并计算出负载电阻的电流和功率。
7.不断调节电源线的电压,改变负载的大小,并记录下各个电表的示数。
五、实验结果与数据处理通过以上步骤,我们记录下了不同负载时的电表示数和转子转速。
根据电表示数,我们可以计算出相应的电流和功率,进而绘制出发电机的电流-输出功率特性曲线。
六、实验分析根据实验结果,我们可以看到随着负载的增加,发电机的输出电流和功率都会下降。
这是因为负载的增加导致发电机内部的电阻增加,从而降低发电机的输出电流和功率。
同时,当电源线的电压增加时,发电机的输出功率也会增加。
这是因为电源线电压的增加会促使发电机内部的电流增加,进而提高输出功率。
然而,当电压超过一定范围后,发电机的输出功率将不再增加,反而可能损坏发电机。
发电机(含双馈机)励磁控制系统综合实验实验报告专业班级:姓名:学号:实验地点:指导老师:一 概述励磁控制系统实验接线图如图1可供选择的励磁方式有两种:自并励和他励。
当三相全(半)控桥的交流输入电源取自发电机机端时,构成自并励励磁系统。
而当交流输入电源取自380v 市电时,构成他励励磁系统。
两种励磁方式的可控整流桥均是由微机自动励磁调节器控制的,全控时的触发脉冲为双脉冲,具有最大最小a 限制。
以下实验操作均针对附录A 中的发电机控制系统实验平台而言。
图1励磁控制系统实验接线图综合实验台中,微机励磁调节器的控制方式有四种:恒G U (保持机端电压为定值)、恒L I (保持励磁电流为定值)、恒Q (保持发电机无功功率为定值)和恒a (保持控制角恒定)。
其中,恒a 方式是一种开环控制方式,只限于他励方式下使用。
同步发电机并入电力系统之前,励磁调节装置能维持机端电压在给定水平。
当操作励磁调节器的增、减磁按钮,可以升高或降低发电机电压;当发电机并网运行时,操作励磁调节器的增、减按钮,可以增加或减少发电机的无功输出,其机端电压按调差特性曲线变化。
发电机正常运行时,三相全(半)控桥处于整流状态,控制角a 小于90°;当正常停机或事故停机时,调节器的控制角a 大于90°,实现逆变灭磁。
电力系统稳定器——P SS 是提高电力系统动态稳定性能的经济有效方法之一,已成为励磁调节器的基本配置;励磁系统的强励,有助于提高电力系统暂态稳定性;励磁限制器是保障励磁控制系统安全可靠运行的重要环节。
二 实验及思考实验一 不同a 角(控制角)对应的励磁电压波形观测实验在不起动机组的状态下,操作“增磁”按钮或“减磁”按钮即可逐渐减小或增加控制角a ,从而改变三相全控桥的电压输出及其波形。
实验时,调节励磁电流为表2-1规定的若干值,通过接在d U +、d U -之间的示波器观测全控桥输出电压波形,并由电压波形估算出a 角,另外利用数字万用表测出全控桥的直流输出电压fd U 和交流输入电压AC U ,将以上数据计入表,通过fd U ,AC U 和数学计算公式也可计算出一个a 角来;完成此表后,比较两种途径得出的a 角有无不同,分析其原因。
1) 调节控制角大于90°但小于120°,观察全控桥输出电压波形,与理想波形对比。
2) 调节控制角大于120°,观察全控桥输出电压波形,与理想波形对比。
表2-1 控制角a 的对比数据思考题:1.励磁电压波形观测实验的目的是什么?答:了解自并励励磁方式和它励励磁方式的特点;熟悉三相全控桥整流、逆变的工作波形;观察触发脉冲及其相位移动;观察强励现象及其对稳定的影响。
2.本实验通过“倒网压”的方式进行,操作时需要注意那些问题?答:注意操作顺序,在操作“增磁”按钮或“减磁”按钮减小或增加控制角时,要注意控制角调节范围。
实验二 同步发电机起励实验同步发电机的起励方式有两种:恒G U (F U )方式起励、恒a 方式起励。
其中,恒a 方式起励只能在他励方式下有效外。
恒F U 方式起励,现代励磁调节器通常有“设定电压起励”和“跟踪网压起励”两种起励方式。
设定电压起励,是指电压设定值由运行人员手动设定,起励后的发电机电压稳定在手动设定的给定电压水平上;跟踪系统电压起励,是指电压设定值自动跟踪系统电压,人工不能干预,起励后的发电机电压稳定在与系统电压相同的电压水平上,有效跟踪范围为85%--115%额定电压;“跟踪系统电压起励”方式是当励磁控制器检测到装设了电网电压测量变送器且电网电压在85%--115%额定电压的有效范围内,默认的起励方式,可以为准同期并列操作创造电压条件。
恒a方式起励只适用于他励励磁方式,可以做到从零电压或残压开始有人工调节逐渐增加励磁而升压,完成起励建压任务。
通常这种励磁方式应用于发电机的特性测试测试实验,正常运行时很少采用。
U方式起励步骤1.恒F1)按显示屏提示将控制方式选择为“恒电压”。
2)在“常规参数”页面设置“起励PT电压”,105V对应额定电压。
3)合上灭磁开关。
4)按下“起励”按钮,发电机随机按设定的电压起励建压。
5)将“开机跟踪电网电压”设置为“打开”。
然后重新起励,发电机按“跟踪网压”起励建压。
注意:观察在起励时励磁电流和励磁电压的变化(看励磁电流表和电压表)。
对起励过程进行录波、观察起励曲线、测定起励时间、上升速度、超调、振荡次数、稳定时间等指标,记录起励后的稳态电压和系统电压。
改变系统电压,重复起励(无需停机、开机,只需灭磁操作),观察记录发电机电压的跟踪精度和有效跟踪范围以及在有效跟踪范围外起励的稳定电压。
2. 恒a方式起励步骤1)将励磁控制柜上“他励/自励”转换开关切换至“他励”位置,系统选择他励励磁方式。
2)操作励磁调节器触摸屏切到“恒控制角”方式。
3)合上灭磁开关5)起动机组。
6)当转速接近额定时(频率≥47Hz),通过减励按钮将角度减小,直到发电机起励建压所需要的电压。
U起励方式有何不同。
7)注意比较恒a方式起励与恒F思考题:1、新安装、大修过后的发电机为何要做参数测定试验(他励空载、短路试验)?答:他励空载、短路试验都属于发电机的特性和参数试验,是为了了解发电机的运行性能、基本量之间的关系的特性曲线以及被发电机结构确定了的参数。
空载特性是指发电机以额定转速空载运行时,其定子电压与励磁电流之间的关系。
利用特性曲线,可以断定转子线圈有无匝间短路,也可判断定子铁芯有无局部短路,如有短路,该处的涡流去磁作用也将使励磁电流因升至额定电压而增大。
此外,利用空载特性还可以计算发电机的电压变化率、未饱和的同步电抗,分析电压变动时发电机的运行情况及整定磁场电阻等。
而短路特性是指在额定转速下,定子绕组三相短路时,这个短路电流与励磁电流之间的关系。
利用短路特性,可以判断转子线圈有无匝间短路,因为当转子线圈存在匝间短路时,由于安培匝数减少,同样大的励磁电流,短路电流也会减少。
2、为何要在频率≥47Hz后才投入励磁起励建压?答:防止机组解列后在低速运行时,过多的增加励磁。
致使设备因铁芯密度过大而损坏,也是主变压器的过磁通后备保护。
其限制原理是在低速区间(45~47hzHz)时使电压和频率的比值一定,即:V/H=常数,这样当机组转速降低时,发电机端电压也降低。
该保护在47Hz以上不起限制作用。
实验三不同控制方式运行调节及甩负荷实验U、恒a、三种控制方式,分别具有各自特点,请通过以下该微机励磁调节器具有恒F试验自行体会和总结。
U方式1.恒FU方式,开机建压不并网,改变机组转速使频率在45-55Hz范围内变化,选择自励恒F记录频率与发电机电压、励磁电流、控制角a的关系数据与表2-2中。
U方式实验数据表 2-2 转速变化时恒F2.恒励流方式U起励后,切换至恒励流方式,给定一恒定励磁电流,记录频率与发电机电压、用恒F励磁电流、控制角a的关系数据与表2-3中。
★这是一种开环控制的运行方式表2-3 转速变化时恒励流方式实验数据思考题:U方式,开机建压并网后,增加给定电压,为何在机端电压不变的情况下,机1、自励恒F组还能稳定运行?(请从调差的概念入手分析之)答:当发电厂中几台发电机并联运行时,母线电压水平和无功功率在机组间的分配决定于各台机组的自动励磁装置的特性,即决定于各台发电机的电压调节特性。
机组间无功负荷的分配比例是确定的,并且是可以调节的。
2、甩负荷时为何电压会突然往上升?答:发电机突然甩负荷导致电枢反应变化而引起的工频电压升高,其原因是由于通常电网负荷为感性,感性负荷的电流对发电机的电枢反应起去磁作用。
当突然甩负荷后这一去磁电枢反应也随之消失,但根据磁链守恒原理,穿过励磁绕组的磁通来不及变化,使发电机端电压升高。
实验四逆变灭磁和跳灭磁开关灭磁实验灭磁是励磁系统保护不可或缺的部分。
由于发电机转子是一个大电感,当正常或故障停机时,转子中储存的能量必须泄放,该能量泄放的过程就是灭磁过程。
灭磁只能在同步发电机非并网运行状态下进行(发电机并网状态灭磁将会导致失去同步,造成转子异步运行,产生感应过电压,危及转子绝缘)。
三相全控桥当触发控制角大于90°时,将工作在逆变状态下。
本实验的逆变灭磁就是利用全控桥的这个特点来完成的。
1.逆变灭磁步骤1) 通过触摸屏选择“微机”通道工作。
2) 起动机组,投入励磁并起励建压、增磁,使同步发电机进入空载额定运行。
3) 触摸屏上的 “灭磁”按钮,注意观察励磁电流表和励磁电压表的变化以及励磁电压波形的变化。
2. 跳灭磁开关灭磁实验步骤1) 通过触摸屏选择“微机”通道工作。
2) 起动机组,投入励磁并起励建压,同步发电机进入空载额定运行。
3) 直接跳开励磁开关,注意观察励磁电流表和励磁电压表的变化。
思考题:1、 既然可以直接跳开灭磁开关灭磁,为何还要逆变灭磁?答:逆变灭磁能够将转子中的储能迅速地反馈到三相全控桥的交流侧电源中去,不需放电电阻或灭弧栅,而且逆变灭磁无触点、不燃弧、不产生大量热量,因而逆变灭磁可靠。
而灭磁开关有寿命次数限制,直接跳开灭磁开关灭磁会减少灭次开关寿命。
2、 半控整流能否实现逆变灭磁?答:逆变灭磁只适用于全控整流桥,逆变灭磁方式主要是在逆变过程中由可控硅桥把励磁绕组中的能量从直流侧返送到交流侧,利用改变可控硅的控制角度实现的。
实验五 伏/赫限制实验单元接线的大型同步发电机解列运行时,其机端电压有可能升得较高,而其频率有可能降得较低。
如果其机端电压G U 与频率G f 的比值/G G B U f =过高,则同步发电机及其主变压器的铁芯就会饱和,使空载励磁电流加大,造成发电机和主变压器过热。
因此有必要对/G G U f 加以限制。
伏/赫限制器工作原理就是:根据整定的最大允许伏/赫比max B 和当前频率G f ,计算出当前允许的最高电压max Fh G U B f =,将其与电压给定值g U 比较,取二者中较小值作为计算电压偏差的基准b U ,由此调节的结果必然是发电机电压G Fh U U ≤。
伏/赫限制器在解列运行时投入,并网后退出。
实验步骤:U”。
1)选择“微机、自励”励磁方式励磁控制方式采用“恒F2)起动机组,投入励磁起励建压,发电机稳定运行在空载额定电压的1.1倍左右。
3)调节原动机减速按钮,使机组从额定转速下降,使频率从50Hz下降到44Hz。
4)每间隔1Hz记录发电机电压随频率变化的关系数据于表2-10中。
B值。
5)根据实验数据描出电压与频率的关系曲线,并计算设定的max6)做本实验时先增磁到一个比较高的机端电压后再慢慢减速。
7)注意比较发电机在频率变化过程中的噪音有何不同。
表2-10 伏/赫限制实验数据思考题:1、请运用伏赫限制的知识解释为什么机组的停机流程要先灭磁再减速停机?答:防止机组解列后在低速运行时,过多的增加励磁。