2021届高考数学二轮复习专题5解析几何第1讲直线与圆课件人教版.pptx
- 格式:pptx
- 大小:1.90 MB
- 文档页数:60
《导学教程》高三数学二轮复习教案专题五解析几何第一讲直线与圆(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(《导学教程》高三数学二轮复习教案专题五解析几何第一讲直线与圆(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为《导学教程》高三数学二轮复习教案专题五解析几何第一讲直线与圆(word版可编辑修改)的全部内容。
专题五 解析几何第1讲 直线与圆自主学习导引真题感悟1.(2012·浙江)设a ∈R ,则“a =1”是“直线l 1:ax +2y -1=0与直线l 2:x +(a +1)y +4=0平行"的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 解析 先求出两条直线平行的充要条件,再判断.若直线l 1与l 2平行,则a (a +1)-2×1=0,即a =-2或a =1,所以a =1是直线l 1与直线l 2平行的充分不必要条件. 答案 A2.(2012·福建)直线x +3y -2=0与圆x 2+y 2=4相交于A 、B 两点,则弦AB 的长度等于A .2错误!B .2错误! C.错误! D .1解析 利用平面几何中圆心距、半径、半弦长的关系求解.∵圆心到直线x +错误!y -2=0的距离d =错误!=1,半径r =2,∴弦长|AB |=2r 2-d 2=2错误!=2错误!. 答案 B考题分析圆在高考命题中多以直线与圆的位置关系为主,考查直线与圆位置关系的判定、弦长的求法等,题目多以小题为主,难度中等,掌握解此类题目的通性通法是重点.网络构建高频考点突破考点一:直线方程及位置关系问题【例1】(2012·江西八所重点高中联考)“a =0”是“直线l 1:(a +1)x +a 2y -3=0与直线l 2:2x +ay -2a -1=0平行”的 A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件 [审题导引] 求出l 1∥l 2的充要条件,利用定义判定.[规范解答] 当a =0时,l 1:x -3=0,l 2:2x -1=0,此时l 1∥l 2,所以“a =0"是“直线l 1与l 2平行"的充分条件; 当l 1∥l 2时,a (a +1)-2a 2=0,解得a =0或a =1.当a =1时,l 1:2x +y -3=0,l 2:2x +y -3=0,此时l 1与l 2重合, 所以a =1不满足题意,即a =0。
学习资料解析几何专题5第1讲直线与圆直线的方程授课提示:对应学生用书第44页考情调研考向分析以考查直线方程的求法、两条直线的位置关系、两点间的距离、点到直线的距离、两条直线的交点坐标为主,有时也会与圆、椭圆、双曲线、抛物线交汇考查.题型主要以选择题,填空题为主,要求相对较低,但内容很重要,特别是距离公式,是高考考查的重点。
1。
求直线的方程.2。
判断两直线的位置关系.3.直线恒过定点问题。
[题组练透]1.过点(2,1)且与直线3x-2y=0垂直的直线方程为()A.2x-3y-1=0B.2x+3y-7=0C.3x-2y-4=0 D.3x+2y-8=0解析:设要求的直线方程为2x+3y+m=0,,把点(2,1)代入可得4+3+m=0,解得m =-7。
故所求直线方程为:2x+3y-7=0,故选B.答案:B2.(2020·淮南模拟)设λ∈R,则“λ=-3”是“直线2λx+(λ-1)y=1与直线6x+(1-λ)y=4平行”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件解析:当λ=-3时,两条直线的方程分别为6x+4y+1=0,3x+2y-2=0,此时两条直线平行;若两条直线平行,则2λ×(1-λ)=-6(1-λ),所以λ=-3或λ=1,经检验,两者均符合,综上,“λ=-3”是“直线2λx+(λ-1)y=1与直线6x+(1-λ)y=4平行”的充分不必要条件,故选A。
答案:A3.已知直线l:ax+y-2-a=0在x轴和y轴上的截距相等,则a的值是()A.1 B.-1C.2或1 D.-2或1解析:当a=0时,直线方程为y=2,显然不符合题意,当a≠0时,令y=0时,得到直线在x轴上的截距是错误!,令x=0时,得到直线在y轴上的截距为2+a,根据题意得错误!=2+a,解得a=-2或a=1,故选D。
答案:D4.(2020·保定模拟)设点P为直线l:x+y-4=0上的动点,点A(-2,0),B(2,0),则|P A|+|PB|的最小值为()A.210 B.26C.2错误! D.错误!解析:依据题意作出图象如下:设点B(2,0)关于直线l的对称点为B1(a,b),则它们的中点坐标为错误!,且|PB|=|PB1|.由对称性可得错误!,解得a=4,b=2.所以B1(4,2).因为|P A|+|PB|=|P A|+|PB1|,所以当A,P,B1三点共线时,|P A|+|PB|最小.此时最小值为|AB1|=(4+2)2+(2-0)2=2错误!.故选A.答案:A[题后悟通]1.两直线的位置关系问题的解题策略求解与两条直线平行或垂直有关的问题时,主要是利用两条直线平行或垂直的充要条件,即斜率相等且纵截距不相等或斜率互为负倒数.若出现斜率不存在的情况,可考虑用数形结合的方法去研究或直接用直线的一般式方程判断.2.轴对称问题的两种类型及求解方法点关于直线的对称若两点P1(x1,y1)与P2(x2,y2)关于直线l:Ax+By+C=0对称,则线段P1P2的中点在对称轴l上,而且连接P1,P2的直线垂直于对称轴l.由方程组错误!,可得到点P1关于l对称的点P2的坐标(x2,y2)(其中B≠0,x1≠x2)直线关于直线的对称有两种情况,一是已知直线与对称轴相交;二是已知直线与对称轴平行.一般转化为点关于直线的对称来解决圆的方程授课提示:对应学生用书第45页考情调研考向分析考查圆的方程,与圆有关的轨迹问题、最值问题是考查的热点,属中档题.题型主要以选择、填空题为主,要求相对较低,但内容很重要,有时也会在解答题中出现.1。