《数据采集与处理 》PPT课件
contents
目录
• 数据采集 • 数据处理 • 数据应用 • 数据安全 • 案例分析
01
数据采集
数据来源
用户生成内容
例如社交媒体上的帖子、评论,博客文章等。
企业数据库
如销售数据、库存数据、客户数据等。
政府机构发布的数据
如人口普查数据、经济统计数据等。
公开的APIs
数据格式化
将数据转换为统一、规范化的格式,便于后续处 理和分析。
数据转换
数据类型转换
特征工程
将数据从一种类型转换为另一种类型,如 将文本转换为数字或将日期转换为统一格 式。
通过变换或组合原始特征,生成新的特征 ,以丰富数据的表达力。
数据归一化
数据降维
将数据缩放到特定范围,如[0,1]或[-1,1], 以提高算法的收敛速度和模型的稳定性。
电商数据采集主要包括用户行为数据、交 易数据、商品信息等,通过数据清洗、整 合、分析等处理方式,可以挖掘出用户偏 好、购买力、市场趋势等信息,为电商企 业提供精准营销、个性化推荐、库存管理 等方面的决策支持。
金融数据采集与处理
总结词
金融数据采集与处理是金融机构进行风险控制、投资决策、 客户关系管理的重要依据,通过对股票、债券、期货等金融 市场数据的采集和处理,可以获取市场动态和预测未来走势 。
许多企业和组织提供API接口,可以获取其数据。
数据采集方法
网络爬虫
用于从网站上抓取数据。
数据库查询
直接从数据库中查询数据。
API调用
通过API接口获取数据。
传感器数据采集
用于采集物理世界的数据。
数据采集工具
Python(如Scrapy、BeautifulSoup):用于网络爬 虫。