3钻井平台升沉补偿系统
- 格式:ppt
- 大小:1.66 MB
- 文档页数:82
海上钻井平台各系统简介钻井平台各系统简介不知道从什么时候起,石油的价格节节攀升。
能源越来越紧张的今天,很多国家把目光从陆地转向了海洋。
自从世界上第一个海洋钻井平台制造出来以后,海洋工程有了长足的发展。
在几十米甚至上3~4000米深的海底钻一口井并不是一件容易的事,因为在海上环境的复杂多变以及恶劣。
经常要承受巨浪和暴风的袭击。
而钻井又要保持一个相对稳定的作业环境。
才能把一根根长长的钻杆钻进海底。
钻井平台从近海到深海,主要可以分为座底式,自升式,半潜式、钻井船等。
座底式是指,平台的结构直接座在海床上,几乎和陆上钻井没多大区别。
所以它们的可钻探深度很有限。
只能在几十米的水深的浅海区域作业。
自升式,又叫jack-up。
顾名思义,这种平台可以象千斤顶一样可以升降它的高度。
它典型的特征就式3-4条腿。
高高的绗架结构。
上面安装又齿条。
平台本体安装有齿轮。
它们一起啮合,传动。
在到达钻井区域的时候,腿就慢慢的伸到海床上。
平台就靠这几条腿站在海里了。
因为考虑到拖航的稳性,腿不能太长。
所以这种平台一般在120~150米水深的近海区作业。
半潜式,最新的已经到了第6代了。
这种平台综合了钻井船和坐底式驳船的优点,是漂浮在海面上的。
这样的话,它们就可以在更深的水域工作了;船体灌放水,可以调节吃水深度,保持船体稳定。
塔的下部是相当容积的浮筒,上面是若干个中空的立柱,支撑着上部平台平台上面是全部的钻井装备和必要的生活设施。
整个平台靠浮筒浮在水面。
它们带有2~3级动态定位系统,海底声纳定位系统,卫星定位系统等来保证平台的相对稳定的坐标。
它们有各种位移补偿装置来补偿海况带来的不稳定状况。
钻井船,钻井船是设有钻井设备,能在水面上钻井和移位的船,也属于移动式(船式)钻井装置。
较早的钻井船是用驳船、矿砂船、油船、供应船等改装的,现在已有专为钻井设计的专用船。
目前,已有半潜、坐底、自升、双体、多体等类型。
钻井船在钻井装置中机动性最好,但钻井性能却比较差。
摘要海洋石油浮式钻采平台是海洋油气开发的重要装备,升沉补偿装置系统作为海洋浮式钻井平台的关键设备之一,对钻井效率和安全以及钻井设备的使用寿命起着决定作用。
本篇文章对国内外海洋钻井管柱升沉补偿系统的技术现状做出介绍,对钻杆柱补偿和隔水管补偿装置结构和工作原理原理进行了详细研究,综合对比分析各升沉补偿装置的技术特点,最后探讨了我国升沉补偿系统的发展趋势,进而对我国海洋石油钻井升沉补偿系统的未来发展方向提出若干建议。
关键词海洋钻井;升沉补偿系统;钻杆柱补偿;隔水管系统补偿;发展趋势1.升沉补偿系统简介海洋石油浮式平台钻井系统是海洋油气开发的关键装备,我国海洋石油装备产业在海洋油气产业持续发展的带动下正处于高速发展的新时期[1,2]。
在深水浮式钻井船或半潜式钻井平台作业中,其在海上处于漂浮状态。
在风浪作用下,钻井平台作平移、摇摆、以及上下升沉运动。
随波浪周期性上下升沉的运动将引起钻杆柱和隔水管系统周期性的上下运动。
钻杆柱周期性上下运动将使大钩拉力增大或减小,直接影响井底钻压的变化。
井底钻压的变化不利于钻进,而且当钻压降到一定限度时,将使钻头脱离井底,无法持续钻进。
隔水管系统周期性上下运动将使其失效或井口装置脱离井底。
为此,要保证正常钻进,提高钻井效率,就必须采用升沉补偿系统对升沉进行补偿,以减少钻杆柱和隔水管系统与海底的相对运动,并保持恒定的张力载荷。
升沉补偿系统作为海洋浮式钻井平台的关键设备之一,不仅能够减少等候天气的时间,提高钻井效率和安全性,而且能够延长钻井设备的使用寿命。
海洋钻井升沉补偿装置作为浮式平台钻井系统中的一个重要单元设备,其技术在欧美等发达国家的平台配套当中已相当成熟,长期以来其技术一直被国外发达国家所垄断,如挪威Hydralift公司设计和生产的各种型式升沉补偿系统[5]。
而我国由于自身工业基础条件比较薄弱,加之起步晚,所以在该技术尤其是隔水管升沉补偿技术的研究开发方面处于起始阶段。
钻柱液压升沉补偿系统设计研究的开题报告一、研究背景随着海洋工程技术的不断发展,深海油气开发、海底管线敷设等工程的需求越来越大,海洋工程的水下作业难度和风险也随之增加。
海洋工程的一项重要的技术就是钻井作业技术,而钻井平台的稳定性则是影响钻井质量和钻井安全的关键因素之一。
然而,海洋工程中海况复杂、波浪变化大,海水深度、温度、盐度等存在巨大的差异,这都给海洋平台的运行和维护带来了极大的挑战。
为了保证海洋钻井平台的稳定性,钻柱液压升沉补偿系统成为钻井平台中的一项重要配备。
本研究拟研究钻柱液压升沉补偿系统的设计和优化,以确保钻柱在海水中的平稳运行,提高钻井作业的效率和安全性。
二、研究内容和目标本研究的主要内容和目标为:1.系统分析和设计:对钻柱液压升沉补偿系统进行分析和设计,制定合理的系统结构和工作流程,确定系统的关键参数,并根据实际工程需求确定系统的最优设计方案。
2.数学模型建立:建立钻柱液压升沉补偿系统的数学模型,包括动力学模型和控制模型,研究系统的特性和随参数变化的变化规律。
3.系统动态性能分析:通过理论分析和仿真,探究钻柱液压升沉补偿系统的动态特性,如系统响应时间、稳态误差、动态稳定性等,并对系统进行优化,优化系统的控制策略,提高系统的响应速度、稳定性和控制精度。
4.系统实验验证:设计并制作钻柱液压升沉补偿系统的实验样机,进行实验验证系统的性能和控制策略的有效性,并对系统进行优化和改进,提高系统的可靠性和实用性。
三、研究方法和技术路线本研究将采用以下方法和技术路线:1.理论分析和数学建模:通过对钻柱液压升沉补偿系统的原理和工作过程进行深入研究,建立包括动力学模型和控制模型在内的数学模型,分析系统的动态特性和控制策略,验证系统的可行性和有效性。
2.仿真分析和优化设计:通过MATLAB/Simulink等工具进行系统的仿真,分析系统响应时间、稳态误差、动态稳定性等动态特性,对系统的控制策略进行优化和改进,提高系统性能。
运动升沉补偿装置的设计和分析完成日期:指导教师签字:答辩小组成员签字:运动升沉补偿装置的设计和分析摘要升沉补偿系统作为海洋浮式钻井平台的关键设备之一。
在进行深海钻井时, 钻机将会受波浪等作用而带动井下钻具上下运动, 因而无法控制钻压, 这样不但影响效率, 严重时还会损坏钻具。
升沉补偿装置可克服上述升沉运动的影响, 调整深海井底钻压, 提高钻井效率和安全性, 而且能够延长钻井设备的使用寿命。
通过分析国内外升沉补偿技术原理及发展动态,在原理上提出并设计一种半主动升沉补偿装置,同时具有主动式补偿系统与半主动式补偿系统的优点,比传统升沉补偿装置相比具有补偿性能高、能耗低的优点;结构上采用采用游车与大钩之间装设的机械结构,进行具体的结构设计、校核、理论分析,并绘制出二维、三维零件图及装置整体装配图。
关键词:升沉补偿,主动式,被动式,半主动式,游车大钩式Design and analysis of Heave Compensation DeviceAbstractHeave compensation system is the key to Floating offshore platform.Rig will be driven by the wave functions cause down hole drill move up and down when deepwater drilling, it can’t guarantee a stable pressure.It not only influence efficiency, but also can damage drilling tools. Heave compensation system can overcome the influence of heave movement,adjusting the bottom-hole drilling pressure of the deep-sea.Enhance drilling efficiency and safety and prolong the service life of the drilling equipment.Keywords:Heave Compensation, active, passive, semi-active, compensator between travelling block and hook目录1绪论 (1)1.1课题背景及研究意义 (1)1.2国内外研究现状 (1)1.2.1国外研究现状 (1)1.2.2国内研究现状 (2)2 升沉补偿装置的结构与补偿原理 (3)2.1升沉补偿装置的结构 (3)2.1.1游车与大钩间的升沉补偿装置 (3)2.1.2天车上装设的升沉补偿装置 (4)2.1.3死绳上装设的升沉补偿装置 (5)2.2升沉补偿装置的原理 (6)2.2.1被动式升沉补偿系统 (6)2.2.2主动式升沉补偿系统 (7)2.2.3半主动式升沉补偿系统 (7)3设计方案选择 (9)3.1机械结构方案的选择 (9)3.2补偿原理方案的选择 (10)4 半主动游车大钩式升沉补偿装置的设计 (11)4.1半主动游车大钩式升沉补偿系统原理 (11)4.2钻柱的参数 (12)4.3半主动游车大钩式升沉补偿系统设计参数选择及计算 (13)4.3.1设计参数的选取 (13)4.3.2补偿液压缸的设计计算 (14)4.3.3气能蓄液器缸的设计计算 (20)4.3.4气能蓄液器缸充气压力及高压所需气体体积的计算 (26)4.3.5主动液压缸的设计计算 (27)4.3.6钢丝绳的选用计算及固定方式 (33)4.3.7滑轮及滑轮组的计算设计、校核 (35)4.3.8液压系统的设计 (42)5 总结和体会 (46)参考文献 (48)致谢 (49)1绪论1.1课题背景及研究意义随着人们对海洋油气资源认识的不断提高及对海洋油气勘探开发工作的逐渐深入, 世界范围内海洋石油钻采装备技术研究已进入一个崭新的历史阶段。
实 验 技 术 与 管 理 第38卷 第1期 2021年1月Experimental Technology and Management Vol.38 No.1 Jan. 2021ISSN 1002-4956 CN11-2034/TDOI: 10.16791/ki.sjg.2021.01.019仪器设备研制升沉补偿系统实验平台设计王玉红1,2,杜慧子1,许晨光1,李豪杰1,梁 旭1,2(1. 浙江大学 海洋学院,浙江 舟山 316000;2. 浙江大学 浙江省海上试验科技创新服务平台,浙江 舟山 316000)摘 要:海上作业时母船或平台受到海浪影响会产生大幅升沉运动,影响作业安全与工作效率,升沉补偿装置可以极大地改善海上工作环境。
针对升沉补偿装置的研究和学生实验的教学需要,该文设计了一种升沉补偿系统实验平台,采用六自由度平台模拟真实的海上船只升沉运动,采用液压系统模拟负载在海上的受力情况,从而可以真实地反映海上工作情况。
将主动控制系统、被动控制系统、半主动控制系统集成到升沉补偿系统中,可以清楚地对比不同控制方式各自的优势和不足,使学生更加深入地了解升沉补偿装置的控制机理,尝试更加复杂的控制算法来实现更优秀的补偿效果,激发学生的学习兴趣,进而提高实验教学效果。
关键词:升沉补偿系统;实验教学平台;液压系统中图分类号:G642.423; TH-39 文献标识码:A 文章编号:1002-4956(2021)01-0088-05Design of experimental platform for heave compensation systemWANG Yuhong 1,2, DU Huizi 1, XU Chenguang 1, LI Haojie 1, LIANG Xu 1,2(1. Ocean College, Zhejiang University, Zhoushan 316000, China;2. Zhejiang Province Offshore Test Technology Innovation Service Platform, Zhejiang University, Zhoushan 316000, China)Abstract: Affected by the sea waves, the mother ship or platform will have a large heave movement, which will affect the safety and working efficiency of the operation. The heave compensation device can greatly improve the marine working environment. According to the needs of research and students’ experimental teaching, a heave compensation system experimental platform is designed. The experimental platform uses a six-degree-of-freedom platform to simulate the real heave motion of a ship at sea. The hydraulic system is used to simulate the load in the working process, and then it can truly reflect the working situation at sea. The heave compensation device integrates the active control system, passive control system, and semi-active control system and other parts, which can clearly compare the advantages and disadvantages of different control methods. It can enable students to understand the control mechanism of heave compensation device more deeply, try more complex control algorithm to achieve better compensation effect, stimulate their interest in learning, and improve the experimental teaching effect.Key words: heave compensation system; experimental teaching platform; hydraulic system二十一世纪是海洋的世纪,海洋对国家的生存发展具有重要的战略意义[1]。
半潜式平台升沉补偿系统介绍半潜式平台升沉补偿系统介绍半潜式钻井平台在波浪作用下,除前后左右发生摇摆外,还将产生上下升沉运动。
这种随波浪周期性上下升沉的运动将引起钻柱和隔水管系统周期性的上下运动。
钻柱周期性上下运动将使大钩拉力增大或减小,直接影响井底钻压的变化。
井底钻压的变化不利于钻井,而且当钻压降到一定限度时,将使钻头脱离井底,无法持续钻进。
隔水管系统周期性上下运动将使其失效或井口装置脱离井底。
半潜式平台升沉补偿系统包括钻柱补偿系统和隔水管补偿系统。
钻柱补偿根据安装位置和结构又分为伸缩钻杆升沉补偿、游车大钩升沉补偿、天车升沉补偿、快绳(死绳)升沉补偿和绞车升沉补偿等。
隔水管补偿系统分为液压缸式张紧器和钢丝绳式张紧器。
游车大钩升沉补偿快绳(死绳)升沉补偿天车升沉补偿绞车升沉补偿NOV采用绞车升沉补偿MH采用天车升沉补偿半潜式平台升沉补偿系统介绍液压缸式张紧器钢丝绳式张紧器深水深水和超深水适用水域仅用到4.5代半潜平台第5代、第6代配套平台经济性好造价昂贵价格安装在船体的主甲板上安装在月池周围,高压气瓶等安装于Column安装位置113T 2267TMax 张紧能力张紧力有限、钢丝绳、滑轮等易磨损、重量大、重心高、维修危险张紧力大、不占用主甲板空间、结构简单、重量轻、重心低,维修方便主要特点NOV,MH NOV ,MH 制造商钢丝绳式张紧器液压缸式张紧器张紧型式半潜式平台升沉补偿系统介绍半潜式平台升沉补偿系统介绍液压缸式张紧器组成:高压空压机(HP air compressor)、高压气瓶组(APV)、蓄能器(accumulator)、张紧器(tensioner)、气控阀组(risertensioner air control skid)、液控阀组(shut-off valve skid)、软管(hose)等半潜式平台升沉补偿系统介绍高压气瓶组APV 蓄能器accumulator液控阀组Shut-off valve skid气控阀组riser tensioner air control skid张紧器tensioner动力单元HPU 高压空压机HP air compressor air 300bar to 207 bar airair air HP oilHP oil半潜式平台升沉补偿系统介绍气动控制阀组(riser tensioner air control skid)一般共有6套,每套有5个阀分别控制:1) 空压机给高压气瓶组(APV)充气,增加压力2) 主阀,高压气瓶组(APV)给蓄能器(accumulator)提供压力3) 高压气瓶组(APV)气体泄放,减少里面的压力4) 旁通主阀5) 蓄能器(accumulator)气体泄放,减少里面的压力蓄能器组(accumulator)布置在月池两侧,每侧分为3组,每组2个蓄能器(accumulator)。
1.大钩补偿升沉系统( DRILL STRING COMPENSATOR,简称DSC)该钻柱升沉补偿系统是VETCO生产的MC400—20D型,其中含义为:20表示补偿器的活塞最大行程是20inch;400表示补偿器载荷是400KIPS;补偿器能够消除钻具的外界影响,并且在出现高扭矩、高泵压时,它能够手动或自动锁紧。
补偿器还可以用于电测、取心、固井和打捞,尤其适合于关井情况下的试压和挤注水泥工作.能够很好的防止钻杆上下运动对防喷器胶心的磨损。
维高补偿器的液压锁紧阀可以在锁销长度范围内,任一位置选择锁紧。
组成该系统在游车和大钩之间,包括两个圆柱型液缸,滑轮系统,提升链条,链条,主框架,锁紧杆和大钩框架,链条的长度是活塞行程的两倍。
两个圆柱型的缸体虽然是通过气体连接在一起的,但是,它们在运动的时候却是完全独立的,互相不受影响。
圆柱型缸体和大钩框架用链条软连接,其好处是两个圆柱型的缸体的运动可以不是完全同步的。
导入机车系统和大钩框架的形状也有利于两个圆柱型的汽缸运动的同步性,同时也消除了钻柱补偿系统的运动部分和固定部分之间的干扰,使“硬件与软件”之间在剧烈运动时得到缓冲。
由于是通过链条连接的,它可以减少活塞的横向移动,从而降低了活塞和液缸之间的磨损。
1.1主框架主框架主要由固定补偿块,圆柱型液缸和锁紧销等部件组成,也是钻柱升沉补偿系统的主要部件。
为了利于安装和拆卸,主框架的部件都用剪切销钉和螺拴连接。
当钻柱升沉补偿系统工作时,主框架的安全拉力为400KIPS,当将升沉补偿系统锁紧时,补偿系统与大钩、绞车为一体,此时大钩拉力即为钻机工作拉力。
1.2大钩框架大钩框架在大钩和链条之间,升沉补偿系统的链条拉在大钩的上面,形成一个矩形框架,假如两个圆柱型液缸受力不均,则就会产生扭矩,大钩框架就有向一方转动的趋势,但是大钩载荷或自重可以阻止这种转动趋势。
在钻柱升沉补偿系统工作的时候,大钩框架的拉力为400kIPS,当钻柱升沉补偿系统锁紧时,大钩框架的拉力为1000KIPS。
深海采矿装置智能升沉补偿系统的研究深海采矿装置升沉补偿系统是保证深海采矿作业安全进行必不可少的装备之一。
例如,当用水力流体提升式采矿系统开采分布在5000m左右深海海底具有很高开采价值的锰结核时,为减小海浪所引起的采矿船升沉运动对扬矿管的影响,有必要在扬矿管与采矿船之间安装一套升沉补偿系统,以减小扬矿管的轴向应力和变形,防止疲劳损坏。
本文采用理论分析、计算机仿真和模拟试验相结合的方法,对深海采矿装置升沉补偿系统进行了系统的研究,其中重载扬矿管升沉补偿系统是本文的主要研究对象。
论文提出了轻载升沉补偿系统、中载升沉补偿系统和重载升沉补偿系统等三种适用于不同场合的升沉补偿系统的设计方案,它们综合应用了电液比例、计算机控制、智能控制等技术,具有结构简单、可靠性好、补偿精度高等优点。
论文对采用了速度型升沉补偿策略的用于扬矿管的升沉补偿的重载升沉补偿系统进行了参数设计。
参数设计的结果表明,所设计的重载升沉补偿系统满足负载大、功率消耗小的设计要求。
为了进行模拟试验研究,论文搭建了一个多功能的模拟试验台,利用该试验台和相似原理,可分别建立轻载升沉补偿模拟试验系统、中载升沉补偿模拟试验系统和重载升沉补偿模拟试验系统。
每一种模拟试验系统均由升沉运动模拟系统、升沉补偿模拟系统和负载模拟系统组成。
为了理论分析和仿真的需要,论文首先建立了比例方向阀的阀芯运动、三位四通不对称比例方向阀控制不对称缸动力机构和三位三通不对称比例方向阀控制不对称缸动力机构的数学模型,得出了重载升沉补偿系统、升沉运动模拟系统、和轻载、中载、重载三种升沉补偿模拟系统的传递函数。
接着论文提出了一种基于simulink与功率键合图建立液压系统动作过程仿真模型的新方法,并通过升沉运动模拟系统的仿真与试验结果的对比验证了该仿真建模方法的正确性,该方法也可用于建立液压系统的动静态特性仿真模型。
最后根据所建立的数学模型和提出的仿真建模方法,论文建立了重载升沉补偿系统的静态特性仿真模型,建立了重载升沉补偿系统及其模拟试验系统、中载升沉补偿模拟试验系统、轻载升沉补偿模拟试验系统的升沉补偿的仿真模型。
姓名:闫付军学号:0803030729专业年级:08级机械工程及自动化7班功能+结构+工作原理升沉补偿装置(钻具)浮式钻井装置工作时呈漂浮状态,受风浪作用总要运动,为了适应深水钻井的环境和减少船体各种运动对钻井作业的影响,所以要有一些特殊的设备和措施用以保证钻井作业,如升沉补偿装置是必不可少的。
1、浮式钻井装置的钻井作业特点处于漂浮状态的钻井装置,在风浪作用下,船体将产生升沉、摇摆、漂浮三种运动,它们对钻井作业会有不同程度的影响。
升沉,在钻井时,船体的升沉会带动井下钻具上下运动,因而不能控制钻头对井底的压力,不但影响钻进效率,而且钻具周期性地撞击井底使钻杆不断受弯曲,导致疲劳断裂。
水下通道器具或通道立管(简称井下器具):使钻具通向井底的设备。
在钻井过程中,为了防止因船体升沉影响钻进效率,需要有消除钻具随船体升沉的设备,即使用能伸缩的钻杆。
伸缩钻杆能传递转矩和承受高压,并由内、外筒间的伸缩可以补偿船体升沉而保持钻头不上下撞击井底,且结构简单,但伸缩钻杆安装在钻铤上部,钻头对井底的压力只能由钻铤的重量决定,除非起钻后再增减钻铤,在钻进过程中不能调节,否则影响钻进效率。
同时,伸缩钻杆承受的载荷复杂,要经常维修。
因此,近年来已逐步被新型升沉补偿机构所代替。
摇摆,船体的摇摆会使钻杆弯曲,同时,井架内的游动滑车,井场的钻杆、套管、井口返回的泥浆等不断摇晃,都影响正常钻进。
当摇摆的角度稍大时,钻盘的方补心有从补心脱出的危险。
常用的减摇措施:①装设减摇舱,即在船体设水舱,利用水舱内液体流动的反力矩来减轻船体的摇摆。
②装设减摇罐,通过改变罐内液面高度来调整船体的稳心高度。
③装设抗摇器,抗摇器是与船体无关的独立系统,由支船架、浮筒、连接件、抗摇筒组成。
借助抗摇筒对海水的反力矩来抵抗波浪运动对船体产生的不稳定力矩,从而减少船体的摇摆。
漂移,船体的漂移也使钻具弯曲,特别是在起下钻具时,会使钻具不能重新进入原井孔。
浮式钻井装置的漂移用各种定位系统来限制。
关于海洋钻井绞车升沉补偿系统设计及控制策略探讨作者:李梦奇来源:《科学与信息化》2018年第21期摘要在海洋钻井平台中升沉补偿系统是其重要的设备,一方面能够提升钻井的安全性以及效率,另一方面也能够增加钻井设备使用的寿命。
本文阐释了海洋钻井绞车升沉补偿系统结构与原理,并且在此基础上,对海洋钻井绞车升沉补偿系统设计进行论述。
关键词海洋钻井绞车;升沉补偿系统;设计;控制策略;探讨由于人们对海洋油气相应资源的认知在不断地提升以及更加深入的研究海洋油气的勘探研发作用,国际范围中的海洋石油钻采装备相关技术的研究迈入了一个新的台阶,海洋钻井升沉补偿相应的装置是绞车升沉补偿系统的重要设施设备,其技术在发达国家中已经较为成熟,但是因为我国的工业基础条件较为薄弱,并且其起步比较晚,要想让我国海洋油气资源被全面的保护,对其进行深入的研究与开发变成了现阶段技术从业人员的重要任务,这也是我国海洋石油相关技术越来越成熟的要求。
1 海洋钻井绞车升沉补偿系统结构与原理海洋钻井在波浪的作用之下,除了产生摇摆,还会形成上下升沉的运动。
这样跟随波浪进行上下升沉的周期性运动会产生隔水管系统以及钻杆柱呈现上下运动的形式。
钻杆柱的上下运动会有效增加或者是减少大钩的拉力,会对井底钻压的改变产生最为直接的影响。
井底钻压的改变并不助于钻进,并且在钻压下降至相应限度的时候,把其钻头在井底中脱离,这样便没有办法进行钻进。
隔水管系统的上下运动会让其井口的装置在井底进行脱离。
所以要想有效保障海洋钻井的正常钻进,提升钻井的质量与效率,应该使用相应的升沉补偿系统,进而减少隔水管系统以及钻杆柱和海底之间产生的相对运动,并且维持着恒定性的张力,一般情况下,海洋钻井绞车升沉补偿系统主要包含隔水管系统的补偿以及钻杆柱补偿。
1.1 隔水管系统的补偿隔水管系统的补偿是由张紧器与伸缩装置所共同构成的,伸缩装置能够克服波浪升沉的补偿功能,进而保障隔水管系统能够稳定工作,张紧器可以提供恒张力的有效控制,其两者之间能够相互进行配合使用,实现船舶在行业作业过程中对隔水管系统进行升沉补偿。