汉诺塔问题动态演示
- 格式:ppt
- 大小:1.21 MB
- 文档页数:9
数据结构汉诺塔递归算法1. 什么是汉诺塔问题汉诺塔(Hanoi)是由法国数学家爱德华·卢卡斯(Édouard Lucas)在19世纪初提出的一个经典数学问题。
问题的描述如下:假设有3个柱子(标记为A、B、C),其中柱子A上有n个不同大小的圆盘,按照从上到下的顺序由小到大放置。
现在要将这n个圆盘按照相同的顺序移动到柱子C 上,期间可以借助柱子B。
在移动时,要遵循以下规则:1.每次只能移动一个圆盘;2.每个圆盘只能放置在比它大的圆盘上面;3.只能借助柱子B进行中转。
汉诺塔问题的目标是找到一种最优策略,使得完成移动所需的步骤最少。
2. 汉诺塔问题的递归解法汉诺塔问题的递归解法非常简洁和优雅。
下面就来详细介绍递归解法的思路和步骤。
2.1. 基本思路我们先来思考一个简化版的问题:将柱子A上的n个圆盘移动到柱子B上。
为了实现这个目标,可以进行如下步骤:1.将A柱上的n-1个圆盘通过借助柱子B移动到柱子C上;2.将A柱上的第n个圆盘直接移动到柱子B上;3.将柱子C上的n-1个圆盘通过借助柱子A移动到柱子B上。
根据上述思路,我们可以发现一个递归的规律:将n个圆盘从A柱移动到B柱,可以分解为两个子问题,即将n-1个圆盘从A柱移动到C柱,和将n-1个圆盘从C柱移动到B柱。
2.2. 递归实现根据以上思路,我们可以编写一个递归函数来实现汉诺塔问题的解决。
def hanoi(n, A, B, C):if n == 1:print(f"Move disk {n} from {A} to {B}")else:hanoi(n-1, A, C, B)print(f"Move disk {n} from {A} to {B}")hanoi(n-1, C, B, A)这个递归函数接受4个参数:n 表示圆盘的数量,A、B、C 表示3根柱子的名称。
当 n 为 1 时,直接将圆盘从 A 移动到 B。
一、实验背景河内塔实验,又称为汉诺塔问题,起源于印度的一个古老传说。
该问题由三根柱子和一系列大小不同的圆盘组成,要求将所有圆盘从柱子1移动到柱子3,且在移动过程中,每次只能移动最上面的一个圆盘,且在移动过程中,大圆盘必须位于小圆盘的下方。
河内塔实验是一个经典的心理学实验,用于研究问题解决策略、决策能力和认知过程。
二、实验目的1. 了解河内塔问题的解决策略;2. 分析被试在解决问题过程中的思维过程;3. 探讨问题解决策略对解决问题时间的影响;4. 研究被试在不同难度级别下的问题解决能力。
三、实验方法1. 实验对象:选取20名年龄在18-25岁之间的被试,均为在校大学生。
2. 实验材料:三根柱子、8个大小不同的圆盘、计时器。
3. 实验步骤:(1)将被试分为两组,每组10人;(2)向被试介绍河内塔问题的规则,并演示一次;(3)让被试进行河内塔问题的解决实验,记录每组被试的解决问题时间、移动次数和所使用的策略;(4)将被试分为高难度组、中难度组和低难度组,分别进行河内塔问题的解决实验,记录被试的解决问题时间、移动次数和所使用的策略。
四、实验结果与分析1. 解决问题时间:高难度组被试的解决问题时间最长,低难度组被试的解决问题时间最短。
这表明问题难度对解决问题时间有显著影响。
2. 移动次数:高难度组被试的移动次数最多,低难度组被试的移动次数最少。
这表明问题难度对移动次数有显著影响。
3. 解决策略:被试在解决问题过程中主要采用了两种策略:模式策略和经验策略。
模式策略是指通过观察、归纳和总结规律来解决问题;经验策略是指通过积累经验,寻找解决问题的最佳路径。
实验结果显示,采用模式策略的被试在解决问题时间上明显优于采用经验策略的被试。
4. 问题解决能力:在高难度组、中难度组和低难度组中,被试的问题解决能力呈递增趋势。
这表明问题难度对被试的问题解决能力有显著影响。
五、实验结论1. 河内塔问题的解决策略主要包括模式策略和经验策略;2. 问题难度对解决问题时间、移动次数和问题解决能力有显著影响;3. 采用模式策略的被试在解决问题时间上表现更优。
第3课游戏体验寻规律一、教学目标1.学生通过玩汉诺塔益智游戏,掌握其操作规律。
2.理解汉诺塔游戏中的算法,提升信息处理能力。
3.培养学生的逻辑思维和问题解决能力。
二、教学重点与难点教学重点1.掌握汉诺塔游戏的操作规律。
2.理解游戏中的算法。
教学难点1.分析和总结汉诺塔游戏的复杂规律。
2.运用算法解决汉诺塔游戏中的问题。
三、教学准备1.汉诺塔游戏道具若干套。
2.多媒体课件,展示汉诺塔游戏的介绍和玩法。
四、教学过程(一)导入新课师:同学们,今天我们来玩一个非常有趣的益智游戏——汉诺塔。
这个游戏不仅好玩,还能让我们学到很多知识呢。
大家有没有听说过汉诺塔游戏呢?(展示汉诺塔游戏的图片)(二)新课讲解1.汉诺塔游戏介绍(1)游戏规则师:汉诺塔游戏是由三根柱子和若干个大小不同的圆盘组成。
开始时,所有的圆盘都在一根柱子上,按照从大到小的顺序排列。
我们的任务是把这些圆盘全部移动到另一根柱子上,但是在移动的过程中,要遵守以下规则:①每次只能移动一个圆盘。
②大圆盘不能放在小圆盘上面。
(2)游戏目标师:我们的目标就是用最少的步数把所有的圆盘从一根柱子移动到另一根柱子上。
2.汉诺塔游戏的操作方法(1)以三个圆盘为例进行演示师:现在我们先来玩一个简单的汉诺塔游戏,有三个圆盘。
我们先把三个圆盘按照从大到小的顺序放在柱子A上。
(展示初始状态)第一步,我们把最小的圆盘从柱子A移动到柱子B。
(实际操作演示)第二步,把中间的圆盘从柱子A移动到柱子C。
第三步,把最小的圆盘从柱子B移动到柱子C。
第四步,把最大的圆盘从柱子A移动到柱子B。
第五步,把最小的圆盘从柱子C移动到柱子A。
第六步,把中间的圆盘从柱子C移动到柱子B。
第七步,把最小的圆盘从柱子A移动到柱子B。
(展示最终状态)(2)分析操作步骤师:我们来分析一下刚才的操作步骤。
首先,我们把最小的圆盘移动到了柱子B,这一步是为了给中间的圆盘腾出空间。
然后,我们把中间的圆盘移动到了柱子C,这一步是为了给最大的圆盘腾出空间。
河内塔游戏活动目标:1.本活动以河内塔做为媒介,从“玩”入手,让学生在“玩”的过程中,体会最佳策略,初步感受递推法解决实际问题的方法。
2.能用有条理的、清晰的语言阐述自己的想法,学会用简单的方式记录活动过程3.培养学生的观察、分析、比较,综合思考能力。
活动材料:河内塔玩具、活动单活动过程:活动一:(初步感知尝试把玩)1.师:出示河内塔玩具谈话:今天老师给大家带来了一个玩具,见过吗?你知道这个玩具叫什么吗?课题:“河内塔”想知道这个玩具怎么玩吗?2.(课件出示游戏玩法)任务:将一根柱上的圆盘全部移动到另一根柱上。
规则:1.每次只能移动一个盘子,只能在3个柱子之间移动;2.移动过程中,小盘子一定要放在大盘子的上面,不可颠倒;3.读一读,问:谁看懂了游戏规则,和大家说一说。
4.在学生介绍的基础上老师结合操作介绍游戏规则问:你想玩吗?那我们也来玩一玩。
老师给你3分钟时间,请边玩边注意这个游戏的规则。
(完好后把盘放回信封)5.你知道吗,很多的数学家都研究过这个游戏。
关于它还有一个古老传说,想不想听听。
传说印度教的主神梵天在创造世界的时候,在一块黄铜板上插着三根宝石针,并且在其中一根针上从下到上地穿好了由大到小的64片金片,不论白天黑夜,总有一个僧侣在按照下面的法则移动这些金片:一次只移动一片,不管在哪根针上,小片必须在大片上面。
僧侣们预言,当所有的金片都从梵天穿好的那根针上移到另外一根针上时,世界就将在一声巨响中灭亡……师:传说中的河内塔上只有64个盘子,按照上面的规则移动完成后,我们的世界怎么可能灭亡呢?这中间究竟蕴含了什么样的奥秘呢?今天我们也来研究一下河内塔,揭开这个古老传说中的奥秘吧。
这个河内塔上有64个金环,要是直接移动是不是有些麻烦,那你想从几个开始?7.在学生回答的基础上小结:对于复杂的问题,我们可以从它最简单的形式开始研究,在研究的过程中找到规律就好办了。
活动二:一盘游戏(学生说一说,教师简单演示过程)活动三:二盘游戏1.学生分组活动,两人一组轮流玩。
【算法】汉诺塔问题汉诺塔问题是⼀个经典的问题。
汉诺塔(Hanoi Tower),⼜称河内塔,源于印度⼀个古⽼传说。
⼤梵天创造世界的时候做了三根⾦刚⽯柱⼦,在⼀根柱⼦上从下往上按照⼤⼩顺序摞着64⽚黄⾦圆盘。
⼤梵天命令婆罗门把圆盘从下⾯开始按⼤⼩顺序重新摆放在另⼀根柱⼦上。
并且规定,任何时候,在⼩圆盘上都不能放⼤圆盘,且在三根柱⼦之间⼀次只能移动⼀个圆盘。
问应该如何操作?当只有⼀个盘⼦时这是最简单的情况:只需将1号盘⼦从X塔移动到Z塔就OK于是我们可以写出如下的函数,来模拟完成这个过程。
假设盘⼦是⽤1,2,3...按照⼤⼩编码代表的,⽽塔则是⽤⼀个字符char表⽰的。
//将编号为 number 的盘⼦从 from 塔座移到 to 塔座void move(int number , char from , char to){std::cout<<"move dish "<<number<<": "<<from<<"--->"<<to<<std::endl;}有两个盘⼦时有2个盘⼦,⽬标是:将X塔上的盘⼦借助Y移动到Z盘⼦上。
特别的,为了好描述,我把X塔叫做源塔,因为盘⼦起初在这个塔上,把Y塔叫做辅助塔,因为Y塔只是起个过渡作⽤。
把Z盘叫做⽬标塔,最后所以的盘⼦都在这个塔上。
我们可以写出伪代码move(1,X,Y);move(2,X,Z);move(1,Y,Z);有三个盘⼦时在盘⼦数⼤于2的时候,⽆论有多少个盘⼦,我们眼⾥只有2个盘⼦:即最底层的最⼤的盘⼦,和它上⾯的所有盘⼦组和形成的⼀个盘,我们可以把它看做是2.5号盘。
这样考虑的好处是:⽆论有多少盘⼦,都可以⽤2个盘⼦的思路去做。
简化了思路。
因此,步骤是:1、将2.5号盘借助Z塔移动到Y塔上。
注意,处理这步操作时,X是源塔,Z是辅助塔,Y是⽬标塔2、将3盘移动到Z塔上,3、将2.5盘借助X塔移动到Z塔上。
汉诺塔河内塔是根据一个传说形成的一个问题:有三根杆子A,B,C。
A杆上有N个(N>1)穿孔圆盘,盘的尺寸由下到上依次变小。
要求按下列规则将所有圆盘移至C杆:提示:可将圆盘临时置于B杆,也可将从A杆移出的圆盘重新移回A杆,但都必须尊循上述两条规则。
问:如何移?最少要移动多少次?基本介绍有三根杆子A,B,C。
A杆上有N个(N>1)穿孔圆盘,盘的尺寸由下到上依次变小。
要求按下列规则将所有圆盘移至C杆:每次只能移动一个圆盘;大盘不能叠在小盘上面。
提示:可将圆盘临时置于B杆,也可将从A杆移出的圆盘重新移回A杆,但都必须尊循上述两条规则。
问:如何移?最少要移动多少次?汉诺塔是根据一个传说形成的一个问题:有三根杆子A,B,C。
A杆上有N个(N>1)穿孔圆盘,盘的尺寸由下到上依次变小。
要求按下列规则将所有圆盘移至C杆:每次只能移动一个圆盘;大盘不能叠在小盘上面。
提示:可将圆盘临时置于B杆,也可将从A杆移出的圆盘重新移回A杆,但都必须尊循上述两条规则。
问:如何移?最少要移动多少次?历史传说一位法国数学家曾编写过一个印度的古老传说:在世界中心贝拿勒斯(在印度北部)的圣庙里,一块黄铜板上插着三根宝石针。
印度教的主神梵天在创造世界的时候,在其中一根针上从下到上地穿好了由大到小的64片金片,这就是所谓的汉诺塔。
不论白天黑夜,总有一个僧侣在按照下面的法则移动这些金片:一次只移动一片,不管在哪根针上,小片必须在大片上面。
僧侣们预言,当所有的金片都从梵天穿好的那根针上移到另外一根针上时,世界就将在一声霹雳中消灭,而梵塔、庙宇和众生也都将同归于尽。
不管这个传说的可信度有多大,如果考虑一下把64片金片,由一根针上移到另一根针上,并且始终保持上小下大的顺序。
这需要多少次移动呢?这里需要递归的方法。
假设有n片,移动次数是f(n).显然f⑴=1,f⑵=3,f⑶=7,且f(k+1)=2*f(k)+1。
此后不难证明f(n)=2^n-1。
汉诺塔问题[又称河内塔]是印度的一个古老的传说。
据传开天辟地之神勃拉玛在一个庙里留下了三根金刚石的棒,第一根上面套着64个圆的金片,最大的一个在底下,其余一个比一个小,依次叠上去,庙里的众僧不倦地把它们一个个地从这根棒搬到另一根棒上,规定可利用中间的一根棒作为帮助,但每次只能搬一个,而且大的不能放在小的上面。
就是这看似简单的问题,却困扰了人们千年以上。
后来,这个传说就演变为汉诺塔游戏,玩法如下:1.有三根杆子A,B,C。
A杆上有若干碟子2.每次移动一块碟子,小的只能叠在大的上面3.把所有碟子从A杆全部移到C杆上经过研究发现,三圆盘的汉诺塔问题很好破解,就是按照移动规则向一个方向移动金片:如3阶汉诺塔的移动:A→C,A→B,C→B,A→C,B→A,B→C,A→C但每当增加一阶,移动的次数却会以倍数增加,因此每当圆盘增加到一定数量时,常人只能望而却步。
而我们程序员却可以借助于计算机的运算性能,轻而易举地解决这一问题,汉诺塔问题也作为程序设计中的经典递归问题而存在下来。
但是,实践和理论往往却有天壤之别,我们虽然可以运算出汉诺塔的结果,但是却未必能动手完成这一结果。
不信?我这里给出了一个简单的汉诺塔实现,有兴趣的可以自己码盘子看看。
HannoiWindow类的主要工功能是实现程序的窗口化。
用的是BordLayout布局,采用了菜单、按钮、面板等组件,菜单主要包括选择级别,盘子个数,设置大小等功能,它分别调用了塔的名字TowerName(A,B,C)、设置盘子的个数SetAmountOfDisc以及大小、这个游戏可以选择的级别menuGrade(初、中、高),按钮的功能包括重新开始(renew)和自动演示(autoButton)以及播放、暂停、演示、关闭等。
Disc类的主要功能是建立一个类disc,然后通过调用盘子的设置数量、获取数量以及点的设置数量、获取数量来实现这个程序的功能。